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Abstract: In the face of climate change and the predicted increase in the frequency and severity
of abiotic stresses (e.g., hot spell, salinity), we sought to investigate the effect of salinity (S), short
episodes of high temperature (HS) and combination of salinity and high temperature (SHS), at the
reproductive phase, on yield with a special focus on the properties of dead pericarps of Brassica
juncea. Three interval exposures to HS resulted in massive seed abortion, and seeds from salt-treated
plants germinated poorly. Germination rate and final germination of B. juncea seeds were slightly
reduced in the presence of salt and SHS pericarp extracts. All pericarp extracts completely inhibited
seed germination of tomato and Arabidopsis, but removal of pericarp extracts almost fully restored
seed germination. Heat and salinity profoundly affected the accumulation of phytohormones in dead
pericarps. Combined stresses highly reduced IAA and ABA levels compared with salt, and enhanced
the accumulation of GA1, but abolished the positive effect of salt on the accumulation of GA4, JA
and SA. Interestingly, pericarp extracts displayed priming activity and significantly affected seedling
performance in a manner dependent on the species and on the origin of the pericarp. While control
pericarps improved and reduced the seedlings’ performance of autologous and heterologous species,
respectively, pericarps from salt-treated plants were harmless or improved heterologous seedling
performance. Thus, the strategy employed by the germinating seed for securing resources is set up,
at least partly, by the mother plant in conjunction with the maternal environment whose components
are stored in the dead maternal organs enclosing the embryo.

Keywords: dead pericarps; salinity; short episodes of high temperature; combined stresses; priming;
reproductive phase; seed abortion; phytohormones; Brassica juncea

1. Introduction

Abiotic stresses, which are likely to increase in severity and frequency as a result
of global climate change pose an acute threat on food security worldwide. Accordingly,
abiotic stresses such as drought, salinity, and temperature extremes have a devastating
effect on the yield of major crops, which endangers food security worldwide [1–4]. Climate
change might lead to soil salinization and impacts agricultural areas in arid, semi-arid and
coastal regions of the world as well as in European countries, which limits the potential
use of these soils in agriculture [5,6]. Climate change has a notable impact on the average
annual temperature, but more importantly it can lead to extreme climate events, including
heat waves and hot spell [7,8]. These heat waves are the most critical factors affecting crop
yield, especially when observed together with other stresses and during the reproduction
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stage [9,10]. Indeed, the maternal environment is reported to be a major factor affecting
yield and progeny seed properties [11–13].

Since the realization that plants respond uniquely to a combination of stresses [14],
which is not merely the summation responses to each stress, multiple reports have been
published addressing plant response to single and combined stresses. Accordingly, these
reports clearly approved the idea that a combination of stresses often yields a specific
response, which is not seen under either single stress condition [15–18]. Yet, a combination
of stresses not only elicits a specific response but may either mitigate [19] or enhance [20,21]
the stress effect.

While most studies addressing plant response to single or combined stresses focused
on crop yield or on vegetative growth performance, not many studies have addressed the
effect on the maternally-derived dead components of the dispersal unit (e.g., seed coat,
pericarps), designated dead organs enclosing embryos (DOEEs). Recent work demon-
strated that the maternal environment not only affects the embryo properties but also the
properties of DOEEs [18,22,23]. Besides providing a shield for embryo protection and a
means for dispersal, DOEEs also function as a long-term storage for multiple substances
(proteins, metabolites) that can persist in active form for decades and affect seed germi-
nation and fate [24–26]. The expected changes in the DOEEs properties as a result of the
maternal environment [18,22,23] can have an impact on seed viability and persistence,
germination and seedling establishment and consequently on plant population dynamics
and diversity [27–30].

