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Abstract: The cell wall (CW) is a dynamic structure extensively remodeled during plant growth
and under stress conditions, however little is known about its roles during the immune system
priming, especially in crops. In order to shed light on such a process, we used the Phaseolus vulgaris-
Pseudomonas syringae (Pph) pathosystem and the immune priming capacity of 2,6-dichloroisonicotinic
acid (INA). In the first instance we confirmed that INA-pretreated plants were more resistant to
Pph, which was in line with the enhanced production of H2O2 of the primed plants after elicitation
with the peptide flg22. Thereafter, CWs from plants subjected to the different treatments (non- or
Pph-inoculated on non- or INA-pretreated plants) were isolated to study their composition and
properties. As a result, the Pph inoculation modified the bean CW to some extent, mostly the pectic
component, but the CW was as vulnerable to enzymatic hydrolysis as in the case of non-inoculated
plants. By contrast, the INA priming triggered a pronounced CW remodeling, both on the cellulosic
and non-cellulosic polysaccharides, and CW proteins, which resulted in a CW that was more resistant
to enzymatic hydrolysis. In conclusion, the increased bean resistance against Pph produced by INA
priming can be explained, at least partially, by a drastic CW remodeling.

Keywords: bean; Pseudomonas; cell wall; plant defense; disease resistance; 2,6-dichloroisonicotinic
acid; INA

1. Introduction

In nature, plants are usually under biotic stress caused by different pathogens, making
their survival difficult [1]. To combat attackers, plants have developed a sophisticated
immune system, whose activation usually produces a decrease in yield and fitness [2], and
therefore it must be tightly regulated. In this immune system, the plant cell wall (CW) is
the first physical barrier to prevent the pathogen from progressing into the cell, having
the capacity for remodeling the architecture of its components and their physicochemical
properties [3–5].

Plant CW is a dynamic structure which surrounds every plant cell, determining
their shape and providing mechanical support to the protoplasts to counteract the tur-
gor pressure. Elongating cells are walled by the primary CW, a thin layer in continuous
change, mainly composed of a complex matrix of cellulose, pectins, and hemicelluloses,
and structural glycoproteins [6,7]. Cellulose is the main CW scaffold, which is composed of
numerous β-(1-4)-glucans tightly packed to form microfibrils, very resistant to enzymatic
hydrolysis. The hemicelluloses and pectins, commonly named as matrix polysaccharides,
are a group of several distinct polysaccharides [7]. Pectins are a group of complex acid
polysaccharides that are divided in three main domains by their occurrence: homogalac-
turonan (HG), rhamnogalacturonan I (RG-I), and rhamnogalacturonan II (RG-II). The
proportion of these pectin domains depends on species, tissue, and even cell type, with
the presence of minor pectic domains such as apiogalacturonan or xylogalacturonan. The

Plants 2021, 10, 1514. https://doi.org/10.3390/plants10081514 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-1792-0113
https://orcid.org/0000-0002-2443-9275
https://orcid.org/0000-0002-1559-1136
https://orcid.org/0000-0001-5517-2238
https://doi.org/10.3390/plants10081514
https://doi.org/10.3390/plants10081514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10081514
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants10081514?type=check_update&version=2


Plants 2021, 10, 1514 2 of 25

binding among these pectins results in complex macromolecular structures which form a
hydrated gel phase where cellulose and hemicelluloses are embedded [8]. They are mostly
extracted from the CW by means of calcium chelators or hot water treatments. Hemicel-
luloses usually bind to the surface of the cellulose microfibrils, often bearing short side
branches, and are typically extracted under alkali incubation. Dominant hemicelluloses
in primary CW are xyloglucan (XG), xylan, or arabinoxylan (AX) depending on plant
species [9]. Accompanying polysaccharides, structural proteins such as hydroxyproline-
rich glycoproteins (HRGP) or arabinogalactan proteins (AGPs) are widespread in the CW
matrix [10,11]. When the cell stops growing, a strengthened secondary CW, mainly com-
posed of cellulose, hemicelluloses, and lignin, is deposited between preexisting primary
CW and the plasma membrane [12,13].

As plant morphogenesis ultimately depends on CW properties, this structure needs to
adapt to any cellular change at any developmental stage along the entire life of a plant [10].
These CW processes are tightly regulated to control the metabolism responsible of CW
remodeling. Firstly, the synthesis loci differ depending on the CW polymers. Cellulose
is synthesized at the plasma membrane [14], while matrix polysaccharides are deposited
throughout the secretory apparatus [15,16]. Secondly, the properties that these polymers
initially could confer to the matrix can be changed once they are deposited, by homo
and/or hetero-crosslinking and by modifying the pattern and/or degree of backbone
substitution. For instance, HG is synthesized in Golgi apparatus with most of its acidic
carboxyl groups methyl-esterified, however later on, by removing the methyl groups,
ionic bridges can be formed by calcium ions, establishing a network among HG chains [8].
RG-I and RG-II, which are pectins decorated with neutral sugars chains, are complex
polysaccharides whose abundance, cross-linking and substitutions are also regulated in
muro, depending on the development stage [8,17]. To gain resistance, RG-I backbone can
be enlarged, rendering a higher molecular weight of the polysaccharides. This can be also
achieved by cross-linking throughout borate diesters between the RG-II domains [17]. On
the other hand, typical modifications of dicotyledonous hemicellulosic glycans are the
presence of fucose or galactose residues attached to the XG backbone, which is important
during the cell elongation [18]. In the same way, extensins, which are HRGP, play a crucial
role in the structural and compositional CW plasticity, by forming intra- and intermolecular
cross-links [19].

