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Abstract: Precision crop safety relies on automated systems for detecting and classifying plants. This
work proposes the detection and classification of nine species of plants of the PlantVillage dataset
using the proposed developed compact convolutional neural networks and AlexNet with transfer
learning. The models are trained using plant leaf data with different data augmentations. The data
augmentation shows a significant improvement in classification accuracy. The proposed models
are also used for the classification of 32 classes of the Flavia dataset. The proposed developed N1
model has a classification accuracy of 99.45%, N2 model has a classification accuracy of 99.65%, N3
model has a classification accuracy of 99.55%, and AlexNet has a classification accuracy of 99.73%
for the PlantVillage dataset. In comparison to AlexNet, the proposed models are compact and need
less training time. The proposed N1 model takes 34.58%, the proposed N2 model takes 18.25%, and
the N3 model takes 20.23% less training time than AlexNet. The N1 model and N3 models are size
14.8 MB making it 92.67% compact, and the N2 model is 29.7 MB which makes it 85.29% compact as
compared to AlexNet. The proposed models are giving good accuracy in classifying plant leaf, as
well as diseases in tomato plant leaves.

Keywords: classification; compact model; convolutional neural network; plant leaf

1. Introduction

Plants provide food for all living things, making them the backbone of the ecosys-
tem [1]. Plant species are valuable as medicine, foodstuff, and also for industrial appli-
cations. Some plants are at risk of extinction. So, it is imperative to set up a database for
plant protection. Manual examination of the plant with the naked eye is the most basic or
conventional technique. This procedure, involves constant supervision of a wide range of
farm areas by experts [2,3]. This is a time-consuming and costly procedure. To achieve
plant protection, the classification of the plant plays an essential role [4]. Plants leaves
are easily accessible and prominent parts, unlike flowers which are available for a shorter
period. The leaves are, therefore, a good choice for automatic plant classification. The
leaves are important in exploring the genetic relationship of plants and the explanation of
plant development. However, given a large number of species, plant identification, even for
botanists, is a relatively difficult task [5,6]. The leaf recognition technology was followed
by botanists for classifying specific plant species. Plants generally have distinctive features
that differ in many aspects, such as texture, shape, color, and size; they are different [7].
In the last couple of years, different “Computer-Aided Detection” (CAD) methods are
deployed for leaf based plant recognition owing to their high classification accuracy [8,9].

The interdisciplinary approach of plant classification combines botanical data, and the
concept of species with computer solutions [10]. Recent advances in science and technology
allow computer vision approach to help botanists to identify plants. Computer vision
researchers have used leaves to classify plants as a comparative tool [11]. From the machine
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learning point of view, the classification problem can be addressed by adopting a new
quick solution, which will bring experts, farmers, decision-makers, and strategists into a
single chorus [12].

In recent years, evolutionary neural networks have attracted much attention of the
researchers because of their ability to give superior image classification accuracy. They
combine the neural network and computation to solve any problem. Krizhevsky et al. [13]
set a record of 10.9% more classification accuracy compared to the second-best entry in
ImageNet in the 2012 Large Scaled Challenge for Visual Recognition. Advances in the
processing of images provided various preprocessing techniques for the extraction of
images. Feature extraction is the step taken to identify discriminatory characteristics that
form the basis for classification. The classification task can be performed with multiple
learning technologies such as “Support Vector Machines” (SVM), Naïve Baye, “K-Nearest
Neighbor” (KNN), and “Convolutional Neural Network” (CNN) [14].

Deep learning is a subset of machine learning that consists of a set of algorithms for
modeling high-level data abstractions using a deep graph with multiple processing layers
that include linear and non-linear transformations [15]. CNNs are well-suited for image
classification tasks due to their close relationship between layers and spatial information,
which explains their popularity in recent plant classifiers.

Several studies have found that image-based assessment methods produce more
accurate and consistent results than human visual assessments [16]. A lot of work has
been completed to classify things using various techniques. Lecun et al. [17] introduced
the basic deep learning tool of CNN as an introduction to deep learning model techniques
in the field of classification and detection. In recent years, deep learning models have
been used to a small extent in agriculture. CNNs are a form of a dynamic model that
aids classification applications. For classification, there are many CNN models, such as
AlexNet [13], GoogLeNet [18], ResNet50, ResNet18, ResNet101 [19], VGG16, VGG19 [20],
DenseNet [21], SqueezeNet [22], and others.

Mohanty et al. [23] classified 14 different plant leaves using AlexNet and GoogLeNet,
with an accuracy of 99.27% and 99.34%, respectively. The authors used different input
data, such as color images, segmented images, and grayscale images separately. Dyr-
mann et al. [24] classified the plant leaf data with a CNN model and achieved an accuracy
of 86.2%. Barré et al. [25] in their work for plant leaf classification, used LeafSnap, Fo-
liage, and Flavia dataset for classification of different classes with their proposed model
LeafNet. A total of 184 classes of LeafSnap were classified with an accuracy of 86.3%,
and 60 classes of the Foliage dataset were classified with an accuracy of 95.8%. They
achieved the performance accuracy of 97.9% for the Flavia dataset with 32 classes. A deep
CNN model [10] with “Multilayer Perceptron” (MLP) classifier achieved 97.7% accuracy
and improved to 98.1% accuracy with SVM classifier for the MalayaKew dataset with
44 classes. Haque et al. [26] have presented work for plant classification that uses geometric
features in preprocessing and achieved an accuracy of 90% for the classification of 10 plant
species of Flavia dataset. Gao et al. [1] achieved an accuracy of 84.2% in a LifeCLEF Plant
Identification Task with their proposed 3SN Siamese network that learns from spatial
and structural features for the leaf classification task. The recognition of plant family and
further identifying the plant class for the four datasets was performed with two ways
attention CNN model by [27].

In the preparation of Ayurvedic medicines, the identification and classification of
medicinal plants play an essential role. In addition, it is important for farmers, botanists,
practitioners, the forest department’s offices, and those involved in the preparation of
Ayurvedic medicines for a correct classification of medicinal plants. Medicinal plant
classification by [28] with AlexNet model achieved an accuracy of 94.87%, and for the
Ayurleaf CNN model, the accuracy is 95.06%. Duong-Trung et al. [12] achieved 98.5%
classification accuracy with the MobileNet model for 20 species of self-collected medicinal
plant data.
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Liu et al. [29] proposed a ten-layer CNN model for the classification of plant leaf and
achieved an accuracy of 87.92% for the 32 classes. ResNet model gave the classification
accuracy of 93.09% for plant identification with LeafSnap dataset [9]. Plant leaf classification
was completed by [5] on the images captured by Silva et al. [30] using an Apple iPad device.
The Deep Neural network (DNN) model shows 91.17% accuracy, and with the CNN model,
the accuracy is improved to 95.58%. The classification of plant leaf with the complex
background was completed by [6] on the images captured through mobile phones. The
classification accuracy is 91.5%, 92.4%, and 89.6% for VGG16, VGG 19, and the Inception
ResNetV2 model, respectively. For the identification of the berry plants, Ref. [14] used the
AlexNet model and achieved an accuracy of 97.80% for the three classes of self-collected
data of berry plants. A comparative analysis of the work related to the classification of
plants is shown in Table 1.

