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Abstract: Predicting the distribution of invasive weeds under climate change is important for the
early identification of areas that are susceptible to invasion and for the adoption of the best preventive
measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate
change and land cover changes in South Korea using a maximum entropy modeling approach. Based
on the predictions of the model, climate change is likely to increase habitat suitability. Currently,
the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and
990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65%
by 2070 under the representative concentration pathways 4.5 scenario across the country. Although
habitat suitability was estimated to be highest in the southern regions (<36◦ latitude), the central and
northern regions are also predicted to have substantial increases in suitable habitat areas. Our study
revealed that climate change would exacerbate the threat of northward weed invasions by shifting
the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control
and management strategies in the southern region to prevent further invasions into new areas.

Keywords: climate change; invasive weeds; MaxEnt; South Korea; suitable habitat

1. Introduction

Invasive species are non-indigenous species that are introduced outside their native
ranges either deliberately or inadvertently and can threaten native biodiversity, alter the
structure and function of ecosystems, disrupt natural and agricultural landscapes, and
result in large-scale economic losses [1–4]. Invasive species alter the dynamics of plant
communities by reducing the amounts of nutrients, water, and space available to native
species and by changing the soil chemistry, hydrological pattern, and moisture-holding
capacity in the region of invasion [5–9].

Climate change exacerbates threats to, and losses of, biodiversity through multiple
mechanisms, including reductions in climatic barriers and the facilitation of the spread
of invasive species [5,6]. Therefore, there is great concern regarding the introduction,
establishment, and naturalization of invasive species as a result of climate change and the
consequent problems caused by invasive species in natural ecosystems worldwide [10,11].
Over the last century, the global temperature has increased by 0.78 ◦C, and it is predicted
to increase by 2.6 ◦C to 4.8 ◦C by 2100 [12]. The rate of climate change in South Korea
is projected to be higher than that of the rest of the world [13]. In South Korea, the
average temperature has increased 1.8 ◦C over the last 100 years, and it is predicted to
increase 1.75 ◦C temperature by 2050, 2.35 ◦C by 2070, and 5.7 ◦C by 2100 compared to the
19881~2005 average under the representative concentration pathway (RCP) 8.5 scenario [13].

Plants 2021, 10, 1604. https://doi.org/10.3390/plants10081604 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-7581-0604
https://orcid.org/0000-0002-8714-3746
https://orcid.org/0000-0002-4115-6242
https://doi.org/10.3390/plants10081604
https://doi.org/10.3390/plants10081604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10081604
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants10081604?type=check_update&version=1


Plants 2021, 10, 1604 2 of 20

Thus, various environmental problems, including the spread of invasive species, are
expected to be particularly serious in South Korea.

Predicting the potential distributions of invasive species under current and future
climate change conditions will help prioritize the species and locations to target for early
detection and will help leaders adopt the best preventive measures [14]. Hence, there is a
pressing need to develop reliable methods for predicting invasions ahead of time so that
surveillance or management policies can be adjusted to reduce the risk of the establishment,
spread, and overall expansion of invasive species [15]. Species distribution models (SDMs)
are considered the most reliable technique for simulating the range of suitable habitats
of native and invasive species in response to climatic and environmental variables [9,16].
More recently, SDMs have been widely used in the fields of ecology, conservation biology,
biogeography, and natural resource management [11,16–20]. Among the various available
SDMs, the maximum entropy (MaxEnt) model is a frequently used machine learning
technique that can obtain high predictive performance with a limited species presence
and environmental variable data [21–24]. The MaxEnt model is well known for modeling
invasive species because it only uses species presence data; absence data for invasive
species may not always be reliable because the ranges of the species may be expanding
and not yet have reached equilibrium, which may lead to incorrect interpretation [25].

Among the various types of invasive species, the types of plants that are considered
invasive weeds include small seasonal herbs to intermediate perennial shrubs growing on
open and degraded lands, transportation corridors, riversides, and seashores [11,26–28].
Anthropogenic activities, such as the development, maintenance, and expansion of roads
and railway connections, trade and tourism, and natural processes that occur via air, water,
and wild animals, are known to be major vectors for the dispersal of invasive weeds across
the world, including in and to South Korea [6,11,29]. In South Korea, crop fields, orchards,
pastures, and forests are at a high risk of invasion by invasive weeds [27,30–34]. Altogether,
320 taxa of invasive and alien plants were listed in South Korea in 2016, of which more
than 95% are invasive weeds. This includes the 16 ecologically most disruptive weeds,
such as Rumex acetosella, Paspalum distichum, and Conyza canadensis [28,30,31]. Invasive
alien species have been reported to cause economic damage of 22.6 billion Korean Won
(KRW; approximately 19.6 million USD as of July 2021) and the government of South Korea
invests approximately 5 billion KRW (approximately 4.3 million USD as of July 2021) per
year in the control and management of invasive species [35].

To maintain the control and management of invasive weeds, regular studies are re-
quired to understand the ecology and distribution of these invasions, as well as their
impacts on agriculture and forestry. Although many ecological studies have been carried
out to investigate invasive species [27,28,31–33,36], very few studies have addressed plant
invasions under climate change in South Korea [24,37,38]. The southern region of South
Korea, including Jeju Province, Jeollanam Province, Gyeongsangnam Province, Busan City,
and Ulsan City, is recognized as a high-risk region for the introduction and establishment
of tropical and subtropical invasive weeds [30,31]. It is essential to identify areas that are
potentially at risk of invasion under future climate change in the central and northern
regions of the country. Therefore, this study was designed to assess the habitat suitability
of the 16 most disruptive weeds [31] in agricultural and natural ecosystems that are mainly
distributed in the southern region of South Korea, including Jeju Island, under projected
bioclimatic scenarios (RCP 4.5 and RCP 8.5) and land cover changes. Although 320 invasive
weeds have been recorded in South Korea, we were able to collect the minimum number of
species occurrence records required for MaxEnt modeling [39] for the 16 most problematic
weeds, and consequently, only these species are used in this study. Species richness was
estimated in different regions and across the country. This study will provide fundamen-
tal information about current and future potential habitats, which could be useful for
developing control and management strategies for invasive weeds.
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2. Results
2.1. Variable Selection and the Importance of Variables in Model Performance

The Pearson’s correlation test was performed to select the important and independent
variables among the 19 bioclimatic variables and two environmental variables analyzed in
this study for modeling purposes (Table S1). Based on the weak correlations (r < 0.60) with
each other, six bioclimatic variables and two environmental variables were selected: the
annual mean temperature (Bio01), isothermality (Bio03), temperature seasonality (Bio04),
annual precipitation (Bio12), precipitation of the wettest month (Bio13), precipitation of the
driest month (Bio 14), distance from water (d-water), distance from roads (d-road), and
land cover (SSP1) (Table 1). Therefore, these nine variables were selected for use in MaxEnt
modeling of invasive weeds.