CW remodeling serves to strengthen the CW, maintaining the plasticity to react to
environmental changes, being especially important under a pathogen attack. The role of
the CW components in defense has been attested in different works carried out with several
mutants mainly of the model species Arabidopsis thaliana (Arabidopsis), in which a specific
CW alteration translated into resistance or vulnerability against different diseases [20].
For example, the impairment of cellulose synthesis in an isoxaben-resistant mutant (ixr1,
also known as cev1) resulted in an enhanced resistance to fungal pathogens by means of
constitutive activation of some defensive pathways [21]. Similarly, Arabidopsis mutants
unable to synthesize cellulose in the secondary CW, as irx1-6, showed resistance against
the fungus Plectosphaerella cucumerina and the bacterium Ralstonia pseudosolanacearum [22].
The impairment in the callose deposition, observed in constitutively activated cell-death
(cad1-3) Arabidopsis mutants, produced an increment to Pseudomonas syringae susceptibil-
ity [23]. In the case of lignin, the overexpression of WRKY1 gene in rice, which increased
lignification and resulted in major resistance against Verticillium dahlia [24]. By contrast,
downregulation of the genes involved in lignin biosynthesis (hydroxycinnamoyl-CoA
shikimate quinate hydroxycinnamoyl transferase -HCT- or cinnamoyl-CoA reductase 1
-CCR1-), with alteration in lignin content and composition, triggered defense responses in
Arabidopsis [25]. Interestingly, the role of polysaccharide feruloylation in monocot Brachy-
podium and dicot Arabidopsis was also demonstrated by the transgenic expression of a
fungal feruloyl esterase in both species, which reduced mono and/or dimeric ferulic acids,
resulting in major susceptibility to Bipolaris sorokiniana and Botrytis cinerea, respectively [26].
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Similar effects were found when matrix polysaccharides were altered. Arabidopsis
mutants repressed in glucuronate 4-epimerases genes (gae1 and gae6) had an impairment
in galacturonic acid and showed less resistance to P. syringae pv. maculicola and Botrytis
cinerea [27]. In addition, Arabidopsis response regulator 6 mutant (arr6) was enriched in
pectins and showed more resistance to P. cucumerina but more susceptibility to R. pseu-
dosolanacearum [28]. Reductions in the content of galactomannans and in the decoration of
xyloglucan, observed in immutans (im) variegation of Arabidopsis, involved susceptibility
to P. syringae [29]. Finally, with respect to CW proteins, the reduced residual arabinose-2
(rra2) mutant, defective in extensin arabinosylation, could limit oomycete colonization
in Arabidopsis roots [19]. Other CW enzymes known to participate in pathogenesis are
pectin modified enzymes, such as pectin methylesterases (PME), which take part in the
demethylesterification of HG. An example is the infection of P. syringae pv. macuolicola in
Arabidopsis, which leads to an increment of PME activity [27]. Thus, pme17 Arabidopsis
mutants showed an increase in susceptibility to B. cinerea [30]. In the same way, PME
inhibitor (PMEI) mutants such as pmei10, pmei11, and pmei12 lead to immunity against
B. cinerea [31].

Apart from mutants, another strategy consists in comparing resistant and susceptible
wheat breeding lines to Fusarium graminearum. It was revealed that resistance could be due
to CW changes such as a higher content of lignin, a higher degree of arabinosylation on
xylans, and a higher degree and different pattern of methylesterification on pectins [32].

All these works were based on CW modified mutants or breeding lines that showed
susceptibility or resistance against pathogens, but their CW was already modified on these
genotypes, so the level of susceptibility was determined by a preformed structure that
in some mutants involved defensive pathways constitutively activated [20]. However,
much less is known about CW remodeling at a physiological stage after pathogen infection.
In this sense, most studies have focused on interactions with necrotrophic fungi or insects,
which produces mechanical damage in the CW by the release of CW degrading enzymes
(CWDEs) [26,32]. The main documented responses so far are the local deposition of
CW materials, known as papillae or the cross-linking among components of the matrix,
in order to hinder the access of the pathogens to the protoplast [22,31,32]. Recently, several
transcriptomic and proteomic analysis would indicate that CW remodeling is a widely
extended process in nature [33–36], however the detailed characterization of the changes
that take place in muro after bacteria attack remain poorly characterized.

Among other defense layers, it has been proposed that cellular defense responses
can be activated, but stronger, faster, and more efficiently, by means of the application
of different treatments, a phenomenon known as immune priming [37]. However, it is
not known whether, somehow, this immune priming conducts to the strengthening of
the CW, or the immunity triggers a remodeled CW capable to cope with a second attack
from pathogens. Over the past decades, several stimuli, compounds, or abiotic stresses
have been studied in order to produce priming [37–41]. This new state is reached by
changes at physiological, transcriptional, metabolic, and epigenetic levels, which can
hold priming throughout the entire life of a plant and can even be inherited by further
generations [42,43]. Among other compounds proposed to produce this long-term effect,
it is the functional salycilic acid (SA) analogue 2,6-dichloroisonicotinic acid (INA), the first
synthetic compound to induce defense responses in laboratory [39]. Recent studies have
proposed that INA enhances basal disease resistance in common bean (Phaseolus vulgaris
L.) by epigenetic changes that can even be inherited [41,43]. However, although it has been
described that the priming activator (R)-β-homoserine increased Arabidopsis CW defense
against H. arabidopsidis by enhanced callose deposition [41], there are no studies that focus
on CW remodeling after INA priming.