Table 1. A comparative analysis of the work related to the classification of plants.

Ref. No. Objective Dataset Number of
Classes Model Accuracy

Dyrmann et al. [24] Plant leaf classification Six different datasets 22 CNN 86.20%

Mohanty et al. [23] Identify 14 crop species PlantVillage
38 AlexNet 99.27%

38 GoogLeNet 99.34%

Barré et al. [25] plant identification system LeafSnap

184 LeafNet 86.30%

60 LeafNet 95.80%

32 LeafNet 97.90%

Lee et al. [10] Plant leaf classification Malayakew
44 Deep CNN (D1) MLP 97.70%

44 Deep CNN (D1) SVM (linear) 98.10%

Gao et al. [1] Leaf Identification LifeCLEF 2015 30 3SN 84.20%

Dileep and Pournami [28] Medicinal plant classification AyurLeaf
40 AlexNet 94.87%

40 Ayurleaf CNN 95.06%

Duong-Trung et al. [12] Medicinal plant classification Own data 20 MobileNet 98.50%

Liu et al. [29] Classification of 32 different
plant leaves Flavia 32 Ten-layer CNN model 87.92%

Bodhwani et al. [9] Plant Identification LeafSnap 180 ResNet 93.09%

Tiwari [5] Plant leaf classification Dataset collected by [30]
30 DNN 91.17%

30 CNN 95.58%

Yang et al. [6] Classification of plant leaf Own data

15 VGG16 91.50%

15 VGG19 92.40%

15 Inception- ResNetV2 89.60%

Villaruz [14] Identification of berry plants Own data 3 AlexNet 97.80%

Once the classification of the plant is completed, further work can be extended to the
classification of disease. The VGG16 model was trained with transfer learning for the apple
leaf disease and yielded an overall accuracy of 90.4% [16]. With the augmented dataset of
14828 images of tomato leaves, Ref. [31] achieved an accuracy of 98.66% for AlexNet and
98.18% for the VGG16 model. A small CNN was proposed by [32] for the classification
of the plant into a healthy or diseased category and achieved an accuracy of 96.6%. The
classification accuracy achieved by [33] for tomato plant disease with the laboratory data is
98.50% for the VGG16 model, 98.30% for the VGG19 model, 99.40%for ResNet model, and
99.60% for the Inception V3 model. The proposed model of [34] outperformed AlexNet
and VGG16 with an accuracy of 99.45% in the classification of tomato plant leaf, with an
accuracy of 90.1%.

Guava fruit diseases classification by [35] achieved an accuracy of 99% for the Bagged
Tree classifier on a set of RGB, HSV, and LBP features. Detection of Cassava plant disease
by [36] achieved an accuracy of 96.75% with the deep residual neural network model.
Alli et al. [37] used a data augmentation method to achieve an accuracy of 99.7% for
cassava plant disease classification using MobileNetV2. Pearl millet disease classification
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with an automated method of collecting the pearl millet data from the farm and classifying
the disease with a Custom-Net model with an accuracy of 98.78% [38]. A comparative
analysis of the work related to plant disease classification is shown in Table 2.

Table 2. A comparative analysis of the work related to the classification of plants disease.

Ref. No. Model Dataset Objective Future Scope

Wang et al. [16] VGG16 PV Apple black rot disease severity More data at various stages of disease
can be used to improve accuracy.

Mohanty et al. [23] AlexNet, GoogLeNet PV Identify 14 crop species and
26 diseases

Image data from a smartphone can be
supplemented with location and time
information to improve accuracy even
further.

Brahimi et al. [31] AlexNet, GoogLeNet PV Tomato plant disease classifica-
tion

Reduce the computation and the size of
deep models

Bharali et al. [32] CNN model Google images Classifying into healthy and dis-
ease class for different plant

Larger datasets and more complex net-
works can be created to assess perfor-
mance and improve accuracy.

Ahmad et al. [33] VGG16, VGG19, ResNet
Inception-V3 Own data Classification of Tomato plant

disease
Optimize these models for better perfor-
mance on real-world field-based data.

Anadhakrishnan
et al. [34]

AlexNet, VGG16, LeNet,
ResNet, CNN model PV Classification of Tomato plant

disease Improve computational time

Oyewola et al. [36] deep residual neural net-
work

Cassava Dis-
ease Dataset
from Kaggle

cassava mosaic disease classifi-
cation

Novel image augmentation methods
combined with other deep neural net-
works to improve accuracy

Alli et al. [37] MobileNetV2 own data Cassava disease recognition multi-class detection for identifying a va-
riety of plant diseases

Almadhor et al. [35] Bagged Tree classifier own data Guava fruit disease detection employing deep learning methods to ex-
tract features automatically

Kundu et al. [38] Custom-Net own data pearl millet disease classifica-
tion

scope of making the predictions based
on the parametric dataset collected by
the data collector part

In this work, the proposed CNN models are used for the classification of plant species
for the PlantVillage (PV) and Flavia datasets. The performance of the developed models
are compared with the AlexNet model with transfer learning. The proposed models have
less depth as compared to AlexNet. The proposed models are compact in size and require
less training time, maintaining good accuracy. The main contributions of this work are
as follows:

1. Three highly accurate and compact models namely, N1, N2, and N3 are proposed for
plant leaves classification. The proposed models show high classification accuracy,
and they require less training time;

2. The performance of the models is validated by employing them to classify leaves from
challenging PV and Flavia datasets. The models exhibit high classification accuracy;

3. To validate the versatility of the proposed models, they are also employed in tomato
leaves disease classification using images captured from mobile phone. The disease
classification accuracy shows that the proposed models are well suited for both plant
leaves classification and disease classification.

2. Material and Methods

The work discusses the classification of a plant with a newly developed compact
CNN model and AlexNet with transfer learning. The nine classes belonging to nine
different species of plant images of the PlantVillage database are used for the classification.
Additionally, the 32 classes of the Flavia dataset are classified. Figure 1 shows the workflow
for plant classification and validation. The PV and Flavia datasets are augmented separately,
and images are resized to a required size. The input image size for the proposed models
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is 256 × 256 × 3, and the input image size for AlexNet is 227 × 227 × 3. The dataset is
further split into 80–20% of training dataset and testing dataset. The proposed models and
AlexNet are trained with the training dataset for the classification of the plant species. The
trained model is used for validation with the testing data for the prediction of the new
data class.

Figure 1. Proposed workflow for classification and validation of plant.