Table 1. List of variables used in the modeling of invasive weeds.

Code Description Unit Source

Bio01 Annual mean temperature Degrees Celsius KMA
Bio03 Isothermality (BIO2/BIO7) (*100) Percentage KMA
Bio04 Temperature seasonality Percentage KMA
Bio12 Annual precipitation Millimeters KMA
Bio13 Precipitation of wettest month Millimeters KMA
Bio14 Precipitation of driest month Millimeters KMA

d-water Distance from water Meters This study
d-road Distance from roads Meters This study
SSP1 Land cover - Song et al. [40]

KMA = Korea Meteorological Administration. *, Multiplication sign

The contributions of these bioclimatic and environmental variables to the model
performance varied among the studied invasive weeds (Table 2). Bio04 had the highest
contribution to ten species (35.46–79.61%), including Astragalus sinicus, Gnaphalium calviceps,
and Chenopodium ambrosioides; the Bio01 had the highest contribution to four species
(59.72–82.73%), including Bromus unioloides and Coronopus didymus; and Bio12 had the
highest contribution to two species one of which was Sisyrinchium angustifolium and another
was and Spergularia rubra (78.56%). These results indicate that temperature seasonality,
annual mean temperature, and annual precipitation played major roles in affecting the
distribution of invasive weeds, while other variables only played minor roles. Similarly,
Jackknife test was performed (Figure S1a–p) for checking the relative contribution of
environmental variables for each invasive weed, which showed contribution of variables
were varied among the weeds.

Table 2. Contribution of bioclimatic and environmental variables to models.

Name of Species Bio1 Bio3 Bio4 Bio12 Bio13 Bio14 d-Roads d-Water Land Cover

Apium leptophyllum 18.27 0.00 54.00 0.87 0.00 22.85 0.39 1.61 2.00
Astragalus sinicus 26.71 6.89 35.46 11.84 0.06 3.05 0.12 2.25 13.61
Bromus unioloides 65.21 2.41 12.06 10.13 0.24 2.95 0.42 0.68 5.91

Chenopodium ambrosioides 7.58 0.60 67.51 20.42 0.00 0.74 0.28 0.50 2.37
Coronopus didymus 63.70 0.00 4.19 7.64 0.04 5.00 0.01 14.36 5.05

Gnaphalium calviceps 1.90 0.01 57.69 6.71 0.03 1.27 0.16 31.54 0.68
Lolium multiflorum 59.72 1.56 19.22 8.66 0.49 4.29 0.74 0.90 4.43
Modiola caroliniana 13.47 1.10 64.17 6.60 0.98 0.00 0.00 11.20 2.48
Oenothera laciniata 12.71 0.26 45.98 28.11 0.00 11.37 0.02 0.94 0.62
Paspalum dilatatum 0.43 0.01 59.58 26.99 0.00 12.02 0.37 0.17 0.42

Sida rhombifolia 82.73 0.54 0.12 0.97 0.33 4.70 1.62 8.39 0.60
Silene gallica 2.31 1.51 79.61 12.20 0.00 0.00 2.86 1.51 0.00

Sisymbrium officinale 32.19 0.79 62.79 0.20 0.00 0.00 3.87 0.10 0.04
Sisyrinchium angustifolium 6.38 1.10 43.43 46.65 0.00 0.52 1.63 0.02 0.28

Spergularia rubra 2.79 0.00 2.55 78.56 0.00 14.53 0.38 0.39 0.79
Malva parviflora 6.37 0.00 72.98 4.07 0.83 0.00 5.07 8.05 2.64
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The model performance was evaluated using the AUC and TSS values (Table 3). The
average AUC value of the 16 studied invasive weeds was 0.982 ± 0.018, ranging from 0.943
(Lolium multiflorum) to 0.998 (Silene gallica), and the mean TSS value was 0.908 ± 0.083,
ranging from 0.780 (A. sinicus) to 0.998 (Spergularia rubra). The ROC curve for each invasive
weed is shown in Figure S2a–p. Similarly, the average value of Kappa was 0.64 ± 0.065,
ranging from 0.547 (A. sinicus) to 0.735 (C. didymus). These AUC values show that the
model performs reliably in predicting the habitat suitability of invasive weeds, and that the
outputs of the model are very close to the approximation of the true probability distribution.
Similarly, the TSS and Kappa values show that the observations and predictions of the
model are in agreement and also show the accuracy of the model when predicting suitable
habitats using only presence data.

Table 3. AUC, TSS, and Kappa values for each invasive weed.

Species Name Number of
Occurrences AUC Value TSS Value Kappa Value

Apium leptophyllum 78 0.996 0.922 0.666
Astragalus sinicus 70 0.956 0.78 0.547
Bromus unioloides 303 0.948 0.748 0.603

Chenopodium ambrosioides 93 0.977 0.842 0.619
Coronopus didymus 94 0.997 0.987 0.735

Gnaphalium calviceps 81 0.996 0.974 0.669
Lolium multiflorum 173 0.943 0.79 0.651
Modiola caroliniana 72 0.996 0.951 0.646
Oenothera laciniata 115 0.994 0.958 0.635
Paspalum dilatatum 69 0.993 0.974 0.691

Sida rhombifolia 58 0.994 0.958 0.56
Silene gallica 38 0.998 0.985 0.570

Sisymbrium officinale 35 0.978 0.861 0.521
Sisyrinchium angustifolium 116 0.992 0.959 0.723