In this study, Riñón common bean was used. It is a widely cultivated variety in León
(Spain), under the protected geographic identification (PGI) “Alubia de la Bañeza-León”.
This variety is attacked by the biotrophic gamma-proteobacteria Pseudomonas syringae
pv. phaseolicola (Pph), causing halo blight disease [44–46], which causes yield losses of
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up to 45%, with its main symptoms being general chlorosis, stunting and distortion of
growth [45]. Until now, disease control has mainly consisted in growing healthy seeds
every season or replacing the susceptible varieties with others more resistant. This latter
alternative is not suitable when the susceptible variety cultivated has gastronomical and
economic interest, such as Riñón [45]. Riñón common bean has been previously described as
a Pph-susceptible variety [44], although the reasons behind this susceptibility are unknown.
A recent work from our group revealed that this bean variety is able to perceive the presence
of Pph but it is unable to produce an effective and fast defense response, at least in part
because of the lack of a quick SA peak production [47]. This is the reason why the use
of SA analogue, such INA, could help in the defense process against Pph. On the other
hand, there is no knowledge about CW remodeling after the Pph infection and it becomes
relevant because Pph is a CWDEs producer [48].

Taking all of this into account, the aims of the present work were to know: (1), if a
susceptible bean variety can remodel its CW after Pph inoculation, (2) if the application of
a priming compound, such as INA, has effects in CW remodeling, and finally, (3) if these
CW changes increased bean resistance against Pph. For these purposes, 15-day-old bean
plants were pretreated or not with INA, and 1 week after they were inoculated or not with
Pph. One-week post infection, the plants were collected and their CWs were extracted for
the subsequent analyses.

2. Results
2.1. INA Reduced Bean Susceptibility to Pph and Increased Flg22-Triggered Response

To determine whether the INA application was able to prime bean plants defense
as it was described before [42,49], the phenotypical symptoms after Pph inoculation
were recorded. Plants were grown in vitro, a system in which infection can be forced
through high pathogen concentration and humidity and without other environmental
stresses [50,51]. When plants were 2 weeks old, the experimental conditions were estab-
lished as follows: bean plants pre-treated with INA (INA) or not (Mock) were inoculated
with Pph (INA + Pph, and Mock + Pph, respectively) (Supplementary Figure S1A). The
observed disease symptoms were similar to those previously described [45]. Mock plants
grew without symptoms (Figure 1A), as their foliar color and development corresponded
with the normal growth of non-stressed plants. By contrast, Mock + Pph-inoculation
triggered general chlorosis, greasy appearance on leaves, and the development of necrotic
tissue areas, as shown in Figure 1B, indicating the susceptibility of these plants against
the pathogen. INA did not cause visible stress symptoms compared to Mock (Figure 1C).
Interestingly, foliar damage produced by the Pph inoculation was reduced considerably
in INA + Pph plants (Figure 1D). In this case, chlorosis was restricted to foliar margins,
and no greasy leaves appeared. Therefore, compared to Mock + Pph, INA + Pph plants
were more resistant to Pph, and showed a statistically smaller lesion area (Figure 1E), and
interestingly showed small necrotic spots in interveinal areas, which could be the result of
a hypersensitive response (highlighted area in Figure 1D), as has been observed in other
bean varieties resistant to Pph [52].
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Figure 1. Phenotypic damage caused by the virulent bacteria P. syringae pv. phaseolicola (Pph) in common bean plants. 
Entire plants and extended leaves are shown to compare symptoms in Mock (A,C) and INA-pre-treated plants (B,D), non- 
(A,B) or Pph-inoculated (C,D). In panel D, a detail of the observed necrotic spots indicative of hypersensitive response 
(pointed by an arrow) is shown. (E) Quantification of the lesion area. Data represent mean ± SE (n = 6) and statistically 
differences, indicated by letters, were achieved according to t-Student test (p < 0.05). Pictures correspond to one experiment 
representative of three independent ones with similar results. 

In view of the results obtained, whether INA priming was able to modify the ability 
of Riñón variety to trigger a general defense response was investigated. For this purpose, 
reactive oxygen species (ROS) production in bean leaf disks was monitored by a peroxi-
dase/luminol-based assay (See Supplementary Figure S1B). This method is commonly 
used to reveal whether pathogen- or host-derived ligands are able to trigger early immune 
hallmarks [53]. In our experimental system, the INA application did not trigger a ROS 
production compared to mock (Figure 2). However, INA pre-treatment produced the 
highest ROS peak after the addition of the bacterial-derived peptide flg22 (which may 
mimic Pph inoculation). This suggested that INA did not induce a typical immune-asso-
ciated fast response such as ROS production but primed the bean cells for more intense 
defense responses. 

Figure 1. Phenotypic damage caused by the virulent bacteria P. syringae pv. phaseolicola (Pph) in common bean plants.
Entire plants and extended leaves are shown to compare symptoms in Mock (A,C) and INA-pre-treated plants (B,D), non-
(A,B) or Pph-inoculated (C,D). In panel D, a detail of the observed necrotic spots indicative of hypersensitive response
(pointed by an arrow) is shown. (E) Quantification of the lesion area. Data represent mean ± SE (n = 6) and statistically
differences, indicated by letters, were achieved according to t-Student test (p < 0.05). Pictures correspond to one experiment
representative of three independent ones with similar results.

In view of the results obtained, whether INA priming was able to modify the ability
of Riñón variety to trigger a general defense response was investigated. For this pur-
pose, reactive oxygen species (ROS) production in bean leaf disks was monitored by a
peroxidase/luminol-based assay (See Supplementary Figure S1B). This method is com-
monly used to reveal whether pathogen- or host-derived ligands are able to trigger early
immune hallmarks [53]. In our experimental system, the INA application did not trigger
a ROS production compared to mock (Figure 2). However, INA pre-treatment produced
the highest ROS peak after the addition of the bacterial-derived peptide flg22 (which
may mimic Pph inoculation). This suggested that INA did not induce a typical immune-
associated fast response such as ROS production but primed the bean cells for more intense
defense responses.
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tistically significant differences, indicated by letters, were achieved according to one-way ANOVA 
(p < 0.05), by post hoc Tukey test. 
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Figure 2. Reactive oxygen species (ROS) production in bean leaf-disks subjected to different treat-
ments: water (Mock, green line), 100 µM INA (INA, blue line), 1 µM flg22 (flg22, red line), or 1 µM
flg22 after pre-treatment with 100 µM of INA (preINA + flg22, yellow line), and measured as rel-
ative light units (RLU) produced by Luminol reaction over the time. Total areas under the curves
were integrated, and resultant values are represented at the right side of the panel. Data represent
mean ± SE (n = 8) from one experiment representative of three independent ones with similar results.
Statistically significant differences, indicated by letters, were achieved according to one-way ANOVA
(p < 0.05), by post hoc Tukey test.