Phytohormones represent a group of structurally unrelated substances that play a
key regulatory role in plant growth and development and response to biotic and abiotic
stresses [31]. DOEEs store and accumulate phytohormones whose levels are affected by
the maternal environment. Pericarps of Anastatica hierochuntica and floral bracts (lemma
and palea) of Avena sterilis possess multiple phytohormones including abscisic acid (ABA),
auxin and particularly high levels of salicylic acid (SA), whose levels were changed under
salt and drought conditions [22,23]. Likewise, phytohormone analysis of the dead glumes
of Triticum turgidun ssp. dicoccoides revealed the presence of ABA, indole acetic acid
(IAA) and high levels of SA and jasmonic acid (JA) [22] (Raviv et al., 2018). These stored
phytohormones might play a role in seed dormancy and germination as well as in seed
priming and post germination growth [31–33].

Abiotic stresses such as low and high temperature, salinity and drought elicit a
common response in land plants and negatively impact growth and development; in
crop plants they cause significant yield losses worldwide [3,34–38]. Multiple studies
related to the effect of heat shock on plant performance were performed under long-
term exposure (often >24 h) to high temperatures (37–45 ◦C), though in recent years
the effect of short episodes of high temperature (heat waves/hot spells) are receiving
more attention [17,38]. Here, we sought to examine the effect of salinity and short-term
exposure to high temperature during the reproductive phase on progeny seed production
and particularly the DOEE properties of Brassica juncea (L.) Czern & Coss. (Brassicaceae)
that together with other Brassica species represent an important source of vegetable oil
worldwide [39]. Similar to other Brassica and leguminous crop plants, B. juncea dry fruits
are indehiscent, that is the fruit remains intact and does not split open at maturity. We
investigated the effect of single and combined salt and heat on seed progeny production
and fate with a special focus on the properties of dead pericarps. Our data demonstrated the
elaborated function of B. juncea dead pericarps as a storage entity for beneficial substances
whose levels, composition and function are significantly altered in response to single and
combined stresses.

2. Materials and Methods
2.1. Plant Growth Conditions and Exposure to Stress

Brassica juncea (Indian mustard) seeds purchased from the local market were sown in
standard gardening soil composed of peat and perlite (2:1 ratio) in small pots. Mustard
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seedlings were transplanted (18 days after sowing) into 1L pots having Hamra red sandy
soil [40] supplemented with 4 g/L slow-release fertilizer (Green Multigan 20% N, 11%
P2O5, 16% K2O and trace elements). Briefly, plants were irrigated every two days with tap
water for one month until the beginning of bolting, at which time half of the plants were
exposed to a salt stress of 50 mM NaCl for one month, after which NaCl concentration
was gradually increased in a 5-day manner to 75, 100, 150 up to 200 mM. After reaching
the highest salt concentration, half of the water and salt-irrigated plants were subjected
to 3 intervals of heat shock treatment (37 ◦C, 3 h each) in a course of 5 days to obtain the
moderate effect of a heatwave. According to the World Meteorological Organization, a
heatwave is defined as 5 or more consecutive days of prolonged heat in which the daily max-
imum temperature is higher than the average maximum temperature by 5 ◦C (9 ◦F) or more
(http://www.grida.no/climate/ipcc_tar/wg2/061.htm#1434; accessed on 30 October 2007).
Notably, at the time of salt application, the plants were irrigated with distilled water (DW)
or DW+salt. Irrigation with 200 mM NaCl was continued for another week and then all
pots were irrigated with tap water until fruit matured and dried out 6 weeks later. Mustard
pods were harvested and measured for fruit weight and length, seed weight, seed abortion
and germination capacity as well as pericarp properties.

The response of the plants to short episodes of heat shock was confirmed by im-
munoblotting. Accordingly, total proteins were extracted from the leaves of the control and
stress-treated plants by the NETN (20mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA,
0.5% Nonidet P-40) buffer supplemented with a protease inhibitor cocktail (Sigma, St.
Louis, MO, USA). Protein concentration was determined by the Bradford reagent (BioRad,
Hercules, CA, USA) and 15 µg of total proteins resolved by SDS/PAGE and immunoblotted
with rabbit polyclonal antibodies to HSP70 (AS08 371, Agrisera AB, Vannas, Sweden) and
to HSP17.6 (AS07 254, Agrisera AB, Vannas, Sweden). Immuno-detection was performed
using the secondary antibody of goat anti-rabbit alkaline phosphatase conjugate (Sigma, St.
Louis, MO, USA) and BCIP/NBT substrate (Roche, Basel, Switzerland).