Spergularia rubra 44 0.994 0.998 0.700
Malva parviflora 48 0.97 0.853 0.713

2.2. Prediction of Habitat Suitability under Current and Future Climate Change Scenarios

The extent of habitat suitability for the 16 studied invasive weeds was modeled to
show the distribution of each species (Figure S3a–p) and the estimated suitable habitat areas
under current and future climate change scenarios (Table 4). The predicted suitable areas
for ten invasive weeds, such as Modiola caroliniana (658 km2), G. calviceps (942 km2), and
Paspalum dilatatum (1503 km2), covered less than 3% of the land area of South Korea under
the current climate conditions. However, the suitable areas for three weeds, including,
B. unioloides (17,319 km2), S. officinale (10,706 km2) and A. sinicus (16,375 km2), covered
more than 10% of the land area nationwide. The model shows that suitable habitat areas
for all invasive weeds will increase in the future. The rate of increase in suitable habitat
area was not uniform for all species. The rate of increasing habitat suitability was estimated
to be 49.23–6115.46% by 2050, and 145.19–12,611.36% by 2070 under RCP 4.5, compared to
current suitable habitat.

A habitat suitability map of invasive weeds under current climatic conditions is
presented in Figure 1. Moderately suitable and highly suitable habitat areas for invasive
weeds are presently concentrated in the southern region of South Korea, for example, in
Jeju Province, Jeollanam Province, and Gyeongsangnam Province. However, the central
region (for example, Chungcheongnam Province, Daejeon Province, and Gyeongsangbuk
Province) and northern regions (for example, Gyeonggi Province, Gangwon Province, and
Seoul City) exhibit extremely large areas with marginally suitable habitats. The areas of
marginally suitable, moderately suitable, and highly suitable habitats for invasive weeds
across the country were estimated to be 85,112.02 km2, 8877.46 km2, and 990.29 km2,
respectively, under the current climate conditions (Table 5).
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Table 4. Area of suitable habitats in km2 for the studied invasive weeds in South Korea.

Name of Species Current
RCP 4.5 RCP 8.5

2050 2070 2050 2070

Apium leptophyllum 1467 2191 3597 3597 20,677
Astragalus sinicus 16,375 59,873 59,873 46,413 63,288
Bromus unioloides 17,319 70,045 69,498 67,783 87,762

Chenopodium ambrosoides 6819 44,756 57,690 56,419 67,152
Coronopus didymus 1000 9698 9862 8783 9417

Gnaphalium calviceps 942 38,213 77,125 61,615 83,264
Lolium multiflorum 10,441 54,688 49,746 50,182 88,962
Modiola caroliniana 658 15,865 35,216 12,899 62,166
Oenothera laciniata 2060 16,585 22,113 15,153 43,731
Paspalum dilatatum 1503 10,585 11,394 7503 29,986

Sida rhombifolia 1984 53,154 72,819 65,412 81,971
Silene gallica 1667 4616 5090 6466 10,905

Sisymbrium officinale 10,706 74,504 82,553 78,303 93,290
Sisyrinchium angustifolium 2674 35,800 64,329 35,379 77,379

Spergularia rubra 194 12,058 24,660 30,308 49,970
Malva parviflora 3192 14,750 19,474 18,255 44,151

Figure 1. Prediction of the habitat suitability of invasive weeds under current climate conditions and under future climate
change scenarios RCP 4.5 and RCP 8.5.

Table 5. Predicted areas of marginally suitable, moderately suitable, and highly suitable invasive
weed habitats in km2.

Scenario Year Marginally Suitable Area Moderately Suitable Area Highly Suitable Area

Current 85,112.02 8877.46 990.28
RCP 4.5 2050 39,486.1 51,105.08 4388.597

2070 26,776.6 52,956.23 15,246.96
RCP 8.5 2050 25,322.82 57,256.83 12,400.12

2070 15,140.92 42,811.42 37,027.43
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Future climate change will increase both the extent and intensity of habitat suitability
for invasive weeds in South Korea.

The predicted moderately suitable habitat and highly suitable habitat areas were
highest under RCP 8.5, with the exception of moderately suitable habitat for 2070, and
these habitat categories were predicted to exist in all provinces of the central region by
2050 (except Chungcheongbuk Province and Sejong Province), and in all provinces of the
northern region by 2070. These results showed that RCP 8.5 would be more favorable for the
habitat expansion of invasive weeds than RCP 4.5. We added areas of moderately suitable
and highly suitable invasive weed habitats and estimated the percentages of suitable areas
in terms of the total surface area of each region. Under RCP 4.5, the proportion of suitable
areas will be 96.97 to 99.18 in the southern region, 62.42 to 75.08 in the central region,
and 9.00 to 36.13 in the northern region between the current period and 2070 (Figure 2).
Similarly, under RCP 8.5, the proportion of suitable areas will range from 99.08 to 99.9 in
the southern region, 85.61 to 88.33 in the central region, and 27.81 to 60.31 in the northern
region between the current period and 2070 (Figure 2). These results showed that climate
change is likely to facilitate the expansion of suitable invasive weed habitats.

Figure 2. Changes in the suitable areas for invasive weeds in different regions of South Korea under the current climate
conditions and under the future climate change scenarios RCP 4.5 (a) and RCP 8.5 (b) by the years 2050 and 2070.

2.3. Prediction of Species Richness under Current and Future Climates

The potential species richness values of invasive weeds under current and future
climate change scenarios are presented in Figure 3.

Under current climatic conditions, the average and maximum species richness values
across the country were estimated to be 1.65 and 13, respectively. Under climate change,
the average richness values were predicted to increase up to 369.48% by 2050 and 605.15%
by 2070. However, the maximum species richness was not estimated to increase as much
as the average species richness. The maximum species richness values were predicted to
increase up to 15.38% by 2050 and up to 23.07% by 2070.

To understand the trend of increasing species richness from the southern region to the
northern region, we estimated the average and maximum richness values of the studied
invasive weeds, as can be seen in Table 6. This shows that the current species richness was
most pronounced in the southern region and was lower in the central and northern regions.
In the future, the rate of increase in species richness will reach a maximum in the northern
region (55,457%), followed by those in the central region (4284%) and southern region
(247%) by 2070. However, the maximum species richness will be similar in the southern
region and will increase up to 87.5% in the central region and up to 250% in the northern
region by 2070.
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Figure 3. Average and maximum species richness of invasive weeds in South Korea under the current
and future climate change scenarios (RCP 4.5 and RCP 8.5).