2.1. Dataset of Plant Leaves

A PV dataset includes images of healthy and diseased leaves of 38 different classes [23].
The dataset includes both healthy and diseased leaf categories of nine plant species, which
include “apple, cherry, corn, grapes, peach, pepper, potato, strawberry, and a tomato”
plant. We are considering the plant species here for classification purposes. The Flavia
dataset [4] with 32 classes was used for classification with the proposed models. The
Flavia dataset consists of a variant class of the plant leaf belonging to different crops like
“Anhui Barberry”, “Beale’s barberry”, “Big-fruited Holly”, “Camphortree”, “Canadian
Poplar”, “Castor Aralia”, “Chinese Cinnamon”, “Chinese Horse Chestnut”, “Chinese
Redbud”, “Chinese Toon”, “Chinese Tulip Tree”, “Crape Myrtle” or “Crepe Myrtle”, “Deo-
dar”, “Ford Woodlotus”, “Ginkgo Maidenhair Tree”, “Glossy Privet”, “Goldenrain Tree”,
“Japan Arrowwood”, “Japanese Cheesewood”, “Japanese Flowering Cherry”, “Japanese
Maple”, “Nanmu”, “Oleander”, “Peach”, “Pubescent Bamboo”, “Southern Magnolia”,
“Sweet Osmanthus”, “Tangerine”, “Trident Maple”, “True Indigo”, “Wintersweet”, “Yew
Plum Pine”.

2.2. Dataset Pre-Processing

Pre-processing the data is essential to maintain the uniformity and smooth functioning
of the algorithm [24]. Deep learning behaves well when the input dataset is as large
as possible and avoids overfitting. The very minute, invisible to human eye changes,
such as adding noise and blur to the input images, can help CNNs learn more robust
features [39,40]. In this work, the dataset is augmented with the Gaussian blur, salt
and pepper noise with randomized scaling of 0.95 to 1.05 in a horizontal and vertical
direction, and random rotation in the range −30° to 30° of the images. The combination of
augmentation used is shown in Table 3. The other augmentation performed here is with
the rotation and flipping of the dataset. In position augmentation, images are rotated by
45°, 135°, 225°, and 315° and flipped horizontally and vertically. The color augmentation
of saturation, hue, and contrast is added. Saturation represents the amount of purity or
colorfulness of a color. Hue represents the color (blue, red, green, etc.); its value ranges
from 0 to 360. Histogram equalization is performed in evaluating the contrast value in
color augmentation. Histogram equalization is known to improve accuracy.

The classification of plant leaves data is completed on a dataset with 38,400 images
and an augmented dataset of 336,000 images. The deep learning network used in this
work is proposed CNN model 1 (N1 model), CNN model 2 (N2 model), CNN model 3
(N3 model), and AlexNet model with transfer learning. The input images are resized to
the size 256 × 256 × 3 for the proposed developed models, and the images are resized to
227 × 227 × 3 for the AlexNet model.
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Table 3. The amalgamation used to augment the dataset.

Augmentation 1 (ad1)

Noise Salt and pepper noise
Blur Gaussian blur

Position augmentation Random scaling random rotation

Augmentation 2 (ad2)

Position augmentation 45° Rotation 135° Rotation 225° Rotation 315° Rotation
Horizontal flip Vertical flip

Color augmentation Hue Saturation Contrast

2.3. Deep Learning Model

The aim of this analysis is to create a computationally compact and accurate learning
model for plant leaf classification. The proposed CNN model used in this work is developed
with three convolutional layers as shown in Figure 2. The model consists of three sets of
convolution 2D layer (Conv2D) followed by batch normalization layer and ReLU layer.
There are three sets of Conv2D layer, batch normalization layer, and ReLU layer. The
first two sets are followed by the max-pooling layer, and the third set is followed by the
fully connected layer, softmax classifier, and classification layer. The convolution layer is
modified with the size of the filter and the number of filters in the three CNN models of
N1, N2, and N3, as shown in Table 4.

Figure 2. Proposed compact CNN model for classification and validation.
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Table 4. Convolution layers for N1 model, N2 model, and N3 model.

CNN Layer N1 Model N2 Model N3 Model

1st Conv2D 3 × 3, 8 3 × 3, 16 7 × 7, 8
Maxpooling stride 2 2 2

2nd Conv2D 3 × 3, 16 3 × 3, 32 5 × 5, 16
Maxpooling stride 2 2 2

3rd Conv2D 3 × 3, 32 3 × 3, 64 3 × 3, 32

The convolutional layer specifies a set of filters that perform convolution across the
entire image. Each convolutional layer in this architecture learns the various attributes that
capture discriminatory patterns to differentiate the type of plant leaf. After each gradient
update on a batch of data, Deep Neural Networks see different feature information from
the previous layer. Furthermore, because the parameters of the previous layers are updated
during the training phase, the data distribution of this input feature map varies greatly.
This has a significant impact on training speed and necessitates the use of various heuristics
to determine parameter initialization. The Rectified Linear Unit (ReLU) is an activation
function commonly used in the design of neural networks, particularly CNNs. It is the
identity function, f(x) = x, for all positive values of input ‘x’, and zeros out for negative
values. ReLU is activated infrequently, mimicking the biological neuron’s inactivity in
response to certain impulses. This max-pooling layer only activates a subset of the neurons
in the feature map. It is used across all blocks on a ‘2-by-2’ window with a stride factor of ‘2’.
The feature maps’ width and height are effectively reduced while the number of channels
remains constant. In CNN models that predict a multinomial probability distribution, the
softmax function is used as the activation function in the output layer. In other words, for
multi-class classification problems, softmax is used as the classifier.

One of the benefits of small filter sizes over fully connected networks is that they min-
imize computing costs and weight sharing, resulting in lower back-propagation weights.
Until now, the best choice for practitioners has been 3 × 3 [41,42]. The CNN model N1 has
a fixed filter size of 3 × 3 in all three convolution layers. In the 1st Conv2D, there are eight
filters and, in the 2nd, Conv2D and 3rd Conv2D, there are 16 and 32 filters, respectively. In
the CNN model N2, the filter size is kept the same as N1, but the number of filters in them
is doubled as compared to N1. In the CNN model of N3, the filter size for the 1st Conv2D
layer is 7 × 7, with eight filters. The 2nd Conv2D layer is 5 × 5, with 16 filters, and the
3rd Conv2D layer is 3 × 3 with 32 filters. The 1st Conv2D layer and 2nd Conv2D layer
is followed by a max-pooling layer with a stride of 2 on a 2-by-2 window. The dataset is
divided into training and testing datasets with the combination of 80–20% of the total data
of 38,400 and 336,000 images. The data are trained with this combination for all the CNN
models for the classification of the plant leaves. AlexNet is a pre-trained model that has
the ability to classify up to 1000 classes [13]. In this work, we are classifying plant leaves of
PV and Flavia dataset with 9 and 32 classes, respectively. For this purpose, AlexNet with
transfer learning is used for classification. The objective of transfer learning is to optimise
learning by leveraging the transferability of knowledge from the source [12]. All the models
are implemented using the deep learning toolbox of MATLAB2019b in this study.