2.2. Pph Inoculation and INA Priming Produce Different CW Fingerprinting Than That Observed
in the Mock

Several recent evidence support a more prominent role of the CW in plant immunity
than previously believed, although the knowledge about plant CW remodeling after
pathogen infection and/or immune priming is scarce [4,5,22,26]. With this in mind, CWs
from Mock, Mock + Pph, INA and INA + Pph bean plants were extracted. Characterization
of whole CWs began with the non-invasive technique FTIR-spectroscopy, used to obtain
global fingerprints of the CW [54]. The FTIR spectra obtained were clustered in a Principal
Component Analyses (PCA), which separated the treatments in two groups (Mock and
the rest of the treatments) according to dimension 2, which explained 29.43% of variance.
In order to predict the putative CW components contributing to such segregation, the
wavenumbers whose values had a higher correlation with dimension 2 were extracted
and summarized in Table 1 together with their associated CW components. Several
wavenumbers were associated with RG-I, galactan and xyloglycan, (1148 and 1152 cm−1),
pectins (1232 and 1244 cm−1), uronic acids (1616–1628 cm−1), or with arabinogalactans
(1156 cm−1). In addition, the wavenumbers related to cellulose (1160 and 1164 cm−1)
and phenolics (1632 and 1720 cm−1) were also found. Next, difference spectra against
mock were calculated for each condition (Figure 3B). As a result, the profile between 1800
and 1170 cm−1 approximately, which referred among others to wavenumbers regarding
uronic acids and pectins, was similar among all conditions. By contrast, the region from
1170 to 800 cm−1 associated to RG-I, Galactan, Xyloglycan, Arabinogalactan and Cellulose
(Figure 3B, Table 1) only changed after INA pre-treatment (with or without further Pph
infection) when compared to mock.
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Figure 3. Cell wall fingerprinting. (A) Principal Component Analysis obtained from FTIR spectra of
crude cell walls extracted from leaves of Mock, Mock + Pph, INA, and INA + Pph common bean
plants. Each dot represents a biological replicate obtained in each of the 3 independent experiments
carried out. PCA is plotted with dimensions 1 and 2, which explained the 43.36% and 29.43% of the
total variance, respectively. (B) Average FTIR difference spectra obtained by digital subtraction of the
Mock CW spectra from the CW spectra of the other treatments.



Plants 2021, 10, 1514 8 of 25

Table 1. FTIR wavenumbers (cm−1) with highest contribution to explain Dimension 2 as Cos2 Dim2
(Figure 1) and the CW component to which they are associated.

Wavenumber (cm−1) Cos2 Dim2 CW Component Reference

808–816 8.05 × 10−1–6.93 × 10−1 Unknown
1148 7.14 × 10−1 RG-I, Galactan, Xyloglucan [55]
1152 7.98 × 10−1 RG-I, Galactan, Xyloglucan [55]
1156 7.18 × 10−1 Arabinogalactan [55]
1160 6.90 × 10−1 Cellulose [56,57]
1164 7.39 × 10−1 Cellulose [58]
1192–1196 6.43 × 10−1–7.26 × 10−1 Unknown
1200 7.61 × 10−1 C = CH [59]
1204–1228 7.98 × 10−1–8.12 × 10−1 Unknown
1232 8.02 × 10−1 Pectin [60]
1236–1240 7.72 × 10−1–7.26 × 10−1 Unknown
1244 6.67 × 10−1 Pectin [59]
1472–1596 6.61 × 10−1–6.14 × 10−1 Unknown
1616 7.34 × 10−1 Free carboxyl uronic acid [55]
1620 7.15 × 10−1 Free carboxyl uronic acid [60]
1624 6.89 × 10−1 Free carboxyl uronic acid [60]
1628 7.24 × 10−1 Free carboxyl uronic acid [60]
1632 7.41 × 10−1 Phenolic ring [60]
1636–1648 7.57 × 10−1–6.35 × 10−1 Unknown
1720 6.09 × 10−1 Phenolic ester [57,60]

2.3. INA Priming Induced Quantitative Changes in CW Polysaccharides Not Observed after the
Pph Inoculation

To deepen into the CW changes after the Pph inoculation and the INA priming, the
cellulose content was measured in crude CWs. It should be taken into account that cellulose,
a major CW component, has been described to participate in defense and remodeling [20].
Besides, our results indicate that cellulose contributes to discriminate among treatments
after PCA of FTIR CW spectra (Table 1). Updegraff methodology confirmed that the INA
pre-treatment resulted in an increased crystalline cellulose content in both INA and INA +
Pph plants, which could indicate a CW reinforcement after priming, due to the fact that the
simple Pph inoculation of Mock did not alter the cellulose content significantly (Figure 4).
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Figure 4. Cellulose content (µg per mg of dry weight CW) of the indicated treatments. Data represent
mean ± SE (n = 3). Statistical analysis was carried out by one-way ANOVA where letters indicate
differences by Tukey test (p < 0.05).