Table 6. Average and maximum species richness values of invasive weeds in different regions.

Scenario Year Southern Region Central Region Northern Region

Richness Average Maximum Average Maximum Average Maximum

Current 3.83 15.00 0.21 8.00 0.01 4.00

RCP 4.5 2050 10.48 15.00 4.81 14.00 2.99 15.00
2070 11.25 15.00 6.90 15.00 4.71 14.00

RCP 8.5 2050 10.79 15.00 5.35 15.00 3.66 13.00
2070 13.29 16.00 9.36 15.00 8.14 16.00

2.4. Cluster Analysis of Invasive Weeds

The PCA determined the ordering of the samples and showed three distinctive groups
(groups 01, 02, and 03) of invasive weeds with similar distributions and spread potential
in the PCA plot (Figure 4). The invasive weeds clustered in groups 01, 02, and 03 had
small, intermediate, and large distribution areas, respectively. Group 01 consisted of
three species, including A. leptophyllum, S. gallica and C. didymus; group 02 consists of five
species, including G. calviceps, S. angustifolium, S. rubra, M. caroliniana and S. rhombifolia,
and group 03 consists of four species, including A. sinicus and B. unioloides, under both
RCP 4.5 and RCP 8.5. However, four species, including O. laciniate, P. dilatatum, Malva
parviflora and C. ambrosioides, clustered in different groups under either RCP 4.5 or RCP
8.5. We performed the Kruskal–Wallis test to examine the significant differences among the
groups using the Dwass–Steel–Critchlow–Fligner method. This showed that there was a
significant difference (p < 0.001) among groups 01, 02, and 03 across the country in 2050
and 2070 (Table 7). However, there was no significant difference among the groups in the
southern, central, and northern regions at the current time, or in the northern region in
2050 (Table 7).



Plants 2021, 10, 1604 8 of 20

Figure 4. Principle component analysis using potential distribution area of invasive weeds under the
current climate and future climate change scenarios RCP 4.5 and RCP 8.5 for the years 2050 and 2070.
Groups 01, 02, and 03 represent invasive weeds with low, medium, and high invasion potentials,
respectively. Detailed information on the invasive weeds corresponding to those shown in the PCA
plot is provided in Table 8.

Table 7. Average distribution and significance test among three groups invasive weeds using Kruskal–Wallis Test.

Country/Region Year
Average Area (km2 ± S.E.)

Group 01 Group 02 Group 03 K–W Test

Total Current 1039 ± 198 C 2163 ± 1126 BC 15,322 ± 2928 AB *
2050 4875 ± 880 C 28,489 ± 6271 B 11,2538 ± 17,906 A ***
2070 11,206 ± 2307 C 53,721 ± 7356 B 131,753 ± 20,314 A ***

Southern Current 1031 ± 200 C 1934 ± 901 BC 13,934 ± 2837 A *
2050 4537 ± 871 C 22,487 ± 4253 B 54,106 ± 6340 A ***
2070 10,058 ± 1961 C 33,162 ± 3870 B 55,026 ± 6056 A ***

Central Current 6 ± 5 C 212 ± 212 BC 1371 ± 328 AB *
2050 159 ± 78 C 1940 ± 627 B 47,115 ± 8862 A ***
2070 963 ± 325 C 12,008 ± 1638 B 52,880 ± 8560 A ***

Northern Current 2 ± 1 17 ± 16 18 ± 15 N.S.
2050 179 ± 61 C 4062 ± 2284 BC 11,317 ± 3492 AB *
2070 185 ± 59 C 8551 ± 2894 B 23,847 ± 6568 AB ***

*, p < 0.05; ***, p < 0.001; N.S., not significant; S.E., standard error; K–W test, Kruskal–Wallis test; the letter A, B, and C used to show
difference among the groups.
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Table 8. List of invasive weeds used in species distribution models.

Id No. Scientific Name Common Name Growth
Form Native Range Mode of

Introduction
Introduction

Period
Degree of

Naturalization

I101 Apium leptophyllum Marsh parsley WA Australia Unintentional 1964–2010 IV
I102 Astragalus sinicus Chinese milkvetch BA China Intentional Before 1937 II
I103 Bromus unioloides Rescue grass P South America Intentional Before 1999 IV

I104 Chenopodium
ambrosioides Mexican tea SA South America Unintentional Before 2000 II

I105 Coronopus didymus Swine wartcress WA Europe Unintentional Before 1996 II

I106 Gnaphalium calviceps Narrowleaf purple
everlasting BA South America Unintentional 1964–2010 IV

I107 Lolium multiflorum Italian ryegrass WA Europe and
Africa Intentional Before 2000 III

I108 Modiola caroliniana Red flowered mallow BA South America Unintentional Before 1980 I

I109 Oenothera laciniata Cutleaf evening
primrose BA North America Unintentional Before 1980 IV

I110 Paspalum dilatatum Dallas grass P South America Unintentional 1964–2010 IV
I111 Sida rhombifolia Queensland-hemp P South Asia Unintentional Before 1980 II
I112 Silene gallica Common catchfly BA Europe Unintentional Before 1996 IV
I113 Sisymbrium officinale Hedge mustard WA Europe Unintentional Before 1999 I

I114 Sisyrinchium
angustifolium Blue-eyed grass P USA Unintentional Before 1999

I115 Spergularia rubra Red sandspurry BA Eurasia Unintentional Before 1996 I
I116 Malva parviflora Cheese weed SA North Africa Unintentional Before 2000 I

BA, biannual; P, perennial; SA, summer annual; WA, winter annual I–IV indicates degree of naturalization: I, rare or uncommon; II, distributed
over a small area and at low density; III, moderately distributed and at medium density; IV, widely distributed and at high density.