2.2. Plant Hormone Analysis

Phytohormone content (abscisic acid (ABA); indoleacetic acid (IAA); isopentenylade-
nine (iP); trans-zeatin (tZ); jasmonic acid (JA); jasmonoyl-isoleucine (JA-Ile); gibberellin A1,
(GA1); gibberellin A4, GA4; and salicylic acid, SA) was determined by previously reported
method [41] with specified modifications. In brief, dry pericarps were homogenized to a
fine powder and 50 mg of the sample was suspended in 4 mL of the extraction buffer (1%
(v/v) acetic acid in acetonitrile/water (4:1)) with a mixture of stable isotope-labeled internal
standards (IS) [41]. Suspended samples were extracted for 1 h at 4 ◦C and centrifuged at
3000× g for 10 min at 4 ◦C. Supernatants were collected, and the pellets were washed with
an additional 4 mL of the extraction buffer without IS and centrifuged as before. Acetoni-
trile from combined supernatants was evaporated in a vacuum concentrator and samples
in the 1% aqueous solution were purified by solid phase extraction using Oasis-HLB, -MCX,
and -WAX cartridges (Waters Corp., Milford, MA, USA) to obtain acidic (ABA, IAA, JA,
JA-Ile, SA, GA1, GA4) and basic (tZ, iP) fractions. In contrast to the previous method, iP
and tZ were eluted from the Oasis MCX cartridge by NH4OH/water/acetonitrile (1:8:10)
after washing with 1.2% (v/v) NH4OH solution. While SA was previously collected from
an aliquot of the Oasis MCX eluate, it was now recovered from the Oasis WAX cartridge
by 3% (v/v) formic acid in acetonitrile after initial elution of ABA, IAA, JA, JA-Ile, GA1
and GA4 by 1% (v/v) acetic acid in acetonitrile/water (4:1). After evaporation and volume
reduction in each fraction, samples were analyzed on the Agilent 1260–6410 Triple Quad
LC/MS system (Agilent Technologies Inc., Santa Clara, CA, USA) equipped with a Capcell
Pak ADME-HR S2 column (Osaka Soda Co. Ltd., Osaka, Japan). In addition to column
type, the gradient of the mobile phases was changed from 3% to 55% in 22 min at a flow
rate of 0.4 mL min−1 for ABA, IAA, JA, JA-Ile, GA1 and GA4; for SA, 3% to 98% in 8 min at
a flow rate of 0.4 mL min−1 was used in the modified method. Gradient conditions for iP
and tZ remained unchanged. Mass-to-charge ratio (m/z) transitions of analytes were used
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as described [42]. The contents of the plant hormones were calculated by comparison to
respective IS peaks and normalization by dry weight for each sample.

2.3. Nutrient Analysis

Fresh powdered pericarp (30 mg) or 30 seeds of Brassica juncea from untreated (control)
and stress-treated plants (salt, HS, SHS) were incubated with 600 µL Milli-Q for 14 h on an
orbital shaker at 4 ◦C. After incubation samples were centrifuged at high speed (16,000× g)
and the supernatant was collected, filtered through 0.22 µm spin filter and 200 µL of each
sample were diluted with 5.8 mL of Milli-Q water and subjected to nutrient analysis by the
inductively coupled plasma-optical emission spectroscopy (ICP-OES) using ICP-720-ES
(Varian Inc., Palo Alto, CA, USA). Ca, Mg, Cl, Na, P, S, K were released upon hydration
from the mustard pericarp, and also from the seed release as determined by the ICS-5000
instrument (Dionex, Thermo Fisher Scientific Sunnyvale, CA, USA). Data were analyzed by
Chromeleon 6.8 chromatography data system (Dionex, Thermo Fisher Scientific, Sunnyvale,
CA, USA).