2.4. Performance Parameters of the CNN Model

The classification of the deep learning models is based on the performance and
accuracy of the model. The confusion matrix of the test dataset is used for evaluating the
performance parameters. The correct classification is shown by the diagonal elements and
misclassification by non-diagonal elements of the confusion matrix. The elements of the
confusion matrix are as follows [43]:

• “True Positive (TP): is the correctly labeled positive samples by the classifier”;
• “True Negative (TN): is the correctly labeled negative samples by the classifier”;
• “False Positive (FP): is the negative samples incorrectly labeled as positive”; and



Plants 2022, 11, 24 8 of 25

• “False Negative (FN): is the positive samples incorrectly labeled as negative”.

The performance parameters evaluated here are macro recall, macro precision, macro
F1 score, and mean accuracy [31]. Sensitivity/recall is the measure of the model that
appropriately detects the positive class and is also known as the true positive rate. The
model assigning positive events to the positive class is measured by a positive predictive
value, also known as precision. F1 score is the harmonic mean of recall and precision.
“Macro recall is the average per class effectiveness of a classifier to identify class labels”.
“Macro precision is an average per class agreement of the data class labels with those of the
classifiers”. “Macro F1 score is the relation between data’s positive labels and those given
by the classifier based on per class average”. “Accuracy is the ratio of correct prediction by
all predictions”.

Sensitivity/Recall =
TP

TP + FN
. (1)

MacroRecall = ∑C
n=1 Sensitivity

C
(2)

where C is the number of classes.

Precision =
TP

TP + FP
(3)

MacroPrecision =
∑C

n=1 Precision
C

(4)

F1score =
2 × Precision × Recall

Precision + Recall
(5)

MacroF1score = ∑C
n=1 F1score

C
(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

There are nine classes in the PV dataset, so the confusion matrix metrics 9 × 9. In the
case of the Flavia dataset with 32 classes, the confusion matrix metrics 32 × 32. For the N1
model, N2 model, N3 model, and AlexNet model, the accuracy of each class is evaluated.
Each deep learning model’s simulation time is noted. The time is in seconds, measured.

2.5. Validation of the Trained CNN Model

Validation of models is completed for the trained CNN models with the images from
the PV and Flavia datasets, respectively, that was not part of the training or testing set.
The validation of models is performed with 33,600 images. The validation of the model
classifies the unknown image leaf data with its class and accuracy.

3. Results and Discussion

The PV dataset with nine species of plants is shown in Figure 3. The classes are
abbreviated as follows. Apple plant with four varieties are A; Cherry with two varieties
are Ch. Corn with four varieties are Co; Grape with four varieties are G. Peach with two
varieties are Pch; Pepper with two varieties are Pep; potato with three varieties is Po.
Strawberry with two varieties are S; tomato with nine varieties are To.
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A A A A Ch Ch Co

Co Co Co G G G G

Pch Pch Pep Pep Po Po Po

S S To To To To To

To To To To

Figure 3. Plant leaf images from the training dataset of PV dataset.

The 32 classes of the Flavia dataset are shown in Figure 4. The classes are abbreviated
as “Anhui Barberry” is AB, “Beale’s Barberry” is BB, “Big-Fruited Holly” is BFH, “Castor
Aralia” is CA, “Camphortree” is Cam, “Chinese Cinnamon” is CC, “Chinese Horse Chest-
nut” is CHC, “Crape Myrtle” is CM, “Canadian Poplar” is CP, “Chinese Redbud’ is CR,
“Chinese Toon” is CT, “Chinese Tulip Tree” is CTT, “Deodar” is D, “Ford Woodlotus” is
FW, “Ginkgo Maidenhair Tree” is GMT, “Glossy Privet” is GP, “Goldenrain Tree” is GT,
“Japan Arrowwood” is JA, “Japanese Cheesewood” is JC, “Japanese Flowering Cherry” is
JFC, “Japanese Maple” is JM, “Nanmu” is N, “Oleander” is O, “Peach” is P, “Pubescent
Bamboo” is PB, “Southern Magnolia” is SM, “Sweet Osmanthus” is SO, “Tangerine” is T,
“Trident Maple” is TM, “True Indigo” is TI, “Wintersweet” is W, and “Yew Plum Pine” is
YPP. All the 32 classes belong to different species here.

The pre-processing of the dataset is discussed in Section 2.2. The dataset is aug-
mented with augmented data 1 (ad1) and augmented data 2 (ad2) and further resized to
256 × 256 × 3 for the proposed models and 227 × 227 × 3 for the AlexNet. Some of the
data augmented images are shown in Figure 5.
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AB BB BFH CA Cam CC CHC

CM CP CR CT CTT D FW

GMT GP GT JA JC JFC JM

N 0 P PB SM SO T

TI TM W YPP

Figure 4. Plant leaf images from the training dataset of Flavia dataset.

Gaussian blur

Salt and pepper
noise

Random scaling
and rotation

Contrast

Hue

Saturation

Figure 5. Some of the pre-processed images of PV and Flavia dataset.
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Classification of leaves of plants is performed using proposed compact models N1,
N2, N3, and AlexNet with transfer learning. The classification accuracy of these models on
a dataset, ad1, and ad2 is shown in Figure 6. The classification accuracy increases with the
augmented dataset. More features are studied in the ad2, along with the increase in the
number of images that are used for training the models. This helps in learning the model
and achieving better prediction in terms of accuracy. The accuracy of the proposed N1
model is 86.58% with dataset and increased to 89.31% with ad1 and 99.45% with ad2. The
accuracy of the proposed N2 model is 92.09% with the dataset and increased to 99.65% with
ad2. The accuracy of the proposed N3 model is 89.61% and increases to 89.8% with ad1
and 99.55% with ad2. AlexNet shows an accuracy of 98.53% with a dataset and increases
to 99.73% with ad2. The accuracy of the N1 model, N2 model, N3 model, and AlexNet
is almost the same for ad2. The time for training the model increases as the number of
images increase. The training time for the N1 model, N2 model, N3 model, and AlexNet
model is shown in Figure 7. The proposed N1, N2, and N3 models take less training time
as compared to the AlexNet model. The number of layers and the size of the filter used in
the proposed CNN N1 model, N2 model, and N3 model is less than the traditional AlexNet
model. There are three CNN layers in the proposed developed model, whereas there are
five Convolutional layers in AlexNet. The filter size is also more in AlexNet as compared
to proposed developed models. The number of CNN layers and the size of the filters used
in our developed model is compact as compared to AlexNet. This reduces the complexity
of the model and so the training time required for the model is less.

Overfitting occurs when your model fits well on the training data, but it does not
generalize well on new, unseen data. Overfitting problem can be prevented by taking
measures such as data augmentation, simplifying the models, using dropout, regularization,
and early stopping [39,44,45]. In this work, we have used two epochs for training the model.
The learning rate for the model is 0.0001. The training accuracy and training loss, along
with the validation accuracy and validation loss, is as shown in Figure 8. The model with
increasing training accuracy and validation accuracy and also decreasing training loss and
validation loss shows that overfitting is prevented. The training accuracy and training loss
are shown in Figure 8, (a) N1 model, (c) N2 model, (e) N3 model, and (g) AlexNet model.
The validation accuracy and validation loss are shown in Figure 8, (b) N1 model, (d) N2
model, (f) N3 model, and (h) AlexNet model.