3. Discussion

Our study investigated the potential habitats of 16 problematic invasive weeds that
are currently found in the southern region of South Korea using the MaxEnt modeling
approach. The current suitable habitats for the studied invasive weeds that were predicted
by the model were highly matched with the current existing records. The average AUC
(0.982 ± 0.004), TSS (0.881 ± 0.881), and Kappa (0.64 ± 0.065) values indicated that the
model performance was excellent, and that perfect agreement existed between the ob-
servations and predictions [41,42]. In this study, temperature seasonality, annual mean
temperature, and annual precipitation were the dominant driving factors for the determi-
nation of the habitats of the studied invasive weeds. Temperature seasonality balances
photosynthesis and regulates the growth, reproduction, and other physiological functions
of plants [43].

Similarly, increasing the annual mean temperature and annual precipitation may
create suitable habitats for invasive weeds while altering the distribution and abundance
of existing native species, which reduces competition with local species [44]. Therefore,
these variables could be critical in determining the spread of invasive weeds in the future.
Similar cases were reported by Adhikari et al. [24] and Wang et al. [45] for predicting the
habitat expansion of invasive and alien plants. However, the other variables examined in
this study only had minor contributions to the model.

Climate change may directly or indirectly influence the introduction, dispersion, and
establishment of invasive and alien species, and may decrease the resilience of natural
ecosystems to invasive species [6]. Climate change may also modify the geographical
ranges and environmental impacts of invasive species, as well as the economic costs
necessary for their management [46]. Our model shows that climate change is likely to
substantially increase the habitat suitability of invasive weeds in the southern region of
South Korea. These results reinforce the spatially explicit evidence that supports the earlier
hypothesis that warming temperatures will expand the suitable habitats of invasive plants
northwards [47]. This is also evidenced by previous observations and projections on the
impacts of warmer climatic conditions [5,24,48,49]. For most of the studied invasive weeds,
habitat suitability will expand toward the central and northern regions of South Korea
under climate change, and this impact will be particularly visible in Chungcheongnam
Province, Chungcheongbuk Province, Gyeongsangbuk Province, Gyeonggi Province, and
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Seoul City, which are up to 454 km from the southern region (for example, Jeju Province
and Jeollanam Province), by 2070. Consistent with our findings, several studies have
attempted to model the habitat suitability of non-native and invasive species in South
Korea and across the globe and have projected the expansion of their ranges northwards in
response to climate change [5,9,23,24,50]. Some studies on invasive plants showed that the
majority of range shifts that were expected to occur by 2070 will occur as early as 2050 in
Europe [51]. To our knowledge, this is the first study to describe the potential impacts of
climate change and land cover change on these invasive weeds in South Korea. This study
forms part of our ongoing project. We will compare the results obtained in this study with
those obtained from other ecological niche models.

In this study, we predicted the habitat suitability of 16 problematic invasive weed
species. The rate and extent of habitat suitability were not projected to be consistent
among all invasive weed species. A. sinicus, B. unioloides, C. ambrosioides and S. officinale
var. leiocarpum are estimated to have relatively high habitat suitability areas, covering
78.44% and 86.91% of the land area of the country by 2050, and 2070 (RCP 4.5), respectively;
these values are comparable to those reported in previous studies performed in South
Korea [24,33,37]. The PCA revealed that the studied invasive weeds could be divided into
three groups based on similarities in their invasion potentials and distribution patterns.
The invasive weeds included in groups 01, 02, and 03 had low, intermediate, and high
invasion potentials and distribution patterns, respectively. Group 01 is currently found in
Jeju Province (Jeju Island) and is projected to have very limited habitat expansion along
the coastal side of the southern region, for example in Gyeongsang Province, indicating
that continental climatic features such as large diurnal and seasonal temperature ranges,
low annual precipitation, and low relative humidity may not favor the expansion of these
species [52]. However, the invasive weeds present in groups 02 and 03 are projected
to expand continuously toward the central and northern regions with various rates of
invasion, indicating that these species could have greater tolerance to continental climates.

In comparison to other regions, the average and maximum species richness values
calculated in the southern region, especially in Jeju Province, were estimated to be the
highest under current climatic conditions. Currently, the average species richness in the
southern region is estimated to be 11.30, and this region has been invaded by a maximum
of 15 invasive weeds, including Sida rhombifolia, S. gallica and Spergularia rubra; however,
the northern region, for example, Gangwan Province, has estimated average and maximum
richness values of 0.014 and 4, respectively. These results showed that the introduction,
establishment, and dispersion of the studied invasive weeds occur more readily in the
southern region. The climatic conditions of this region are characterized by a warm-
temperate and humid climate, which favors invasive weeds originating from the tropical
and subtropical climates of South America, southern Europe, China, and South Asia [31].
Usually, invasive weeds that are indigenous to tropical and subtropical countries have much
higher critical thermal maxima than native species, suggesting that these invasive species
can thrive at higher temperatures and may successfully outcompete native species under
climate change [6]. Under current climatic conditions, the average winter temperature
in the southern region is approximately 3 ◦C, which could favor the survival of warm-
adapted invasive weeds in the winter season. However, in the central and northern regions,
the average winter temperatures reach approximately −10 ◦C, which could limit the
distribution of such invasive weeds, as described by Hou et al. [53] and Petitpierre et al. [54].
With increasing temperatures under climate change, suitable habitats for invasive weeds
will expand toward the central and northern regions of South Korea due to the removal of
current climatic barriers and the shifting of plant hardiness zones northward [6,55], and
consequently, species richness is predicted to increase in the future. In addition, climate
change will negatively affect native species and ecosystems by changing their phenology,
composition, distribution, and adaptability through changes in environmental conditions
and by creating difficulties that prevent native species from surviving and competing
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with invaders, which could be conducive to invasive species taking over newly empty
niches [6,56].

These future changes in habitat suitability depend not only on the climatic tempera-
ture and precipitation variables used in the model, but also on many non-climatic factors,
including land topography, soil and habitat characteristics, and on the morphological
and physiological advantages of individual plant species, such as short life cycles, high
fecundity, strong dispersal abilities, and phenotypic plasticity, which allow them to survive
adverse climate conditions [5,23,57,58]. Thus, under the same climatic conditions in the
future, the climatically suitable habitat for each invasive weed species could be different.
Many invasive weeds are characteristically recognized as broadly ecologically and envi-
ronmentally tolerant, such as S. gallica and S. officinale are salt-resistant and can grow in
coastal areas and in very disturbed areas along roadsides [59,60]. Similarly, some invasive
weeds, such as Apium leptophyllum, M. caroliniana, C. ambrosioides and Sida rhombifolia,
grow in diverse habitats, including croplands, farmlands, riversides, and dry and drained
lands [27,28,31,32]. Therefore, the suitable habitats for all invasive weeds will expand in
the future.