In order to explore the possibility of a CW reinforcement occurring after INA priming,
a sequential CW extraction of matrix polysaccharides was performed. During the CW frac-
tionation, pectic polysaccharides are commonly extracted in CDTA and Na2CO3 fractions,
while hemicelluloses are mainly extracted by incubation with different alkali (normally
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KOH or NaOH) concentrations, which extract hemicelluloses slightly (KI fraction) and
tightly (KII fraction) bound to cellulose and/or cross-linked (Cosgrove, 2018). The follow-
ing fractions recover polysaccharides tightly bound to cellulose (SnCR) and amorphous
cellulose (TFA) [61], respectively.

The Pph inoculation only had an effect in pectic fractions, producing an increment of
neutral sugars and uronic acids in CDTA fraction as well as an increment of uronic acids in
Na2CO3 fraction compared to mock (Figure 5). However, the INA pretreatment produced
dramatic changes in the neutral sugar distribution, by decreasing its content in CDTA,
Na2CO3 and SnCR fractions, and significantly increasing it in TFA fraction (Figure 5A).
The uronic acid content diminished in CDTA by INA pretreatment, but increased in pectic
(Na2CO3) and hemicellulosic (KII) fractions, as well as in the SnCR fraction (Figure 5B).
These results show a clear shift of polysaccharides from the CDTA fraction to others where
extracted polymers were linked to the matrix more strongly, thus suggesting changes in
their composition and/or structure. Interestingly, these CW changes observed in INA were
similarly observed after the Pph inoculation (INA + Pph).
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inoculated common bean plants: (A) neutral sugars and (B) uronic acid content. Data represent
mean ± SE (n = 3). Statistical analysis was carried out by one-way ANOVA where letters indicate
differences by Tukey test (p < 0.05).
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Thereafter, the fractions were subjected to acid hydrolysis, and neutral sugar composi-
tion was determined by gas chromatography (Figure 6). After the INA pretreatment, no
neutral sugars were detected in CDTA and Na2CO3 fractions, probably due to an incre-
ment in the uronic acid to neutral sugar proportion in these fractions (Figure 5), which
makes the neutral sugar quantification difficult [62]. In these pectin-enriched fractions
(Figure 6A,B), the Pph inoculation produced increments in rhamnose (Rha) and arabinose
(Ara) concentrations, most likely arising from RG-I. Additionally, Ara and galactose (Gal)
also increased in SnCR and TFA fractions in Mock + Pph (Figure 6E,F), pointing also to an
enrichment in arabinogalactans.
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Figure 6. Monosaccharide analysis from different CW fractions: CDTA (A), Na2CO3 (B), KI (C), KII (D), SnCR (E), and TFA
(F) of Mock, Mock + Pph, INA, and INA + Pph common bean plants. Monosaccharides are referred as Rha: rhamnose, Fuc:
fucose, Ara: arabinose, Xyl: xylose, Man: mannose, Gal: galactose and Glc: glucose. Data represent mean ± SE (n = 3).
Statistical analysis was carried out by t-student for Figure A and B, and by one-way ANOVA for Figure C to F where letters
indicate differences by Tukey test (p < 0.05). Asterisks refers to non-detected monosaccharides.

In the INA pretreatments a displacement of Rha, Ara, xylose (Xyl), Gal, and glucose
(Glc) monosaccharides, from KI, KII, and SnCR fractions to the TFA fraction, was observed
(Figure 6C–F), indicating that the polysaccharides implicated in the CW remodeling after
priming could be RG, XG, and/or xylans, more tightly linked to the matrix. A decrease
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in the mannose (Man) content was observed in KI and SnCR fractions after the INA
pretreatments compared with Mock. In addition, the Glc increase found in the TFA fraction
after the INA pretreatment (Figure 6F) could be related with the higher cellulose content
found in crude CWs for those conditions (Figure 4) or even to an increment in other
beta-linked-glucans able to reinforce the CW structure such as callose [63,64].

Finally, when plants were inoculated with Pph after priming (INA + Pph), no substan-
tial changes were observed compared with INA, except an increment in Gal and Glc in KI
(Figure 6C), and in Ara, Xyl, and Glc in KII fractions (Figure 6D), which could derive from
hemicelluloses

2.4. INA Priming Increased the Average Molecular Weight of Polysaccharides in All CW Fractions

Additional information about relative mass distribution and average molecular weights
(Mw) of polysaccharides in the CW matrix was obtained by gel permeation chromatog-
raphy [65] (Figure 7). Mock + Pph involved a Mw increase of all fractions compared to
Mock (Figure 7), except in KII, being the most notorious increase in the Na2CO3-pectic
fraction (Figure 7B), where polysaccharide dispersion was higher. Interestingly, the INA
pretreatment was always associated with a remarkable increase in the estimated Mw of
all polysaccharide populations analyzed. This shift was particularly noticeable in hemi-
cellulosic fractions in which a 14-fold (KI fraction) and 6.5-fold increase (KII fractions)
was found (Figure 7C,D). In these cases, INA + Pph had nearly negligible impact on Mw
compared to INA. These results obtained after INA priming pointed to the possibility
of CW remodeling by an extensive polymer cross-linking. Interestingly, the elution pro-
file shown two populations of polysaccharides after the INA pretreatment in fractions
CDTA (Figure 7A), KI (Figure 7C) and KII (Figure 7D): (i) relative to lower Mw, which
corresponded with Mock and Mock + Pph population, and (ii) of higher Mw, that did not
appear in those not treated with INA.
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2.5. Qualitative Epitope Changes in CWs Produced by the Pph Inoculation and INA Priming

As the Pph inoculation, as well as INA priming, involved a displacement of polysac-
charides populations extracted across all the fractions (Figures 5 and 6), and the increment
in Mw of these polysaccharides (Figure 7), an epitope characterization analysis of these CWs
was carried out (Figure 8). Therefore, a screening of CW qualitative changes was performed
by immunodot assays (IDAs) against different CW proteins such as extensins (recognized
by LM1 monoclonal antibody [66]) and arabinogalactan proteins (AGPs, recognized by
LM2 [9]). HGs with different degree and pattern of methyl esterification were screened
by means of JIM5 or JIM7 antibodies, which probe to low and high methyl esterified HGs
respectively [67]. The β-1,4-galactan and α-1,5-arabinan side chains of RG-I were also
probed by using LM5 or LM6 antibodies, respectively [9]). In addition, hemicellulose
epitopes were analyzed with LM11, which detects xylans and AXs [68]), and LM15, which
labels non-fucosylated XG [69]).