2.4. Germination Assays

Germination of B. juncea seeds were performed in four replicates, each containing
20 seeds either on Hamra red sandy soil [40], or on a blot paper supplemented with water.
Germination was inspected and recorded daily in a course of 4 days. The effect of the
extracts obtained from B. juncea pericarps on seed germination of B. juncea and Arabidopsis
thaliana and tomato (Solanum lycopersicum) was performed in a Petri dish on a blot paper
supplemented with water or with control and stress-treated pericarp extracts (10 mg/1 mL
water). Germination was initially performed in the dark at 22 ◦C, and was inspected daily
and photographed.

2.5. Priming Experiments

One gram of ground pericarps from the control and salt-treated plants of Brassica
juncea was extracted in 10 mL of water at 4 ◦C for 12 h with constant rotation. Samples
were centrifuged (10 min, 14,000 rpm) and supernatants were collected and used imme-
diately for priming experiments or kept frozen at −20 ◦C. Seeds of B. juncea or grains of
a common wheat (Triticum aestivum) were imbibed at room temperature for 12 h in 5 mL
of water, or 5 mL extracts derived from control and salt pericarps. Seeds/grains were
dried out briefly and sown at 1 cm depth on gardening soil in 1 L pots (four seeds of
B. juncea in each pot) or 250 mL pots (two grains in each pot). B. juncea was grown in a
net house for two weeks followed by two weeks in a controlled room (22 ◦C +/− 2 ◦C,
14/10 h day/night photoperiod), while wheat was grown for two weeks in a growth cham-
ber (BINDER Growth chamber KBWF 720, Germany) under 16/8 h day/night photoperiod,
70% humidity and 22/17 ◦C day/night temperature. Measurements of the dry (60 ◦C for
24 h) and fresh weights of seedlings and the root system were recorded. Priming assays
with B. juncea and wheat were repeated two and three times, respectively.

2.6. Bacterial Growth Assay

The assay was performed essentially as described [43]. Briefly, Escherichia coli (Gram
negative) and Staphylococcus aureus (Gram positive) were grown overnight on LB medium
at 37 ◦C, then the culture was diluted, transferred to 25% LB and grown at 37 ◦C to
0.03–0.05 optical density (OD595; Epoch, Biotek, Winooski, VT, USA). To a 150 µL aliquot of
the culture, we added 50 µL of PBS (control) or 50 µL pericarp extracts (filtered through a
0.22 µM spin filter) three replicates per treatment in a flat-bottom 96-well microtiter plate.
Kanamycin (final concentration of 50 µg/mL) was used as a negative control. Plates were
incubated in the dark using a spectrophotometer (Synergy 4, Biotek, Winooski, VT, USA)
and reads (OD595) were taken in intervals of 30 min in a course of 12 h. The average OD for
each blank replicate at a given time point was subtracted from the OD of each replicate
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treatment at the corresponding time point and standard errors were calculated for each
treatment at every time point.

2.7. Statistical Analysis

Most data collected from the experiment were subjected to an analysis of variance
(two-way ANOVA) using the VassarStats software. The difference between means were
computed by Post Test Calculator (Graph Pad) at p < 0.05. For the comparison of multiple
groups, we also used the one-way ANOVA calculator, with Tukey HSD (https://www.
socscistatistics.com/tests/anova/default2.aspx; accessed on 13 November 2018).