Figure 6. Classification accuracy of models for dataset, ad1 and ad2 for PV and Flavia dataset.
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Figure 7. Training time of models for PV and Flavia dataset.

The comparison of models in terms of accuracy and size of the models with existing
models are shown in Table 5. Jeon and Rhee [46] achieved an accuracy of 99.60% with
GoogLeNet. Kaya et al. [47] in their work of plant classification, used PV and Flavia dataset
with AlexNet and VGG16 models. Wang and Wang [48] classified plants with an accuracy
of 84.47% with VGG16 and ResNet50 with 92.64%. For the VGG16 and VGG 19 models, the
accuracy achieved by of models is 81.3% and 96.25%, respectively [49]. The combination
of pruning and post-quantization was applied to VGG16, AlexNet, and LeNet model [50].
The pruning step was responsible for reducing the model size. The performance of models
is 91.49%, 96.59%, and 95.2%, respectively. The ten-layer CNN model by [29] achieved an
accuracy of 87.92% with the Flavia dataset and 84.02% with the PV dataset. The accuracy
of the proposed N1 model is 99.45%, proposed N2 model is 99.65%, proposed N3 model is
99.55%, and AlexNet with transfer learning is 99.73% with the models trained with ad2.
The size of the proposed trained models is 14.8 MB, 29.7 MB, and 14.8 MB, respectively, for
the N1 model, N2 model, and N3 model as compared to AlexNet, which is 202 MB. The
proposed N1 model and N3 model are 92.67% more compact than AlexNet, and the N2
model is 85.29% compact than AlexNet showing the same range accuracy results. The time
for training the N1 model and N2 model is also less. The N1 model takes around 34.58%
less training time than AlexNet, and the N2 model takes around 18.25% less training time
than AlexNet. N3 model takes 20.23% less training time than AlexNet.

The classified output images for the proposed N1 model, N2 model, N3 model, and
AlexNet with transfer learning with 80% of training data for the PV dataset images are
shown in Figure 9. The models are trained with a dataset, ad1, and ad2 and their classified
output is shown here. The classified output for the proposed models and AlexNet model is
shown in Figure 9, (a) N1 model with the dataset, (b) N2 model with the dataset, (c) N3
model with dataset, (d) AlexNet model with the dataset, (e) N1 model with ad1, (f) N2
model with ad1, (g) N3 model with ad1, (h) AlexNet model with ad1, (i) N1 model with
ad2, (j) N2 model with ad2, (k) N3 model with ad2, (l) AlexNet with ad2. The abbreviations
used for the classified output images for the PV dataset are mentioned at the start of the
Results and Discussion section.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Training accuracy and training loss along with validation accuracy and validation loss for
the N1 model, N2 model, N3 model, and AlexNet.
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Figure 9. Classified output images for 80% training data with PV dataset using (a) N1 model with
the dataset, (b) N2 model with the dataset, (c) N3 model with dataset, (d) AlexNet model with the
dataset, (e) N1 model with ad1, (f) N2 model with ad1, (g) N3 model with ad1, (h) AlexNet model
with ad1, (i) N1 model with ad2, (j) N2 model with ad2, (k) N3 model with ad2, (l) AlexNet with ad2.
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Table 5. Performance comparison of proposed work with other existing work in plant classification.

Source Dataset Method Accuracy Size

Mohanty et al. [23] PV
AlexNet 99% 227 MB [51]

GoogLeNet 99% 27 MB [51]

Lee et al. [10] Flavia AlexNet 99.40% 202 MB [51]

Jeon and Rhee [46] PV GoogLeNet 99.60% 27 MB [51]

Kaya et al. [47]
Flavia

Alexnet 97.89% 202 MB [51]
VGG16 98.16% 515 MB [51]

PV
Alexnet 98.6% 202 MB [51]
VGG16 99.8% 515 MB [51]

Wang [48] Flavia
VGG16 84.47% 515 MB [51]

ResNet50 92.24% 96 MB [51]

Anubha Pearline et al. [49] Flavia
VGG16 95% 515 MB [51]
VGG19 96.25% 535 MB [51]

Venkatesh et al. [52] PV
VGG16 81.3% 515 MB [51]

VGG16 +Inception 92.2% -

Fountsop et al. [50] Flavia

VGG16 Pruning +
91.49% 36.76 MBpost-quantization

AlexNet Pruning +
96.59% 32.37 MBpost-quantization

LeNet Pruning +
95.02% 9.91 MBpost-quantization

Liu et al. [29] Flavia ten-layer CNN 87.92% 7 MB

Proposed work

PV

N1 model 99.45% 14.8 MB
N2 model 99.65% 29.7 MB
N3 model 99.55% 14.8 MB
AlexNet 99.73% 202 MB

Flavia

N1 model 99.17% 14.8 MB
N1 model 99.59% 29.7 MB
N1 model 99.36% 14.8 MB
AlexNet 99.87% 202 MB

The classified output images for the proposed N1 model, N2 model, N3 model, and
AlexNet with transfer learning with 80% of training data for the Flavia dataset images are
shown in Figure 10. The models are trained with a dataset, ad1, and ad2 and their classified
output is shown here. The classified output for the proposed models and AlexNet model is
shown in Figure 10, (a) N1 model with the dataset, (b) N2 model with the dataset, (c) N3
model with dataset, (d) AlexNet model with the dataset, (e) N1 model with ad1, (f) N2
model with ad1, (g) N3 model with ad1, (h) AlexNet model with ad1, (i) N1 model with
ad2, (j) N2 model with ad2, (k) N3 model with ad2, (l) AlexNet with ad2. The abbreviations
used for the classified output images for the Flavia dataset are mentioned at the start of the
Results and Discussion section.

The performance of the classification by the models trained with a dataset, ad1, and
ad2, is evaluated on the PV dataset by confusion matrix as shown in Table 6 for the
proposed N1 model, N2 model, N3 model, and AlexNet. The confusion matrix shows the
information about classification and misclassification by the model. The diagonal elements
show the correct classification, and the non-diagonal elements show the misclassification
information. Table 6a shows the confusion matrix for the proposed N1 model trained for
80% dataset and tested for 20% of a dataset remaining. The diagonal elements show the
correct classification of each class, and cells are colored in yellow.
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SO CA CM JFC CT GT

W T SO D PB P
(a) (b) (c)

O JM PB CHC TM BB

CT SO SM CR GT JA
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Figure 10. Classified output images for 80% training data with Flavia dataset using (a) N1 model
with the dataset, (b) N2 model with the dataset, (c) N3 model with dataset, (d) AlexNet model with
the dataset, (e) N1 model with ad1, (f) N2 model with ad1, (g) N3 model with ad1, (h) AlexNet model
with ad1, (i) N1 model with ad2, (j) N2 model with ad2, (k) N3 model with ad2, (l) AlexNet with ad2.



Plants 2022, 11, 24 17 of 25

Table 6. Confusion matrix for proposed model for PV dataset.