The studied invasive weed species were all introduced to South Korea either inten-
tionally or unintentionally (Table 8). A. sinicus is native to China and was intentionally
introduced to South Korea before 1937 to improve pastures; the species subsequently
invaded grasslands and interior forests [31]. Similarly, B. unioloides and Lolium multiflorum
were introduced from South America and southern Europe for use as cattle-feed, and
have since become invaders of grasslands, forests, and crop lands [28,31]. Other inva-
sive weeds were unintentionally introduced in South Korea from different countries in
America, Europe, and Asia, probably via foreign trade, tourism, and tidal activity in the
seas [24,28,30,31], and many anthropogenic activities, such as road construction, land cover
changes, and the importation of agricultural seeds from foreign countries have accelerated
their invasion rates. Invasive weeds have adverse impacts on agricultural and wild ecosys-
tems through increased labor input for weeding, reduced crop production, the replacement
of the native forage of cattle and wild herbivores such as roe deer (Capreolus pygargus) [61],
and their negative effects on forest ecosystems [62]. Therefore, the economic losses and
negative impacts of invasive weeds on food security, biodiversity, and ecosystem services
in the near future could increase considerably if control and preventive measures are not
adopted in time.

Although this study provided valuable information about the potential habitat suit-
ability of invasive weeds in different provinces of South Korea under current and future
climatic conditions, our models were dependent on bioclimatic and some environmental
variables, such as land cover change, distance from the road, and distance from water and
is disregarding, other important predictors such as land topography, soil characteristics,
dispersal capacities, biotic interaction (e.g., facilitation and competition), and vectors driv-
ing species invasions, as described by Pysek and Richardson [63] and Buri et al. [64]. This
study is a part of ongoing research; we would consider using other variables, including
topographic and soil characteristics, dispersion capacities, and biotic interactions, to obtain
more accurate predictions in the near future.

4. Materials and Methods
4.1. Study Area and Species Data

This study was carried out on the mainland and all islands of South Korea, which con-
stitutes the southern portion of the Korean Peninsula, with a total land mass of 100,033 km2

(Figure 5). The geography of South Korea is largely mountainous and comprises 70% of
the Korean Peninsula, with mountains in the north and east and lowlands and flat plains
in the south and west. The climate of South Korea is categorized into warm-temperate,
temperate, and cold-temperate climate types in the southern, central, and northern regions
and high mountains, respectively [65].
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Figure 5. Map of the study area. The three different colors indicate the southern, central, and northern
regions of South Korea, as shown in the legend. The numbers 1–16 indicate the different provinces of
South Korea. 1, Jeju; 2, Jeollanam; 3, Gwangju City; 4, Gyeongsangnam; 5, Jeollabuk; 6, Busan City; 7,
Ulsan City; 8, Ghungcheonnam; 9, Sejong City; 10, Daejeon City; 11, Chungcheongbuk; 12, Daegu
City; 13, Gyeongsangbuk; 14, Gyeonggi; 15, Seoul City; 16, Incheon City; and 17, Gangwon.

The southern part of the country is hot and humid, while the northern part is cold and
continental. The average winter temperature for the study area ranges from −6 ◦C to 3 ◦C,
and the average summer temperature ranges from 23 ◦C to 26 ◦C [66]. The annual precipita-
tion ranges from 1000 to 1800 mm and varies greatly from summer to winter, with a higher
rate of precipitation in the southern regions, including Jeju Island, than in the northern
and central regions [66]. The vegetation is broadly classified into temperate broadleaf,
deciduous broadleaf, coniferous, subalpine, and alpine [67]. Altogether, 41,483 species
have been reported to constitute the overall biodiversity, including 5308 plant species,
22,612 invertebrate species, and 1899 vertebrate species [67].

We divided the study area into three regions, based on the latitude: the southern
region (<36◦ N latitude), which includes seven provinces (Jeju, Jeollanam, Gwangju City,
Gyeongsangnam, Jeollabuk, Busan City, and Ulsan City); the central region (approximately
between 36◦ N and 37◦ N latitude), which includes six provinces (Ghungcheonnam, Sejong,
Daejeon, Chungcheongbuk, Daegu City, and Gyeongsangbuk); and the northern region
(>37◦ N latitude), which includes four provinces (Gyeonggi, Seoul City, Incheon City,
and Gangwon).

The 16 most problematic invasive weeds [31] which mainly occur in the southern
region of South Korea, were selected to study rapid range expansion (Table 8). Species
occurrence points were recorded through field surveys performed between March 2014 and
November 2020, and additional occurrence points were collected from various published
reports [27,28,30,32]. Since invasive weeds were most prevalent adjacent to roads, we
recorded species occurrence adjacent to roads using a Garmin GPS unit (GPSmap 64sx).
The species occurrence survey, plot design, and survey method were performed according
to the guidelines of the National Institute of Ecology, South Korea (NIE). The multiple
species occurrence points in the same grid of ~1 km2 spatial resolution were removed and
retained a single unique point per grid by using spatially rarefy occurrence data tool in
Arc GIS SDM tool box 2.4 [68] to minimize the overfitting and incorrect inflation of the
model outputs due to spatial autocorrelation [69]. After spatial filtering, the total species
occurrence points comprising the 16 most problematic invasive weeds were reduced from
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2304 to 1487, and these were used in modeling. The species occurrence points for each
invasive weed are shown in Figure 6.

Figure 6. Species presence points for the studied invasive weed species. The legend shows the
identity number of each invasive weed species. I101, Apium leptophyllum; I102, Astragalus sinicus; I103,
Bromus unioloides; I104, Chenopodium ambrosioides; I105, Coronopus didymus; I106, Gnaphalium calviceps;
I107, Lolium multiflorum; I108, Modiola caroliniana; I109, Oenothera laciniate; I110, Paspalum dilatatum;
I111, Sida rhombifolia; I112, Silene gallica; I113, Sisymbrium officinale; I114, Sisyrinchium angustifolium;
I115, Spergularia rubra; I116, Malva parviflora. Details of these invasive weeds are given in Table 8.