3. Results
3.1. Exposure to Salinity and Heat Stress Has a Dramatic Impact on Progeny Seed Production of
Brassica juncea

The crop plant B. juncea was grown in a net house and subjected gradually, at the time
flowering commenced, to increasing concentrations of salt (final concentration 200 mM).
Thereafter, half of the control and salt-treated plants were exposed to three heat shock
(HS) intervals, each for 3 h at 37 ◦C in a course of 4 days, after which all plants were
irrigated with water until fruits matured and dried out. Figure 1A shows fruits and seeds
obtained from the control and stress-treated plants. We verified the response of the plants
to HS treatments by immunoblotting with an antibody to the small heat shock protein
17.6 (sHSP17.6) which showed strong upregulation in HS-treated leaves of small HSPs;
HSP70 was abundant in all treatments (Figure 1B). The average weights of the fruits of
all stress-treated plants were significantly reduced (Figure 1C); yet, pretreatment with salt
seemed to mitigate the effect of HS on fruit weight. While the average weight of a seed
was reduced (~2-fold) under salt treatment (Figure 1D), the most prominent effect was the
complete abortion of seeds derived from plants subjected during flowering and seed filling
to HS and SHS (Figure 1E). Seeds produced on salt-treated plants were poorly germinated
either on a blot paper (~7.5%) or in gardening soil (5%) compared with seeds from the
control plants (93.75% and 82.5% on blot paper and soil, respectively) (Figure 1F).
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Figure 1. Effect of maternal environment on seed performance and fate of B. juncea. (A) Mature fruits and seeds of B. juncea.
Note the aborted seeds in HS-treated plants. (B) Heat shock induces expression of small HSPs. Proteins extracted from
leaves of control (Cont) or heat shock (HS), salt and SHS-treated plants were subjected to immunoblotting (lower panel)
using anti-HSP70 (αHSP70) and anti-HSP17.6 (αHSP17.6). Upper panel is the Ponceau staining of the membrane. Note
the membrane was cut into two parts (broken line), the upper containing proteins above 35 kDa was probed with αHSP70
and the lower part with αHSP17.6. M, protein molecular weight markers given in kDa. (C) Average weight of a fruit.
(D) Average weight of a seed. (E) Percentage of aborted seeds. Note the complete abortion of seeds under heat shock (HS)
treatments. (F) Germination of seeds derived from slat-treated plants is significantly reduced compared with control (Cont)
and original seed stock (OriS). Germination was performed on red sandy soil (Soil) or on a blot paper. DAS: days after
sowing. Vertical bars represent the standard deviation. Different letters indicate statistically significant differences between
treatments (p < 0.05). Statistical analysis was performed by two-way ANOVA except for panel E which was analyzed by
one-way ANOVA calculator plus Tukey HSD.

3.2. The Effect of Pericarp Extracts on Seed Germination

Focusing on pericarps, we first sought to examine the effect of the maternal growth
conditions on pericarp properties and the capability to control seed germination of B. juncea
and heterologous species. To this end, seeds of B. juncea were germinated on red sandy
soil in the presence of pericarp extracts derived from control, salt (S), HS and SHS treated
plants and germination was inspected daily up to 4 days after sowing. The results showed
that the most notable effect on germination was exerted by pericarps derived from salt and
SHS-treated plants showing a significant reduction in the germination rate as well as in
final germination after 96 h compared with germination in water or in control pericarp
extracts (Figure 2A).
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Further germination assays revealed that pericarps from control and stress-treated
plants possess allelopathic substances that strongly inhibited the seed germination of
Arabidopsis thaliana and tomato (Solanum lycopersicum) (Figure 2B,C). However, germination
was almost fully recovered after washing out the pericarp extracts (Figure 2B,C).
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Figure 2. Effect of pericarp extracts on seed germination of B. juncea and heterologous species. Pericarps derived from
control plants or plants exposed to salt, HS and SHS were extracted and analyzed for their effect on seed germination
of B. juncea (A), tomato (Solanum lycopersicum) (B) and Arabidopsis thaliana (C) in comparison to water. Germination was
inspected at different times after sowing and recorded as percentage of germination. Cont: control plants irrigated with
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3.3. Single and Combined Stresses Altered Phytohormone Accumulation in Dead Pericarps