(a) Confusion matrix for N1 using 80% of the training data with the dataset.
Actual Class

Class A Ch Co G Pch Pep Po S To

Pr
ed

ic
te

d
C

la
ss

A 109 0 0 0 6 0 0 0 0
Ch 0 116 0 0 0 0 0 0 3
Co 0 0 115 2 0 0 3 0 0
G 0 0 0 119 1 0 0 0 0
Pch 1 0 0 0 100 0 0 0 0
Pep 0 0 0 0 0 118 0 0 0
Po 0 0 3 0 0 0 116 0 1
S 0 0 0 0 0 0 0 118 0
To 0 0 4 0 0 0 5 0 105

(b) The effect of data augmentation on confusion matrix of the model with ad1 and ad2 for PV dataset.

Class N1 N2 N3 AlexNet
ad1 ad2 ad1 ad2 ad1 ad2 ad1 ad2

A 4.2 15.1 −10.4 3.7 −5.8 7 0 −0.1
Ch 7.9 14.7 −2.1 3 −4.2 3.6 0.8 0.7
Co 1.7 2.7 0.8 1 1 2 0 0
G −1.2 2.8 −5 1.2 −0.4 2.8 0 0
Pch 5.8 12.2 2.5 8.2 1 8.9 1.3 1
Pep 10 24.3 11.3 21 3.8 18.1 −0.8 0.4
Po 5.4 11.1 −2 3.5 8.3 11 0 0
S 0 7 2.9 4 −0.8 2 0 −0.5
To −4.6 4.7 2 6 −0.4 7 0 0.7

Correct classification Classification accuracy Misclassification increased
increased with augmented data after augmented data

The effect of data augmentation on the confusion matrix of N1, N2, N3, and AlexNet
models with ad1 and ad2 is shown in Table 6b. The negative number shows a decrease in
classification, and a positive sign indicates an increase in classification. The cell colored
in green shows the increase in classification accuracy (percentage), and the cell colored in
grey shows misclassification (percentage) after data augmentation.

It is seen that the performance of the model is improved with the models trained
with an augmented dataset. The accuracy of the proposed N1 model for the PV dataset is
improved by 7.9% and 14.7% for the “Ch” class for the model trained with ad1 and ad2,
respectively. The “Pep” class accuracy is improved by 10% and 24.3% for the model trained
with ad1 and ad2, respectively. The performance of the proposed N2 model is improved by
11.3% and 21% for the “Pep” class for a model trained with ad1 and ad2, respectively. The
accuracy of the N2 model is improved by 2% and 6% with a model trained with ad1 and
ad2, respectively, for the “To” class. The accuracy of the proposed N3 model is improved
by 8.3% and 11% for the “Po” class for the model trained with ad1 and ad2, respectively.
The “Pch” class accuracy is improved by 8.9% with ad2. The performance of the AlexNet
model is improved by 1.3%for the “Pch” class for a model trained with ad1. In the case of
AlexNet trained with ad2, the accuracy of two classes is reduced viz. “A” and “S.” The
accuracy performance for the proposed developed network N1 model, N2 model, and N3
model is seen to be improved for each of the classes with ad2.

The classification performance of the models trained with a dataset, ad1, and ad2 is
evaluated on the Flavia dataset by confusion matrix as shown in Table 7 for the proposed
N1 model. Table 7a shows the confusion matrix for the proposed N1 model trained for 80%
dataset and tested for 20% of a dataset remaining. The diagonal elements show the correct
classification of each class, and cells are colored in yellow. The effect of data augmentation
on the confusion matrix of N1, N2, N3, and AlexNet models with ad1 and ad2 is shown
in Table 7b. The negative number shows a decrease in classification, and a positive sign
indicates an increase in classification. The cell colored in green shows the increase in
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classification accuracy (percentage), and the cell colored in grey shows misclassification
(percentage) after data augmentation.

Table 7. Confusion matrix for proposed model for Flavia dataset.

(a) Confusion matrix for N1 using 80% of the training data with the dataset.
Actual Class

Class AB BB BFH CA CC CHC CM CP CR CT CTT Cam D FW GMT GP GT JA JC JFC JM N O P PB SM SO T TI TM W YPP

Pr
ed

ic
te

d
C

la
ss

AB 109 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0
BB 0 116 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
BFH 0 0 115 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CA 0 0 0 119 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CC 1 0 0 0 100 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0
CHC 0 0 0 0 0 118 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
CM 0 0 3 0 0 0 116 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CP 0 0 0 0 0 0 0 118 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CR 0 0 4 0 0 0 5 0 105 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 4 0
CT 0 0 0 1 5 2 0 0 0 94 0 0 0 0 0 0 0 0 0 4 2 1 0 6 3 0 0 2 0 0 0 0
CTT 0 0 2 6 0 0 0 1 0 2 106 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Cam 0 0 2 0 2 0 0 0 0 0 0 110 0 0 0 0 0 0 0 5 0 0 0 0 0 0 1 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FW 0 0 0 0 1 0 0 0 0 0 0 0 0 115 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0
GMT 0 0 1 2 0 0 0 0 0 0 3 0 0 0 110 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0
GP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GT 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 117 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
JA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JC 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 118 1 0 0 0 0 0 0 0 0 0 0 0 0
JFC 0 0 2 0 0 5 0 0 0 0 0 5 0 0 0 0 0 1 0 104 1 0 0 0 0 0 1 1 0 0 0 0
JM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 119 0 0 0 0 0 0 0 0 0
P 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 117 0 0 0 1 0 0 0 0
PB 0 0 0 0 1 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 2 0 113 0 0 0 0 0 0 0
SM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 114 1 3 0 0 0 0
SO 0 0 0 0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 100 1 0 0 3 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 0 115 0 0 0 0
TI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 118 0 0 0
TM 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 114 2 0
W 0 0 4 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 107 0
YPP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 2 0 0 0 0 0 0 114

(b) The effect of data augmentation on confusion matrix of the model with ad1 and ad2 for PV dataset