4.2. Bioclimatic and Environmental Variables

We considered bioclimatic variables [70,71], distance from water, distance from roads,
and land cover to be important parameters that affect the distribution of invasive weeds in
South Korea. Therefore, we collected climatic data, including precipitation and monthly
minimum and maximum temperatures, from the Korea Meteorological Administration
(KMA) to estimate the current and future climate change scenarios in South Korea. We
selected two greenhouse gas emission scenarios, widely known as RCP 4.5 and RCP 8.5, for
2050 and 2070. RCP 4.5 and RCP 8.5 represent the moderate and highest emission scenarios,
corresponding to projected global mean surface temperature increases of 1.4 ◦C to 1.8 ◦C
and of 2.0 ◦C to 3.7 ◦C, respectively [12]. Global circulation models (GCMs) consider the
physical processes of the atmosphere, earth surface, ocean, and cryosphere [72]. They
capture the underlying processes that respond to climate forcing, for example, concentra-
tions of greenhouse gases, surface albedo changes, aerosols, and solar irradiance [50,72].
Globally, GCMs are constantly being updated by different modeling groups to incorporate
higher spatial resolution, biogeochemical cycles, and new physical processes. One such
GCM is the HadGEM3-RA regional atmospheric model that was developed by the Met
Office Hadley Centre (https://www.metoffice.gov.uk/, accessed on 3 August 2021) based
on the atmospheric component of the latest Earth System Model [73,74]. The KMA has
utilized HadGEM3-RA [73] and prepared a national climate change scenario for South
Korea. HadGem3-RA has a tendency to model small-scale features more realistically than
other GCMs, for example, HADGEM2-AO, owing to its high resolution, which includes
complicated topography, long and irregular coastlines, and thousands of islands in the
Korean Peninsula. Therefore, we used HadGEM3-RA GCM to develop the climate change
scenarios RCP 4.5 and RCP 8.5 using the Dismo package in GNU R [75]. This GCM has

https://www.metoffice.gov.uk/
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been used in various studies for modeling indigenous and invasive plant species in South
Korea [19,24,49,76].

The current climate was estimated by averaging the climatic data recorded from
between 1950 and 2000, and the future climatic conditions in 2050 and 2070 were estimated
from the projections for 2046 to 2055 and for 2066–2075, respectively. Each climatic dataset
had a spatial resolution of 0.01◦ (30”) or approximately 1 km2. In addition to bioclimatic
variables, we used maps that provided data for MaxEnt modeling that included seven land
cover categories (agricultural land, grassland, urban land, forest land, barren land, wetland,
and water), distance from roads, and distance from water. We used the current and future
land cover change scenarios (shared socioeconomic pathway, SSP 1) obtained from the
Korea Environment Institute, MOTIVE (www.kaccc.kei.re.kr, accessed on 3 August 2021),
as developed by Song et al. [40]. South Korea has thousands of rivers, streams, lakes,
reservoirs, and ponds. Many invasive weeds, such as A. leptophyllum, grow in disturbed
areas along these water resources. Rivers and streams play important roles in the seed
dispersal of PIWs. Similarly, roads function as prime habitats and corridors for the spread
of invasive weeds. The design and maintenance of roads, and resultant increase in human
activities, can accelerate invasion and displace native species [11,77]. Once invasive weeds
have become established along roadsides, they could function as a source of invasions
into adjacent cropland, grassland, and forest [29]. Therefore, we developed two variables,
distance from water (d-water) and distance from roads (d-road), using the Euclidian
distance function of ArcGIS 10.3 (Esri, Redlands, CA, USA) with the same resolution
of 1 km2 as was used for the other bioclimatic variables. We performed Spearman’s
correlation on pairs using the Proc Corr function of SAS 9.4 (SAS Institute Inc., Cary,
NC, USA) to eliminate the autocorrelation (r2 > 0.75, p = 0.05) among the bioclimatic and
environmental variables and selected the nine variables with high predictive performance,
as in Shin et al. [19] and Adhikari et al. [18] (Table S1).

4.3. Model Development

The current and future suitable habitats for invasive weeds in South Korea were
predicted using the machine learning algorithm MaxEnt package version 1.3.3 for GNU R
(https://cran.r-project.org/src/contrib/Archive/maxent/, accessed on 3 August 2021).
MaxEnt is a widely used habitat suitability modeling technique. It exhibits a high pre-
dictive performance using only presence data [16] and is most commonly used for inva-
sive species [21,24,78]. MaxEnt is considered a good option for invasive species because
presence-absence survey data are rarely available, as is the case in this study. Additionally,
MaxEnt can provide reliable estimates of potentially suitable habitats for invasive species
at small spatial scales, even with limited data [79,80].

As the MaxEnt model required background data (e.g., pseudo-absence), we used
15,050 background points selected randomly throughout the entire study area using ArcGIS
10.3, as suggested by Barbet-Massin et al. [81]. The models were calibrated using 75%
of the species occurrence points (presence and background points) and validated by the
remaining 25% [82]. The other options for the model were run with default settings, and
the model was replicated ten times.

4.4. Model Evaluation and Validation

The goodness of fit of the model was evaluated, and the area under the curve (AUC)
values of the receiver operating characteristic (ROC) curves [83], the true skill statistic
(TSS) [41], and Kappa values [84] were used for model validation. The AUC values,
TSS values, and Kappa values were computed using the test data points. To test the
model results, the AUC was used as a threshold-independent technique to differentiate
presence from absence; the AUC value ranges between 0 and 1 and is used to evaluate
the performance of a model [85]. The AUC value is independent of the size of the dataset
(prevalence). However, this metric is sometimes criticized because it equally weights
commission and omission errors, and this can provide false predictions [86], especially

www.kaccc.kei.re.kr
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when the study area is small. It gives a high AUC (overfitting), which can mislead the
model evaluation. A higher AUC value suggests a superior performance of the model.
In this study, the model performance as assessed based on the AUC value was graded
as failing (0.5–0.6), average (0.6–0.7), good (0.7–0.8), very good (0.8–0.9), or outstanding
(0.9–1) [42]. The TSS (sensitivity + specificity–1) accounts for both commission and omission
errors but is unaffected by the prevalence. Consequently, this metric has been used as an
alternative criterion for the validation of model efficiency [41,87]. The TSS evaluates the
outputs of a model by examining the classification accuracy after a threshold value has
been selected. Similarly, the Kappa statistic measures prediction accuracy in comparison to
what could have been achieved by chance alone [41]. The TSS and Kappa values ranged
between −1 and +1, where +1 indicates perfect agreement between the observations and
predictions, and a value of 0 or less indicates a performance no better than random [41,88].
Therefore, we used the AUC, TSS, and Kappa values to assess the model performance. The
database and detailed methodological flowchart of this study are shown in Figure 7.