Pericarps derived from control and stress-treated plants were subjected to a phyto-
hormones analysis by LC-MS. Results showed (Figure 3) that multiple phytohormones
including indole acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA), jasmonic
acid (JA) and salicylic acid (SA) as well as the cytokinins, isopentenyladenine (iP) and
trans-Zeatin (tZ) were accumulated in the dead pericarps and their levels were significantly
altered under stress conditions. Thus, the levels of IAA and ABA were reduced signifi-
cantly under salt stress and further reduced under combined SHS stresses. GA1 which was
absent in the control, and HS pericarps were up-accumulated under salt stress and further
enhanced under combined SHS stresses. The accumulation of other phytohormones, GA4,
JA and SA was increased significantly under salt stress, but abolished under combined
SHS stresses. The cytokinin tZ was up-accumulated in pericarps of all stress-treated plants.
Notably, SA was accumulated to high levels under HS or salt treatment but reduced to the
control levels under combined SHS stresses.
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3.4. Single and Combined Stresses Altered Nutrient Levels Extracted from Pericarps or Secreted
from Seeds

We used the inductively coupled plasma (ICP) for analysis of the nutrients released
from the seeds or extracted from pericarps derived from the control or stress-treated plants.
Results showed (Figure 4) that the pericarps of B. juncea store and release upon hydration
multiple nutritional elements. We observed an increase in the accumulation of Ca, P and S
in pericarps of stressed plants, an increase in Mg under salt and SHS, while K was increased
only under salt treatment. Interestingly, progeny seeds derived from salt-treated plants
accumulated high levels of nutritional elements including Mg, P, S and K, which were
significantly reduced in progeny seeds derived from SHS-treated plants. As expected,
pericarps derived from salt-treated plants accumulated high levels of sodium (Na) and
chlorine (Cl).
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3.5. Pericarps Possess Bacterial Growth Promoting Substances

We examined the potential of pericarp extracts from treated plants to control mi-
crobial growth. To this end, Escherichia coli and Staphylococcus aureus were grown in a
flat-bottom 96-well microtiter plate in LB medium supplemented with PBS or with pericarp
extracts of control and stress-treated plants. Ampicillin and kanamycin were used as
antibiotic references for E. coli and S. aureus, respectively. Plates were incubated in the
dark using a Synergy 4 spectrophotometer and reads (OD595) measurements were taken at
30 min intervals over a course of 12 h. Results showed (Figure 5) that the growth of both
S. aureus (Figure 5A) and E. coli (Figure 5B) was accelerated significantly in the presence of
pericarp extracts irrespective of their source. As expected, both ampicillin and kanamycin
completely inhibited the growth of the bacteria.

3.6. Priming Capacity of Dead Pericarps

Phytohormones such as IAA, ABA and SA are commonly used to prime seeds
for improving germination, seedling growth and development and tolerance to abiotic
stresses [33]. The finding that phytohormones are accumulated in dead pericarps, many
are known to have priming capacity, prompted us to investigate the effect of the maternal
environment on the priming capacity of dead pericarps. To this end, B. juncea seeds were
imbibed for 12 h with extracts of pericarps derived from treated plants followed by sowing
in standard gardening soil; seedling performance was recorded after 4 weeks. While seeds
germinated similarly under all treatments, seedling performance was differently affected



Plants 2021, 10, 1627 10 of 15

by the treatments. Accordingly, seedlings derived from seeds imbibed in pericarp extracts
performed better (Figure 6). Most notable was the high development of the root system
of seedlings derived from seeds pretreated with the control pericarp extract (Figure 6A),
which is reflected by the average root dry weight per plant (Figure 6B).
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Figure 6. Priming B. juncea seeds with pericarp extracts improved their performance. B. juncea seeds were imbibed with
water or pericarp extracts from control or salt-treated plants followed by drying the seeds, sowing and inspection of seedling
growth. (A) Seedling samples derived from seeds pretreated with water or pericarp extracts from control (Cont-P) and
salt-treated plants (Salt-P). (B) Average root dry weight (DW) per plant. Vertical bars represent the standard deviation.
Different letters indicate statistically significant differences between treatments (p < 0.05) (n = 50). Statistical analysis was
performed by one-way ANOVA Calculator plus Tukey HSD (Social Science Statistic).