Class N1 N2 N3 AlexNet
ad1 ad2 ad1 ad2 ad1 ad2 ad1 ad2

AB −5.8 8.9 −15 5 −2 5 0 0
BB −5 2.3 −2 1 2 3.3 0 0
BFH 1.7 4.1 3.3 3 2 8 1 1
CA −33.3 0.8 −26.7 1.7 −22 5 0 0
CC −14.2 12.3 −4.2 6.2 −3 19.3 1 −1
CHC −7.5 −0.2 3 4.6 0 2.6 −0.8 2.3
CM −0.8 3 −2.5 −0.2 3 4 2 2
CP 0 1.4 0 2 0 2 0 0
CR 5 12.4 −5 1 10.8 16 0 0
CT 7.5 20.4 −10.8 5 −8 9.9 0 0
CTT 0.8 11.4 −7.5 1.6 −2.5 5 0 0
Cam −10 8 −10.8 2.4 −9 10.4 −3 0
D −2.5 0 −0.8 0 −1 0 0 0
FV 1.7 −0.4 4.2 7.7 1.7 −0.2 −1 0
GMT −2.5 8.1 7 13 −11 9 0 0
GP −0.8 −1 0 −0.5 0 −1.2 0 0
GT 0 1.9 −0.8 −1 −1 −1 0 0
JA −24.2 −0.6 −12.5 0 −18 1 0 0
JC −17.5 0.5 −12.5 3 −28.3 3.5 −1 0
JFC −33.3 13 −20.8 7.5 −1.7 18.1 0 0
JM −1.7 −0.3 0.8 2.4 1 1 0 0
N −11.7 −0.1 −12.5 3.8 −13.3 −1 0 0
O −25 0.7 −3.3 1.6 −4 10.5 −18 0
P −0.8 −1.1 −4 −2.5 −0.8 1 1 1
PB −26.7 5.2 −22.5 0 −17 11 2 1.7
SM −20 4.2 −12 6.3 −9.2 4.6 0 0
SO −2.5 16 −20 3 −18 3 0.8 0.7
T −10 3.9 −1.7 6 −3 2.5 0 0
TI 1.7 1.7 0 0 1 1 0 0
TM 2.5 5 8 12 −4 3 −0.8 0
W −27.5 10.8 −16.7 11 −30 16 −6 0
YPP −15 3.5 1.7 11.7 −1.7 5.5 5.8 5.7

Correct classification Classification accuracy Misclassification increased
increased with augmented data after augmented data
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The accuracy of the proposed N1 model for the Flavia dataset is improved by 5% and
12.4% for the “CR” class for the model trained with ad1 and ad2, respectively, and 10.8%
and 16% for the proposed N2 model with ad1 and ad2. The “CT” class accuracy is improved
by 7.5% with ad1 and 20.4% with ad2 for the proposed N1 model. The performance of the
N2 model is improved by 7% and 13% for the “GMT” class for a model trained with ad1
and ad2, respectively. The accuracy of the proposed N3 model is improved by 19.3% for
the “CC” class for the model trained with ad2. The performance of the AlexNet model
is improved by 5.8% and 5.7% for the “YPP” class for a model trained with ad1 and ad2,
respectively.

Data augmentation influences the average precision of the class [53,54]. Based on the
confusion matrix, the performance parameters of macro recall, macro precision, macro F1
score, and mean accuracy are evaluated for the PV and Flavia datasets. The performance
parameters of the proposed N1 model, N2 model, N3 model, and AlexNet is shown in
Table 8. The performance parameters of macro recall, macro precision, macro F1 score, and
mean accuracy for the PV and Flavia dataset are compared here for data, ad1 and ad2. It is
seen that the performance parameters are improved with the ad2. The proposed developed
N1, N2, and N3 models have the same range performance as AlexNet. The size of these
models is much more compact to AlexNet and gives great results.

Table 8. Performance parameters of N1 model, N2 model, N3 model, and AlexNet trained with data,
ad1, and ad2.

Dataset Model Data Macro Macro Macro Mean
Recall Precision F1_score Accuracy

PV

N1
data 87.76% 86.58% 86.57% 99.16%
ad1 89.50% 89.31% 89.26% 99.33%
ad2 99.45% 99.45% 99.45% 99.97%

N2
data 92.35% 92.03% 91.95% 99.50%
ad1 91.54% 90.83% 90.83% 99.43%
ad2 99.65% 99.65% 99.65% 99.98%

N3
data 90.20% 89.61% 89.57% 99.35%
ad1 90.32% 89.80% 89.71% 99.36%
ad2 99.55% 99.55% 99.55% 99.97%

AlexNet
data 98.60% 98.53% 98.52% 99.91%
ad1 98.99% 98.98% 98.98% 99.94%
ad2 99.74% 99.73% 99.73% 99.98%

Flavia

N1
data 94.54% 94.30% 94.30% 99.64%
ad1 86.43% 85.63% 85.45% 99.10%
ad2 99.18% 99.17% 99.17% 99.95%

N2
data 96.05% 95.91% 95.91% 99.74%
ad1 90.49% 89.77% 89.76% 99.36%
ad2 99.59% 99.59% 99.59% 99.97%

N3
data 93.99% 93.83% 93.80% 99.61%
ad1 88.49% 87.99% 87.76% 99.25%
ad2 99.37% 99.36% 99.36% 99.96%

AlexNet
data 99.50% 99.48% 99.48% 99.97%
ad1 99.02% 98.93% 98.93% 99.93%
ad2 99.87% 99.87% 99.87% 99.99%

For analyzing the results of the experimental designs by statistical tests, an analysis of
variance (ANOVA) is developed by [55]. The ANOVA is performed on the performance
parameters for the proposed models, and AlexNet trained with the dataset, ad1, and ad2
of both the datasets is shown in Tables 9–11. The parameters evaluated are Sum of Squares
(SS), degree of freedom (df), mean squares (MS), p-value, F value, and F critical value. The
condition for statistical significance is evaluated based on the p-value and if the F value is
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less than the F critical value. If the p-value is between 0.0001 to 0.001, then it is extremely
statistically significant when the p-value is between 0.001 to 0.01, then it is very statistically
significant when the p-value is between 0.01 to 0.05, then it is statistically significant, and
when the p-value is greater than 0.05, then there is no statistical significance. In all three
tables for ANOVA, we can see the statistical significance for the models evaluated on
both datasets.

Table 9. ANOVA analysis of performance parameters evaluated for dataset.

Source of Variation SS df MS F p-Value F Critical Significance

Dataset 77.688 1 77.688 6.659 0.0164 4.259 **
Models 191.983 3 63.994 5.485 0.0051 3.009 ***

Dataset × Models 24.687 3 8.229 0.705 0.5582 3.009 NS
Within 279.985 24 11.666
Total 574.343 31

*** p < 0.001, ** p < 0.01, * p < 0.05; NS, p ≥ 0.05.

Table 10. ANOVA analysis of performance parameters evaluated for ad1.

Source of Variation SS df MS F p-Value F Critical Significance

Dataset 12.276 1 12.276 0.604 0.4446 4.259 NS
Models 366.819 3 122.273 6.015 0.0033 3.009 ***

Dataset × Models 7.659 3 2.553 0.125 0.944 3.009 NS
Within 487.848 24 20.327
Total 874.602 31

*** p < 0.001, ** p < 0.01, * p < 0.05; NS, p ≥ 0.05.

Table 11. ANOVA analysis of performance parameters evaluated for ad2.

Source of Variation SS df MS F p-Value F Critical Significance

Dataset 4.43 × 10−6 1 4.43 × 10−6 0.816 0.3752 4.259 NS
Models 6.23 × 10−5 3 2.08 × 10−5 3.829 0.0225 3.009 *

Dataset × Models 1.13 × 10−5 3 3.77 × 10−6 0.696 0.5634 3.009 NS
Within 0.0001 24 5.42 × 10−6

Total 0.0002 31
*** p < 0.001, ** p < 0.01, * p < 0.05; NS, p ≥ 0.05.