The upper side of the heatmap shows the relationship among antibodies binding
profiles. Xylan/arabinoxylan (LM11) and extensin (LM1) antibodies clustered together
(cluster A) and had less CW epitopes than pectic and hemicellulosic antibodies, which
clustered in the other group (cluster B). Within group B, HG antibodies (JIM5 and JIM7)
had the more intense binding profile (cluster B.1), while RG-I (LM5 and LM6), XG (LM15),
and AGP (LM2) antibodies grouped in an independent sub-cluster (B.2).

Attending to the left part of the heatmap, two clusters were observed: cluster C, which
included different fractions from INA-pretreatments (INA and INA + Pph), and cluster
D, in which Na2CO3, KI, and SnCR fractions from Mock and Mock + Pph plants were
included. Interestingly, Na2CO3 and KI fraction always grouped together although in
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different clusters depending on the treatment (cluster C.1a for INA and INA + Pph, and
cluster D for Mock and Mock + Pph), whereas CDTA and KII fractions were clustered inde-
pendently in cluster C.1b and cluster C.2, respectively. The clustering analysis after IDAs
revealed a similar epitope profile for CDTA and 4N KOH (KII) extracted polysaccharides
independently of the treatment. Besides, INA and INA + Pph linked to a differentiated
labelling pattern in Na2CO3 and 0.1N KOH (KI) extracted polysaccharides when compared
to Mock or Mock + Pph. As expected, in Mock plants the pectin fraction extracted with
CDTA was enriched in HG with high and low degree of methyl esterification (JIM7 and
JIM5) and RG-I (LM5 and LM6), but also non-fucosylated XG and AGPs were found.
Mock + Pph produced only a slight increase in HG methylation degree (JIM7) in the CDTA
fraction. However, INA and INA + Pph also increased the presence of extensins (LM1) and
AGPs (LM2), and decreased galactan side chains of RG-I (LM5) and XG (LM15) epitopes,
mainly in INA + Pph.

In Mock, CW polysaccharides extracted in Na2CO3 and KI fractions were enriched in
RG-I (LM5 and LM6), HG (JIM5 and JIM7), XG (LM15) and AGPs (LM2), but the Na2CO3
fraction had only a small proportion of extensin epitopes (LM1), and KI had only a small
proportion of xylan epitopes (LM11). Mock + Pph did not substantially change the epitope
distribution in Na2CO3 and KI fractions. However, the epitope profile of these fractions
dramatically changed after INA pretreatment, mainly due to the increase in extensin
(LM1) and HG (JIM5 and JIM7) epitopes, especially in the Na2CO3 fraction after the Pph
inoculation (INA + Pph).

The KII fraction was mainly composed of XG (LM15) and xylans (LM11) in Mock,
although HG (JIM5 and JIM7), RG-I (LM5 and LM6) and AGP (LM2) epitopes were
also detected. Mock + Pph itself did not substantially affect this profile, but the INA
pretreatment produced a pectin increment, mainly HG with a high degree of methylation
(JIM7) and RG-I (LM5 and LM6) and an increase in extensin epitopes.

Finally, the SnCR fraction was more variable in composition depending on the treat-
ment. In Mock, SnCR was composed of pectins (RG-I and HG), hemicelluloses (XG and
Xylans), and AGP. However, in Mock + Pph a decrease in hemicellulosic (LM11 and LM15)
and HG (JIM5 and JIM7) epitopes was observed. The composition of this fraction was
also different between INA pretreatments. The INA pretreatment increased, as in other
fractions, the presence of HG (JIM5 and JM7) and extensin (LM1) epitopes, but the Pph
inoculation (INA + Pph) also increase the abundance of hemicellulose (LM15) and AGP
(LM2) epitopes compared to Mock.
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of crude CWs was carried out (Figure 9). In this assay, no significant differences were 
found when both, sugar yield and sugar release kinetics obtained from Mock + Pph and 
Mock CWs were compared. However, INA pre-treatments induced a slower release of 
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Figure 8. Heatmap of data obtained from IDAs of fractioned CW from Mock, Mock + Pph, INA and INA + Pph conditions.
The value assigned from 0 to 5, depending on the marked dilution after development, is represented in a color key for the
5 levels. Fractions of each treatment are clustered in the horizontal axis, while monoclonal antibodies are clustered in the
vertical axis. For easy visualization, the next clusters were established with respect to antibodies clusterization: cluster
A, grouping LM1 and LM11; cluster B, divided into B.1, containing JIM5 and JIM7, and B.2, where LM5, LM6, LM2 and
LM15 were included. Regarding fractions and treatments, the clusters obtained were: cluster C, divided into C.1a (relative
to Na2CO3 and KI fraction of INA treatments), C.1b (where all CDTA fractions were located), and C.2, with KII fractions
mostly; cluster D, relative to Na2CO3 and KI fraction but of Mock and Mock + Pph.