In another experiment, seeds of a heterologous species, namely grains of cultivated
wheat (Triticum aestivum) were imbibed with pericarp extracts for 12 h after which they were
sown in soil and their emergence and growth parameters were examined. We observed
initial radicle protrusion in wheat grains imbibed in water and control pericarp (Cont-P)
extract but not in grains imbibed in Salt-P extract (Figure 7A). However, all seedlings
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emerged simultaneously 3 days after sowing. After 2 weeks seedlings were examined for
their growth and development. Figure 7B shows that pre-treatment with Cont-P had a
negative effect on seedling performance having reduced root length compared with water
and Salt-P. All growth parameters including seedling and root fresh and dry weights were
negatively affected by Cont-P (Figure 7 C–F), while Salt-P appeared to significantly increase
root dry weight compared with water and Cont-P (Figure 7F).
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Figure 7. Effect of B. juncea pericarp extracts on wheat seedling performance. Wheat grains were imbibed with water or
pericarp extracts from control (Cont-P) or salt (Salt-P)-treated plants followed by sowing and inspection of seedling growth.
(A) Wheat grains after imbibition. Note the initial radicle protrusion (r, red arrow) in water and Cont-P. (B) Seedling samples
derived from wheat grains pretreated with water, Cont-P and Salt-P. (C) Average seedling fresh weight (FW). (D) Average
seedling dry weight (DW). (E) Average root FW per seedling. (F) Average root DW per seedling. Vertical bars represent
the standard deviation. Different letters indicate statistically significant differences between treatments (p < 0.05) (n = 26).
Statistical analysis was performed by one-way ANOVA Calculator plus Tukey HSD (Social Science Statistic).

4. Discussion

We will describe the considerable impact of salinity and short-term exposure to heat
stress during the reproductive phase of the crop plant B. juncea on progeny seed and
particularly on dead pericarp properties. Our data showed that changes in the maternal
environment and particularly short episodes of high temperature at the reproductive phase
have a dramatic impact on embryo development and the properties of dead pericarps. The
study also highlighted that temperature fluctuations are most important in determining
crop production since short exposure (3 h) of plants to a high temperature (37 ◦C) during the
reproductive phase was devastating, resulting in complete seed abortion. The adverse effect
of high temperatures at the reproductive stage on Brassica crop yield is well-documented.
Accordingly, exposure of Brassica napus plants to short-term heat shock treatments (4 h
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at 35 ◦C daily, in a course of 1 or 2 weeks) during the reproductive stage resulted in a
substantial loss of yield [44] and exposure of the Brassica species to a high temperature
(35/15 ◦C light/dark) for 7 days resulted in 89% reduction in mean seed yield on the main
stem [45]. B. napus plants grown continuously at 27/17 ◦C light/dark were almost entirely
sterile [46]. The assessment of the effect of global warming on crop yield predicted that
an increase in global mean temperature by one degree Celsius might reduce significantly
the yields of major crops including wheat, rice, maize and soybean [47]. Yet, the most
detrimental effect on yield is the exposure of crops during the reproductive stage to
short episodes of high temperatures (heat wave/warm spell) [48–51]. Thus, the heat
waves and warm spells that are predicted to increase in frequency in many regions of the
world [7,52,53] pose a serious threat on global food production.

The effect of the maternal environment on seed and dead pericarp properties of
B. juncea are consistent with recent published data demonstrating the impact of abiotic
stresses on the dispersal unit properties, particularly the properties of the DOEEs of wild
plants such as Anastatica hierochuntica and Avena sterilis [22,23].