The ability of the trained model to classify new data is an important factor in decision
making. The PV dataset has nine classes belonging to nine plant species. The classification
of plant species for PV dataset images that were not part of the training and testing dataset
is completed. The validation accuracy of the N1 model, N2 model, N3 model, and AlexNet
models trained with PV dataset is shown in Table 12. The images that were not part of the
training and testing dataset are used for validation of the model into respective species.
The validation performance of pepper is lower compared to other species. The proposed
N2 model classifies the apple species with 92.5% accuracy, N2 model and AlexNet model
classify cherry with 95% accuracy. The validation accuracy of the N2 model and AlexNet
is 97.5% for the corn. The validation of grape, peach, and strawberry is good for all the
models. The validation accuracy of the N3 model for tomato is 91.11%. Overall, the
performance of the N2 model is more as compared to N1 and N3 models.

The classification of plant species for Flavia dataset images that were not part of the
training and testing dataset is completed. In the case of the Flavia dataset, each of the
32 classes belong to different plant species. Validation accuracy of proposed N1 model, N2
model, N3 model, and AlexNet models trained with Flavia dataset is shown in Table 13.
Almost all the species are showing good classification except for the Cam class. Overall, the
N2 model is performing equally well as AlexNet. N2 model achieves better performance
in classification, as well as validation for PV and Flavia dataset with compact model size.
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Table 12. Validation accuracy of proposed N1 model, N2 model, N3 model, and AlexNet models
trained with PV dataset.

Species N1 N2 N3 AlexNet

“Apple” 82.5% 92.5% 90% 100%
“Cherry” 75% 95% 85% 95%
“Corn” 95% 97.5% 90% 97.5%

“Grape” 90% 97.5% 95% 100%
“Peach” 80% 85% 90% 100%

“Pepper” 40% 60% 70% 100%
“Potato” 73.33% 90% 86.67% 100%

“Strawberry” 100% 90% 100% 100%
“Tomato” 88.89% 84.44% 91.11% 95.56%

Table 13. Validation accuracy of N1 model, N2 model, N3 model, and AlexNet models trained with
Flavia dataset.

Species N1 N2 N3 AlexNet

AB 100% 60% 80% 100%
BB 100% 100% 100% 100%

BFH 100% 100% 100% 100%
CA 100% 100% 100% 100%

Cam 10% 10% 10% 50%
CC 60% 50% 50% 100%

CHC 80% 90% 90% 100%
CM 100% 100% 100% 100%
CP 100% 100% 100% 100%
CR 90% 80% 90% 100%
CT 30% 30% 20% 80%

CTT 100% 100% 100% 100%
D 90% 100% 90% 100%

FW 90% 90% 90% 100%
GMT 100% 100% 100% 100%
GP 100% 100% 100% 100%
GT 80% 50% 70% 100%
JA 100% 100% 100% 100%
JC 50% 50% 60% 80%

JFC 50% 60% 60% 100%
JM 100% 100% 100% 100%
N 90% 90% 90% 100%
O 100% 100% 100% 100%
P 100% 100% 100% 100%

PB 50% 70% 60% 90%
SM 40% 70% 40% 100%
SO 70% 60% 70% 90%
T 70% 90% 90% 100%
TI 90% 100% 90% 100%

TM 90% 80% 90% 100%
W 90% 90% 90% 100%

YPP 30% 90% 20% 70%

4. Performance of Proposed Models for the Classification of Tomato Plant Disease

The proposed model performed well in the classification of plant leaves. The proposed
models are further used for classifying the disease in tomato plant leaf. The image data
were collected from a tomato farm from Lavale, Pune, India. These data were captured
with a mobile phone camera with the specification Super Speed Dual Pixel 12MP AF sensor.
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The images were captured with background around the tomato plant leaves. In real-life
applications, input images cannot be expected to be of high quality. The images captured
for each of the four classes were 300, which were augmented to 126,000 images. The
augmented images are used to train the proposed models and AlexNet. The data of tomato
plants are tomato early blight, leaf miner, and yellow leaf curl virus (YLCV) disease classes,
along with healthy leaves. Figure 11 shows the tomato plant disease and a healthy class of
Lavale farm dataset.

The classification accuracy of the proposed models and AlexNet is shown in Figure 12.
The proposed N1 model achieves an accuracy of 99.864%, N2 achieves 99.59% , N3 achieves
99.63%, and AlexNet achieves an accuracy of 99.35%. The proposed N1 model takes 22.82%,
N2 model takes 56.18%, and N3 model takes 25.73% less training time than AlexNet model.
The N1 and N3 model are 99.06% and N2 model is 98.11% compact than AlexNet model.
The proposed model’s performance shows that they are capable of classifying the tomato
plant disease images with complex backgrounds with good accuracy, less training time
and compact model size. The proposed model’s size is compact and takes less training
time than the state of art models. The proposed models can be deployed as a stand-alone
mobile app that will benefit the farmer with its results.

Healthy Early blight Leaf miner YLCV

Figure 11. Plant leaf images of Lavale data.

Figure 12. Classification accuracy of models for Lavale farm dataset.

5. Conclusions

The classification of Plant leaf images of nine classes of the PV database using proposed
CNN models viz N1 model, N2 model, N3 model, and AlexNet with transfer learning
is performed in this work. The developed model shows better performance after data
augmentation is applied to them. The accuracy achieved by the proposed developed
models is 99.45% with N1 model, 99.65% with N2 model, 99.55% with N3 model, and
99.73% with the AlexNet model for the PV dataset. The accuracy achieved by the proposed
developed models is 99.17% with N1 model, 99.59% with N2 model, 99.36% with N3 model,
and 99.87% with the AlexNet model for the Flavia dataset with 32 classes. The accuracy of
the developed models is equally good as AlexNet. The proposed N1 model and N3 model
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are 92.67% compacts than AlexNet, and N2 model is 85.3% compact than AlexNet. The
training time of the developed model is reduced by 34.58% for the N1 model and 18.25% for
the N2 model, and 20.23% for N3 as compared to the AlexNet. The N2 model has a compact
size as compared to AlexNet and shows the same range accuracy. The classification of
species is done by these trained models on the different images from PV and Flavia datasets
that are not included in training and testing the models. The overall performance of the N2
model is more than N1 and N3 models. The experiments on two challenging datasets of
PV and Flavia confirm the effectiveness of our method. The distinctiveness of proposed
model classifies diseased plant leaves in the images captured with a mobile phone. The
proposed models can be deployed as a stand-alone mobile app that will benefit the farmers
as the proposed models are compact and give good classification results. The automatic
plant classification will help in plant management thereby benefiting the society.
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37. Abayomi-Alli, O.O.; Damaševičius, R.; Misra, S.; Maskeliūnas, R. Cassava disease recognition from low-quality images using
enhanced data augmentation model and deep learning. Expert Syst. 2021, 38, e12746. [CrossRef]

38. Kundu, N.; Rani, G.; Dhaka, V.S.; Gupta, K.; Nayak, S.C.; Verma, S.; Ijaz, M.F.; Woźniak, M. Iot and interpretable machine learning
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