Figure 7. Flow chart of development and building blocks of MaxEnt modeling, and its practical application for the estimation
and prediction of habitat suitability of invasive weeds that are currently present in southern region of South Korea.
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4.5. Image Combination, Classification and Analysis

The habitat suitability maps of 16 problematic invasive weeds under current and future
climate change scenarios (RCP 4.5 and RCP 8.5) for 2050 and 2070 were summed using
the Raster 3.4 package in GNU R 4.03. Based on the logistic scale, the current and future
habitat suitability maps of invasive weeds were classified into three categories: marginally
suitable, suitable, and highly suitable habitats. We selected pixels with a value greater
than 0.5, to consider areas that represent at least 50% probability of species occurrence.
Thus, the value greater than 0.5 (>50%) represent areas with highly suitable habitat, while
values between 0.1 to 0.5 (10–50%) represent moderately suitable, and value lower than 0.1
(<10%) represent marginally suitable habitat for invasive weeds, which are very similar
to the division of habitat suitability by Thapa et al. [89]. The area of each category was
estimated using the raster calculator of the spatial analyst tool in ArcGIS 10.3. The areas
of moderately suitable and highly suitable habitats were summed, and the percentage
change in the suitable habitat areas in the southern region (<36◦ N latitude), central region
(36–37◦ N latitude), and northern region (>37◦ N latitude) of South Korea were determined.
Similarly, the average and maximum species richness values of the studied invasive weeds
were estimated at the national level and at three regional levels using the zonal statistics
function of the spatial analyst tool in ArcGIS 10.3.

4.6. Cluster Analysis of Invasive Weeds

We performed principal component analysis (PCA) using the potential distribution
area of invasive weeds in different regions of South Korea under the current climate, and
under the future climate change scenarios (RCP 4.5, RCP 8.5) for 2050 and 2070, to describe
differences in distributions and ordering of the samples, as per Dyderski et al. [90]. Then,
we used the Kruskal–Wallis test [91] with pairwise two-sided multiple comparison analysis
via the Dwass–Steel–Critchlow–Fligner method (p > 0.05) to test the significance of the
difference among the means of the groups obtained by the PCA.

5. Conclusions

In this study, we estimated the habitat suitability of invasive weeds under current and
future climate conditions in South Korea. The suitable habitat areas of all invasive weeds
were predicted to expand in the future, while retaining their current ecological niches.
Currently, the southern region of South Korea has the highest proportion of climatically
suitable areas for all invasive weeds, and these areas are predicted to expand toward
the central and northern regions under climate change. Invasive weeds have already
had negative impacts on biodiversity, food security, livelihoods, and ecosystem services
in South Korea. Thus, the effective management of invasive weeds is required using
integrated approaches that combine mechanical, chemical, and biological controls at the
early stage of invasive weed species population establishment. Therefore, these findings
are important in informing the development of control strategies for invasive weeds at local
and regional scales. Based on our study, we believe that early detection and eradication
strategies, including mowing and soil seed removal strategies, are needed in the southern
region, especially in Jeju Province, Jeollanam Province, Gyeongsangnam Province, Busan
City, and Ulsan City of South Korea.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/plants10081604/s1, Table S1. Pearson’s correlation for bioclimatic variable selection. Figure S1a–p:
The Jackknife test results for indicating the relative contribution of environmental variable for model-
ing different invasive weeds. S1a, Apium leptophyllum; S1b, Astragalus sinicus; S1c, Bromus unioloides;
S1d, Chenopodium ambrosioides; S1e, Coronopus didymus; S1f, Gnaphalium calviceps; S1g, Lolium multiflo-
rum var.multiflorum; S1h, Modiola caroliniana; S1i, Oenothera laciniate; S1j, Paspalum dilatatum; S1k, Sida
rhombifolia; S1l, Silene gallica var.gallica; S1m, Sisymbrium officinale; S1n, Sisyrinchium angustifolium;
S1o, Spergularia rubra; S1p, Malva parviflora. Figure S2a–p: The area under the receiver operating
characteristics (ROC) curve for determing the model’s goodness of fit under the current climate. S2a,
Apium leptophyllum; S2b, Astragalus sinicus; S2c, Bromus unioloides; S2d, Chenopodium ambrosioides;

https://www.mdpi.com/article/10.3390/plants10081604/s1
https://www.mdpi.com/article/10.3390/plants10081604/s1


Plants 2021, 10, 1604 17 of 20

S2e, Coronopus didymus; S2f, Gnaphalium calviceps; S2g, Lolium multiflorum var.multiflorum; S2h,
Modiola caroliniana; S2i, Oenothera laciniate; S2j, Paspalum dilatatum; S2k, Sida rhombifolia; S2l, Silene
gallica var.gallica; S2m, Sisymbrium officinale; S2n, Sisyrinchium angustifolium; S2o, Spergularia rubra;
S2p, Malva parviflora. Figure S3a–p: Potential distribution of invasive weeds in South Korea. S3a,
Apium leptophyllum; S3b, Astragalus sinicus; S3c, Bromus unioloides; S3d, Chenopodium ambrosioides; S3e,
Coronopus didymus; S3f, Gnaphalium calviceps; S3g, Lolium multiflorum; S3h, Modiola caroliniana; S3i,
Oenothera laciniate; S3j, Paspalum dilatatum; S3k, Sida rhombifolia; S3l, Silene gallica; S3m, Sisymbrium
officinale; S3n, Sisyrinchium angustifolium; S3o, Spergularia rubra; S3p, Malva parviflora.
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