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Abstract: This is the first study to discuss the effects of dark septate endophytes (DSE) on the
growth promotion and berberine concentration in Mahonia oiwakensis, whose extract (MOE) has been
suggested to have potential therapeutic effects against human lung cancer. First, as per phylogenetic
analysis, the strains were divided into four groups: CkDB2, CkDB5, MoAL2 and MoAL5. All of
these were DSEs, which could form microsclerotia in M. oiwakensis. The growth response experiment
revealed that inoculation of the plant with MoAL5 and CkDB5 promoted an increase in the total
fresh weight of the seedlings. Chemical composition analysis showed that seedlings inoculated with
CkDB5 had the highest berberine concentration. These results showed that some DSEs have the
ability to promote growth and induce phytochemical responses in the host plant.

Keywords: berberine; Cladophialophora chaetospira; dark septate endophyte; growth response;
Hymenoscyphus; Mahonia oiwakensis

1. Introduction

The Mahonia genus, a member of the Berberidaceae family, contains more than
60 species and is native to Asia and America [1]. Members of this genus include folk
medicinal plants [2,3], and Mahonia species, in particular, possess antibacterial, antifungal
and anti-inflammatory properties [4]. Many isoquinoline alkaloids, such as berberine,
oxycanthine and tetrandrine, can be isolated from plants such as M. aquifolium. Of these,
berberine possesses the best characteristics. Previous studies have shown that berberine
can inhibit cell growth and induce apoptosis in several human cancer cell lines [5–10].
M. oiwakensis Hayata (Alishan mahonia) is an endemic species of Taiwan and a well-known
folk medicinal plant. Wong et al. (2009) demonstrated that M. oiwakensis extract (MOE)
inhibits the growth of human lung cancer cells in vitro and in vivo and suggested that it
has therapeutic potential against human lung cancer [4].

Various forms of mycorrhizal fungi found in nature play important roles in plant
nutrition and nutrient cycling [11]. Mycorrhizae promote host plant growth [12,13] and
increase stress tolerance [14,15], thus accelerating the synthesis of secondary metabolites in
host plants [16–22]. Many studies have reported the effects of mycorrhizae on the content
of secondary metabolites in plants; however, most of these studies have focused on the
effects of arbuscular mycorrhizal fungi (AMF) [16–18,20,21], though attention has been
paid to dark septate endophytes (DSE) as well [19,22]. DSE can promote the uptake of
nutrients (such as C, N, and P) of plants and also help plants against the survival stresses
caused by biotic and abiotic factors [23]. Furthermore, only one of the AMF studies is
related to berberine [16], and there are no reports about the effects of DSE on berberine
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production in M. oiwakensis. Tan et al. (2016) demonstrated that two root-endophytic
fungi, MoAL2 and MoAL5, can associate with M. oiwakensis seedlings [24]; however, the
benefits for the host plant remain unknown. Among the four strains of root-endophytic
fungi maintained in our laboratory, two (CkDB2 and CkDB5) have been identified as DSE
and have been shown to promote the growth of the host plant [25]. It is well-known that
DSEs can promote the growth and survival of the host plant; however, there is currently
no research that is focused on the effects of DSEs on the berberine concentration. To the
best of our knowledge, this is the first study to report the effects of DSEs on the growth
promotion and berberine concentration in M. oiwakensis.

2. Results
2.1. Molecular Phylogenetic Analysis of the Four Strains

Taxonomic affinities, including the most closely matched sequences, were assigned
to MoAL2, MoAL5, CkDB2 and CkDB5 based on BLAST sequence similarity analysis
(Figure 1). Through ML (Maximum likelihood) analysis, the ITS (Internal transcribed
spacer) sequence of MoAL5 was grouped with sequences of Cladophialophora and was
found to be closely matched to C. chaetospira, with 89% bootstrap values and 100% ITS
sequence similarity (Figure 1A). The ITS sequence of MoAL2 closely matched to Hymenoscy-
phus repandus and H. menthae, and MoAL2 was identified as a species of Hymenoscyphus
(Figure 1A). CkDB2 was grouped with sequences of Sporothrix and was closely matched
to S. schenckii (AF484468) (Figure 1B). CkDB5 was grouped with sequences of Scolecobasid-
ium humicola and Dactylaria purpurella and was closely matched to species of Ascomycota
(KX908468 and KX908411) with 95% bootstrap values (Figure 1B).