2.6. INA Priming Prevented Enzymatic Digestibility of CWs

The CW changes observed after the Pph inoculation, and especially after the INA
priming, demonstrated CW remodeling events. In order to know whether such CW
remodeling confers more resistance to pathogen attack, especially taking into account that
Pph is able to produce CWDE, a time course of sugar release after enzymatic hydrolysis
of crude CWs was carried out (Figure 9). In this assay, no significant differences were
found when both, sugar yield and sugar release kinetics obtained from Mock + Pph and
Mock CWs were compared. However, INA pre-treatments induced a slower release of
total sugars during the first half of the time course. Samples from INA + Pph did not
reach sugar release levels of Mock after 24 h. In summary, the INA priming induced a CW
reinforcement, making the structure more resistant to enzymatic hydrolysis.
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3. Discussion

In nature, plants must overcome multiple stresses, such as those induced by pathogens,
by activating several defense mechanisms. The CW is the first plant defensive layer against
intruders. Plants are able to rearrange this structure on demand at different developmental
stages. The CW can be reinforce by modifying the proportions of its main components,
and/or by changing the type and extent of cross-linking among CW polymers [4]. To gain
insight into the pathogen and priming capacity to reinforce the CW, the remodeling of CWs
after the Pph inoculation and INA priming in the Pph-susceptible common bean variety
Riñón was studied in this work.

Previous studies have suggested the ability of INA, as a SA structural analogue, to
trigger the immune system in common bean [40,42,49]. To confirm the priming activation
in Riñón common bean, plants of this variety previously treated or not with INA were
inoculated or not with Pph (Supplementary Figure S1). By following that approach, it was
confirmed that plants pre-treated with INA showed less halo blight symptoms [45], as the
chlorosis and greasy appearance observed after the Pph inoculation decreased (Figure 1).
The fact that these symptoms were constrained to damage at the foliar margins confirmed
that INA pretreatment prior to the Pph inoculation protected Riñón bean plants from halo
blight disease, as it was previously observed in other varieties [42,49]. As priming suggests,
this observation may indicate that cell defensive responses have already been activated,
and consequently, a stronger defensive mechanism is expected [37,41]. In order to confirm
such hypothesis, the ROS burst triggered by peptide flg22 [70] was evaluated in bean
leaf disks previously incubated or not with INA. As shown in Figure 2, a more intense
ROS signal after flg22 triggering was detected in those plant disks previously treated with
INA, which was in line with the priming concept, as it primed the plant cells to develop a
more vigorously defense response somehow [71–74]. Ramirez-Carrasco et al. (2017) [42]
proposed that this SA analogue produces epigenomic changes in bean that can even be
inherited [43,49].

The presence of a CW that shields plants from pathogen invasion is a common resis-
tance mechanism to disease among all plant cells. Several recent works have demonstrated
a more relevant role of the CW than initially expected mediating such resistance. Most of
them have focused on the study of mutants with a great variety of CW alterations, which
have resulted in differential resistance or susceptibility against plant pathogens [4,20].
Other works have studied the role of elicitation with conserved CW-derived molecules
from the pathogen, or from the plant itself, which once perceived the pathogen and trig-
gered different immune responses [75,76]. However, the knowledge about CW remodeling
after immune priming or bacterium infection is scarce. Here, we studied whether Pph
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inoculation and/or INA priming in common bean could promote a CW remodeling which
would end up in the enhanced protection against halo blight disease, as shown in Figure 1.

The study of CW remodeling in this work began with the non-invasive technique FTIR
spectroscopy of crude CWs, which resulted in the discrimination of FTIR spectra of Mock +
Pph, INA and INA + Pph samples from the Mock samples (Figure 3). Dimension 2 of the
PCA applied, which explained almost 30% of variance, was mainly related to wavenum-
bers associated with pectins, cellulose, and phenols (Table 1). The subsequent analysis
of the polysaccharide content revealed changes in the amount of cellulose (Figure 4), ma-
trix polysaccharide distribution (Figure 5), monosaccharide composition (Figure 6), and
changes in the inmunoprofile of pectins (Figure 8).

When bean plants were inoculated with Pph, no statistical differences were found in
cellulose content (Figure 4), in contrast with previous findings from other pathosystems [3].
However, our results point to both quantitative and qualitative changes in pectins and hemi-
celluloses after the Pph inoculation (Figures 5 and 6). The total amount of pectins (CDTA
and Na2CO3 extracted polysaccharides) increased upon the Pph inoculation (Figure 5).
Indeed, the higher HG methylation degree observed, as revealed by immunolabeling in
these fractions (Figure 8), would suggest a HG synthesis increase after the infection, as
HG methyl-esterification only occurs in Golgi apparatus [77–79], and/or a decrease of
pectin methyl esterase activity after the Pph infection, as this is altered in other pathosys-
tems [27,80]. Besides, the Ara and Xyl variation in the KII fraction suggest an increment of
AX in tightly cross-linked hemicelluloses. The Mw of pectins (particularly those Na2CO3
extracted) and loosely crosslinked hemicelluloses (KI fraction) raised after the Pph inocula-
tion. A putative increase in the length and/or number of arabinan and galactan side chains
of RG-I was also reported.

Several studies show how plants modify their pectin methylation degree or sub-
stitution pattern in order to avoid microbe colonization [78,81]. It is well-described
that HG demethylation, as it is necessary to establish links between HG chains through
Ca2+ bonds to form the denominated egg-box complexes [82], participate in biotic resis-
tance [30,31]. This type of link could explain the Mw increase observed for pectic fractions
(Figure 7) [83,84]. These changes in pectic polymers could be not enough as defensive
mechanisms, as it was observed phenotypically (Figure 1). In fact, the CW degradability
profile was similar in Mock + Pph and Mock (Figure 9). Pph is characterized, as other
pathogenic microbes, by the production of CWDE that are released in the apoplast, similar
to those used in the CW degradability assay [4,48]. This could be an explanation to the
symptoms observed caused by the disease.