Plant response to a combination of stresses has been intensively studied during the
last two decades confirming the idea that a combination of stresses is interpreted by plants
as a peculiar stress condition that elicits a distinctive response [9,14–17]. This is well-
demonstrated by the effect of single and combined heat and salt stress on the accumulation
of phytohormones as well as nutritional elements in dead pericarps. Thus, dead pericarps
of B. juncea accumulate various phytohormones whose levels were significantly affected
by exposure of the mother plants, at the reproductive stage, to single and combined
stresses. Accordingly, we observed significant reduction in IAA and ABA content in
pericarps derived from plants exposed to salt, which was intensified in combination with
HS. Similarly, the accumulation of phytohormones in pericarps of the desert plant Anastatica
hierochuntica was affected by salt [22]. On the other hand, the phytohormone GA1, which is
absent in the control and HS pericarps was significantly elevated under salt treatment and
further enhanced in combined SHS pericarps. However, while salt treatment enhanced
the accumulation of JA, JA-Ile and SA in pericarps, these phytohormones were down-
accumulated in pericarps derived from combined SHS-treated plants. Commonly, seed
germination is known to be regulated antagonistically by ABA and GA, which inhibit and
promote germination, respectively [54]. Yet, a decrease in ABA and an increase in GA1
levels in salt and SHS pericarps did not relieve the pericarp extract’s inhibitory effect on
the germination of heterologous species. We assume that although ABA was decreased in
S and SHS pericarps, its level (300–500 ng/gDW) was sufficient to exert an inhibitory effect
on germination, while the increase in GA level (7–14 ng/gDW) was not sufficient to negate
the ABA effect. Alternatively, other substances accumulated in pericarps might be involved
in the specific inhibitory effect on seed germination [55]. Notably, SA was accumulated to
the highest levels compared with other phytohormones, particularly under single HS or salt
stress. SA is a well-known phytohormone that performs key roles in plant immunity [56]
and together with other phytohormones including ABA, IAA and ethylene are commonly
used in seed priming to enhance seed performance and fate particularly under stress
conditions [33]. Thus, single and combined stresses differently affected the accumulation
of phytohormones in dead pericarps of B. juncea. These phytohormones might be released
upon hydration to the immediate surroundings of the seeds and prime them to ensure their
success in the ecological niche. Generally, seed priming is an agricultural practice whereby
seeds are hydrated with multiple substances to achieve the cellular state of germination
without radicle protrusion, which often leads to improved plant performance [33]. Seed
priming with phytohormones is an often-used technique to improve seed germination
and seedling establishment as well as to confer stress tolerance and eventually enhance
crop yield [33,57]. Interestingly, the pre-treatment of seeds with dead pericarp extracts
affected seedling performance in a species-specific manner. Thus, control pericarp extracts
possess priming activity on B. juncea seedlings, which is reduced following the exposure of
plants to salt stress. However, an inverse effect was observed on a heterologous species
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(wheat) whereby pretreatment with control and salt pericarp extracts had a negative
and positive effect on seedling performance, respectively. Thus, under normal growth
conditions, substances are accumulated in dead pericarps to increase the survival rate
of germinating seeds by priming and improving seedling performance on the one hand,
and attenuating the growth of heterologous species on the other hand. However, under
stress conditions, pericarps negatively affected autologous species, but were harmless or
beneficial to heterologous species. Taken together, the strategy employed by the plant at
the early stages of development for securing resources (e.g., allelopathy, cooperativity) is
set up, at least partly, by the mother plants in conjunction with the maternal environment
whose components are stored in the dead maternal organs enclosing the embryo.

5. Conclusions

The data presented here highlighted the enormous impact that single and combined
stresses during the reproductive phase might have on the functional properties of dead
pericarps as well as on seed quantity and quality. Dead pericarps of B. juncea, commonly
considered as agricultural waste, appear to function as a rich storage for multiple beneficial
substances such as growth factors and nutritional elements and whose levels, composition
and priming activity are changed following the mother plants exposure to single and
combined stresses. These data further highlighted the importance of the dead organs
enclosing the embryo in seed biology and ecology and consequently in plant population
dynamics and diversity. The detrimental effect of stress on yield highlights the reproductive
stage as the most vulnerable in the face of climate change, which might have implications
for global food security.
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