2.2. Morphology and Colonization in Resynthesized Seedlings

After three months of incubation, all treated seedlings survived (Figure 2A,C,E,G,I).
The features of root associations for all treatments were observed by a light microscope
(Figure 2B,D,F,H,J). M. oiwakensi seedlings inoculated with CkDB2 and CkDB5 grew well
(Figure 2A,C), and dark septate microsclerotia-like structures were observed in the stained
roots of CkDB2- and CkDB5-treated plants (Figure 2B,D). M. oiwakensi seedlings inocu-
lated with MoAL2 and MoAL5 also grew well (Figure 2E,G), and hyaline microsclerotia-
like structures were observed in the stained roots of MoAL2- and MoAL5-treated plants
(Figure 2F,H). In the controls, the seedlings grew well (Figure 2I); however, no peculiarities
were found in the stained roots (Figure 2J).
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Figure 1. Cont.
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Figure 1. Maximum likelihood phylogenetic tree based on rDNA internal transcribed spacer sequence data from fungal
strains MoAL2, MoAL5 (A), CkDB2 and CkDB5 (B). Bootstrap values greater than 50% are shown above or below branches.

2.3. Growth Responses

As shown in Table 1 and Figure 2A,C,E,G,I, the growth response analyses indicated
that not every inoculation had a positive effect on plant growth after incubation for three
months. The CkDB5-treated plants’ average shoot fresh weight (ASFW) (0.29 ± 0.13 g),
average root fresh weight (ARFW) (0.24 ± 0.09 g), and average total fresh weight (ATFW)
(0.53 ± 0.21 g) were significantly different from those of the control groups (p < 0.05) and
were the highest among all the treated plants [ASFW: MoAL5-treated plants, 0.25 ± 0.07 g;
MoAL2-treated plants, 0.15 ± 0.06 g; CkDB2-treated plants, 0.12 ± 0.06 g; and the con-
trol, 0.15 ± 0.06; ARFW: MoAL5-treated plants, 0.21 ± 0.07 g; MoAL2-treated plants,
0.10 ± 0.03 g; CkDB2-treated plants, 0.07 ± 0.03 g; and the control, 0.14 ± 0.05 g; ATFW:
MoAL5-treated plants, 0.46 ± 0.13 g; MoAL2-treated plants, 0.25 ± 0.09 g; CkDB2-treated
plants, 0.19 ± 0.08 g; and the control, 0.29 ± 0.10 g].

Table 1. Growth and berberine concentrations in M. oiwakensis seedlings inoculated with different fungal isolates after three
months of incubation.

Treatment
Fresh Weight/g Berberine

Concentration/µg g−1Shoot Root Total

Control 0.15 ± 0.06 bc 0.14 ± 0.05 b 0.29 ± 0.10 bc 2419 ± 94 d

CkDB2 0.12 ± 0.06 c 0.07 ± 0.03 b 0.19 ± 0.08 c 3140 ± 176 c

CkDB5 0.29 ± 0.13 a 0.24 ± 0.09 a 0.53 ± 0.21 a 4441 ± 21 a

MoAL2 0.15 ± 0.06 bc 0.10 ± 0.03 b 0.25 ± 0.09 c 2890 ± 107 c

MoAL5 0.25 ± 0.07 ab 0.21 ± 0.07 a 0.46 ± 0.13 ab 3809 ± 144 b

All values are means ± standard deviation of five replicates. Values in the same column with different letters (a, b, c, etc.) are different at 5%
significance level.
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Figure 2. Morphology of M. oiwakensis seedlings after incubation for 3 months: (A,C,E,G,I) show
M. oiwakensis seedlings of all treatments (bar = 5 cm); (B,D,F,H,J) show the root stain for all treatments.
(A,B): CkDB2-inoculation; (C,D): CkDB5-inoculation; (E,F): MoAL2-inoculation; (G,H): MoAL5-
inoculation; (I,J): Control. Hyaline microsclerotia-like formations (arrows).

2.4. Berberine Concentration

The berberine concentrations determined from each treatment were shown to be
significantly different from each other (Table 1 and Figure 3). All treated plants had higher
berberine concentrations than the controls. The CkDB5-treated plants had the highest
berberine concentration (4441 ± 21 µg/g) compared with the other treated plants (MoAL5-
treated plants, 3809 ± 144 µg/g; CkDB2-treated plants 3140 ± 176 µg/g; MoAL2-treated
plants, 2890 ± 107 µg/g; and the control, 2419 ± 94 µg/g).
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Figure 3. The high-performance liquid chromatography evaluation of berberine production after culture of M. oiwakensis
seedlings for 3 months in either inoculated or control medium.

3. Discussion

Although numerous sterile DSEs have been isolated from different plant roots, they
have not been identified at the species level due to their inability to form teleomorphs and
conidia [26,27]. However, in recent years, the ITS of rDNA has been successfully used
to clarify the phylogenetic relationships and demonstrate the genetic diversity among
DSEs [28–31]. According to the ITS analysis, CkDB2 was a newly recorded species
(S. schenckii) from Taiwan. S. schenckii is distributed throughout the world and causes



Plants 2021, 10, 1723 7 of 12

Sporotrichosis [32]. In our previous study, CkDB2 had no negative effect on its host plants,
such as C. kanehirae [25] and M. oiwakensis (Table 1). The colony and hypha of the CkDB2 [33]
showed features that were different from those of other strains of S. schenckii [34,35]. Meri-
den et al. [36] reported that all members of Ochroconis, formerly known as Dactylaria, are
dematiaceous fungi that cause phaeohyphomycosis [37–40]. Although CkDB5 was found
to be closely matched to the Dactylaria genus, it can confer positive effects on its host plant
(e.g., C. kanehirae [25] and M. oiwakensis) (Table 1).

However, Figure 1 also indicates that MoAL5 was closely matched to C. chaetospira
(EU035406). In our previous observations of colony and hypha [24], MoAL5 showed
features that were same as that of C. chaetospira [41], and MoAL2 had hypha. Thus, MoAL5
can be considered as a newly recorded species (C. chaetospira) from Taiwan, whereas MoAL2
may be a new species of the genus Hymenoscyphus. Although Heteroconium chaetospira
(Grove) M.B. Ellis (syn. C. chaetospira) is a DSE [42,43], it can colonize the roots of Chinese
cabbage without causing any apparent pathogenic symptoms [44,45]. In this study, MoAL5
was found to belong to C. chaetospira. It did not cause any apparent pathogenic symptoms in
M. oiwakensis; in contrast, it promoted the growth of M. oiwakensis and facilitated increased
production of berberine. One of the features of DSE is hyaline microsclerotia [46,47]. In this
study, staining of the roots revealed microsclerotia in the roots of all treated plants. Hence,
based on the above results, there is sufficient evidence to demonstrate that CkDB2, CkDB5,
MoAL2 and MoAL5 can be classified as DSEs and could associate with M. oiwakensis.

Mycorrhizal fungi, DSEs and plant growth-promoting rhizobacteria (PGPR) can pro-
mote the growth response of their host plants [42,48–50]. DSEs are ascomycetes that can
facilitate the growth of their host plants without causing pathologies [42]. CkDB2 and
CkDB5 have been previously demonstrated to be DSEs and can promote the growth re-
sponse in C. kanehirae [25]. In this study, CkDB2 and CkDB5 could act as a DSE with
M. oiwakensis and promote increased production of berberine in M. oiwakensis compared
with that in the controls. Between these two strains, CkDB5 was able to induce M. oiwakensis
in obtaining the highest value of fresh weight and could also induce the production of
the highest amount of berberine (1.83-fold higher than that of controls). Of the other two
strains (MoAL2 and MoAL5), MoAL5 was found to belong to C. chaetospira. However,
MoAL5 is different from the more common DSEs [51–53], which have no significant effects
on the fresh weight on plants such as the blueberry plant (Vaccinium corymbosum L.) [54].
As reported previously, several arbuscular mycorrhiza fungi were also able to promote
berberine contents in Phellodendron chinense. For instance, the berberine contents in the root
of P. chinense seedlings were elevated 1.89-fold compared to control group after inoculated
with Glomus etunicatum for 3 months [16]. For the first time, our results demonstrated
that DSEs were able to promote both of growth performance and berberine production in
M. oiwakensis.

Colonization by fungi can cause a series of resistance reactions in host plants, includ-
ing eliciting an effect on secondary metabolites such as alkaloids and terpenoids. [55–57].
AMF have been demonstrated to affect the types and concentrations of secondary metabo-
lites [58–60], and every species of AMF has a different effect on plants. For example,
G. diaphanum, G. etunicatum, G. intraradices, Acaulospora mellea and A. laevis promote the
increased production of camptothecin in Camptotheca acuminate [33,59,60], whereas G. mani-
hot reduces it [35]. Furthermore, Zhou & Fan [16] have also shown that AMF can not only
promote growth but also increase the berberine content in P. chinense. Some DSEs are also
able to promote the increased production of flavonoids in S. involucrata seedlings [19]. In
this study, all four strains could facilitate increased production of berberine in M. oiwakensis.
On the other hand, some endophytic fungi (Alternaria sp. and Fusarium solani) have been
reported with the ability to produce berberine [61,62]. However, how DSE regulate the
berberine production in M. oiwakensis and its mechanism of action still need to investigate
in the future study. Among these four strains, CkDB5 (isolated from C. kanehirae) has
been demonstrated to have significant effects on the growth of C. kanehirae, particularly
with respect to root growth [25]. Additionally, based on our results, CkDB5 had similar
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effects on M. oiwakensis. Therefore, it is safe to assume that CkDB5 has wide host-range
compatibility and functional diversity.

4. Materials and Methods
4.1. Seeds

The seeds of M. oiwakensis were collected from the Alishan Recreational Park, Alishan
Township, Chiayi County, Taiwan (120◦48′45′ ′ E, 23◦30′46′ ′ N, 2279 m altitude).

4.2. Strains

Four strains of DSEs were used in this study. Among these strains, MoAL2 and
MoAL5 were isolated from M. oiwakensis [24], whereas CkDB2 and CkDB5 were isolated
from Cinnamomum kanehirae [33]. These four strains were deposited at the Tree Mycorrhiza
Laboratory of National Chiayi University. The internal transcribed spacer (ITS) genomic
sequences of these four endophytes have been uploaded to GenBank (strains MoAL2
(Figure 4A), MoAL5 (Figure 4B), CkDB2 (Figure 4C) and CkDB5 (Figure 4D): KX509994,
KX509995, KT780305 and KT780306, respectively).

Figure 4. Colony morphology of these four strains on PDA medium. (A): MoAL2; (B): MoAL5; (C): CkDB2; (D): CkDB5.

4.3. DNA Extraction, Sequencing and Phylogenetic Analysis

The fungal mycelium growing on the surface of malt extract agar were subjected to
DNA extraction; the obtained DNA was then amplified and sequenced [63,64]. Isolation of
genomic DNA was performed using the NucleoSpin® Plant II Kit (MACHERY-NAGEL
GmbH & Co. KG, Düren, Germany). The fungal DNA was used as a template for amplifi-
cation with primers V9G and LR1 [65,66]. The PCR conditions were as follows: 95 ◦C for
10 min, followed by 35 cycles at 94 ◦C for 30 s, 50 ◦C for 40 s and 72 ◦C for 40 s, with a final
extension step at 72 ◦C for 10 min. The PCR products were analyzed by gel electrophoresis
and sequenced by Tri-I Biotech, Inc. Internal transcribed spacer (ITS) sequences were sub-
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jected to NCBI MEGABLAST queries. Phylogenetic analysis was performed with MEGA
7.0 for maximum likelihood (ML) analysis based on the ITS sequences [67].

4.4. Inoculation with Endophytes

Inoculation was performed using the method of Ann, Tsai, Wang, & Hsien [68] and
Zhang, Tang, Chen, & Wang [69] with some modifications. After cleaning, the seeds of M.
oiwakensis were sterilized with 35% H2O2 for 3 min and rinsed three times with sterilized
distilled water. The seeds were then transferred to a test pot containing a mixture of
peat and vermiculite (1:1 v/v; previously sterilized at 121 ◦C for 60 min) for germination.
The germinated seedlings were then transplanted to new tubes (4 cm in diameter, 18 cm
in height) containing a mixture of peat and vermiculite (3:1 v/v; previously sterilized
at 121 ◦C for 60 min) and were inoculated with the inoculum. These four strains grow
on the PDA medium after 21-day incubation, and take out the edge of the colony for
inoculum. For inoculation, each seedling was inoculated with two 5-mm diameter pieces of
mycelium. Five treatments (one control and four inoculations) were used. Each treatment
had five replicates. Each replicate was grown, watered and fertilized in the growth chamber
(23 ◦C, 65% RH and 16:8-h light/dark cycle with 5000 lx as maximum illumination). This
method is a kind of mycorrhizal synthesis that can avoid being affected by environmental
microorganisms. After three-month incubations, the features of root associations for all
treatments were observed using the method of staining root [15].

4.5. Plant Growth Responses

To measure the effects of these DSEs on the growth of the seedlings, the seedlings
were carefully removed from their substrates after the incubation period, and their fresh
weights were measured.

4.6. Determination of Berberine Concentrations

All seedlings were sliced into small pieces, air dried in a desiccator with silica gel to
constant weight and then pulverized. For each sample, 2.5 mL of methanol was added
to an aliquot of 250 µg powder. After 24 h, the mixture was filtered. The residue was
rinsed twice with 1.0 mL methanol and pooled with the filter. The pooled solution then
was subjected to a 3 mL-methanol, 3 mL-deionized-water pre-conditioned C18 solid-phase
extraction cartridge (SPE, Strata C18-E, 55 µm, 70 A) and then flushed with 3 mL of 70%
methanol. The eluents were collected and diluted with methanol to exactly 5.0 mL. An
aliquot of 20 µL was injected into a high-performance liquid chromatography (HPLC)
system for berberine determination. The conditions of HPLC used in the present study
were described as below. In brief, the sample was separated by a reversed phase column
(4.6 × 250 mm, 5 µm, Discovery C18 HPLC Column, Supelco) with a mobile phase flow
rate of 0.8/mL/min, and the eluents were monitored at 260 nm by a UV detector (Agilent
HPLC 1100 series, HP). The mobile phase comprised solvent A (methanol: CH3CN, 1:4)
and solvent B (2.5 mM CH3COONH4) and was ramped linearly from 10% A/90% B (0 min)
to 20% A/80% B (15 min), 30% A/70% B (20 min), 35% A/65% B (40 min) and finally to
100% A/0% B (50 min). A calibration curve (y = 90.124; x−108.16, where y denotes the area
signal of 260 nm and x denotes the berberine concentration in µg/mL), was prepared by
six point-standard berberine solutions ranging in concentrations from 25 to 250 µg/mL.
A correlation coefficient R2 = 0.9984 was used to quantify the berberine concentration in
the samples.

4.7. Statistical Analysis

Statistical Package for the Social Science (SPSS 12.0) (Chicago, IL, USA) for Windows
was used to perform all statistical analyses. Tukey’s multiple range test at a significance
level of p ≤ 0.05 was used to analyze the differences among treatments.
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5. Conclusions

This study demonstrated that CkDB2, CkDB5, MoAL2 and MoAL5 can associate
with the roots of M. oiwakensis. Molecular analysis revealed that these four strains should
be classified into four groups: CkDB2 belongs to S. schenckii; CkDB5 is a member of the
Ascomycota; MoAL2 is a member of the genus Hymenoscyphus; and MaAL5 belongs to the
C. chaetospira. Among these four strains, CkDB5 and MoAL2 are newly identified species
globally, whereas CkDB2 and MoAL5 are newly identified species in Taiwan. MoAL5 and
CkDB5 can help promote growth and increase the production of berberine in M. oiwakensis.
With CkDB5 inoculation, berberine concentration can be increased by nearly 80%, so CkDB5
can potentially be used to increase the berberine concentration and promote the growth of
M. oiwakensis.
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