The Glc increase in the TFA fraction may reflect the accumulation of non-crystalline
cellulose after the INA treatment (Figure 4). INA, as structural SA analogue, could stimulate
cellulose synthesis. This polysaccharide is precisely regulated by growth factors, and
previous studies have suggested the relation between SA and cellulose accumulation [85].

Alternative explanations for the Glc increase in the TFA fraction would be the accumu-
lation of callose and/or the enrichment in a XG population tightly bound to cellulose. Both
explanations seem plausible as the protective role of callose against Pph attack [86] and
the function of XG by strengthening CW structure [63,64] have been previously reported.
The CW fractionation of plants pre-treated with INA showed a noticeable displacement of
matrix polysaccharides among fractions.

Regarding Mock and Mock + Pph conditions, neutral sugars were barely detected
in CDTA and Na2CO3, decreased in SnCR, and increased in TFA (Figure 5). Specifically,
the displacement of monosaccharides to the TFA fraction would suggest that RG-I, XG
and xylans are the polysaccharides involved (Figure 6). A similar displacement from
CDTA to Na2CO3, KII and SnCR could have occurred regarding uronic acids (Figure 5B).
These changes indicated that polysaccharides become strongly attached to the matrix.
Moreover, marked changes in polysaccharide size (Figure 7) and inmunoprofile in epitopes
for each fraction (Figure 8) would suggest INA-dependent changes in the CW structure.
The increase in glycan Mw observed for all fractions in INA treatments compared to
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Mock (Figure 7) could be explained by changes in cross-linking detected in CW epitopes
(Figure 8), which is interesting when the sugar content decreased in CDTA and did not
change in KI and KII (Figure 5). Galactan or arabinan side chain substitutions in RG-I
decreased in CDTA but increased in Na2CO3 after the INA pretreatments. Additionally,
AGPs or XG diminished after the priming, but all fractions obtained from plants pre-treated
with INA showed an increment in HG and extensin epitopes (Figure 8). As being part of
the same molecule [87,88], the changes observed in RG-I could have indirectly rendered a
HG more attached to the matrix and, consequently, the detection of HG in fractions such as
KI and KII, in which the presence of pectins is not usually abundant [89,90].

The more distinctive fact of CW fractions from INA treatments compared with those
obtained from Mock and Mock + Pph CWs, was the increment in extensin epitopes,
which could participate in matrix remodeling, maintaining the plasticity. Extensins are
hydroxyproline-rich glycoproteins which interact with other CW components such as
pectins, participating in the architecture, the structural organization and the strengthen-
ing of the CW [91–93]. Therefore, these proteins are involved in polysaccharide cross-
linking [92,93]. Interestingly, extensin overexpression produces a decrease in the suscepti-
bility of Arabidopsis to Pseudomonas syringae DC3000 [94]. In line with this, Arabidopsis
plants with a reduced wall-extensin content are less resistant to Botrytis [26]. In addition,
it is well known that some extensin genes are induced in Arabidopsis and Nicotiana by
SA [95–97], and INA, as a SA analogue, could produce a similar effect in bean.

Taken together, all these changes suggest a remodeling of the CW architecture, which
was finally confirmed by the enzymatic digestion assays, as CWs extracted from plants
treated with INA showed a higher resistance to enzymatic hydrolysis (Figure 9). These
differences, which were especially noticeable at early times, could be explained, at least
partially, by a CW reinforcement after priming. The inoculation of the pathogen after
the INA priming meant slight CW modifications, which was also reflected in a similar
CW degrading profile upon enzymatic digestion. As previously reported [98], the CW
cross-linking and strengthening could hamper pathogen CWDEs activity and confer biotic
resistance, which would explain the slight lesions produced by halo blight after the INA
pre-treatment in this variety (Figure 1). INA pre-treated plants were more resistant to Pph,
and showed small necrotic spots, which resembled those produced during the HR response
(Figure 1D). In resistant plant species, SA accumulates in the infection site at early stages
of the immune response, which leads to HR [99]. However, previous studies showed that
Riñón variety was not able to produce the early SA peak required after the Pph attack to
induce HR [47]. Therefore, INA could replace the role of SA by increasing the defense
signal at early stages after Pph infection in this variety.

To summarize, the Pph inoculation modified the common bean CW to a much lower
extent than INA-priming. It did not involve an increase in cellulose content, but increased
pectins (HG and RG) in pectic fractions and hemicelluloses (AX) in KII fraction. The
Mw of polysaccharides increased most of all in Na2CO3 fraction, but the CW was as
vulnerable to enzymatic hydrolysis as Mock. By contrast, INA priming triggered a drastic
CW remodeling, by increasing the cellulose content, displacing the matrix polysaccharides
among fractions, and increasing the Mw of polysaccharides extracted in each fraction. This
could be related to an increment in pectins (HG and RG) and extensins in all fractions,
which supported a more extensive cross-linking that resulted in a CW more recalcitrant to
enzymatic hydrolysis. The Pph inoculation after INA priming did not modify substantially
this CW remodeling and the resultant CW was as resistant to enzymatic degradation as
INA without inoculation. Therefore, INA-priming-phenotypes regarding more intense
ROS production after flg22-elicitation and increased resistance against Pph infection, could
be explained, at least partially, by the CW remodeling observed. Future work to unveil the
specific links between CW remodeling and disease resistance will pave the way to design
novel crop protection strategies based on such knowledge.
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4. Materials and Methods
4.1. Plant Material

Seeds of common bean P. vulgaris L. cultivar Riñón, from the Protected Geographical
Identification La Bañeza-León region (Spain), were sterilized with 70% (v/v) ethanol for
30 s and 0.4% (w/v) NaClO for 20 min, prior to washing with sterile water. Germination
took place under in vitro conditions using glass jars (946 mL of volume) with universal
sterilized substrate (Blumenerde, Gramoflor, made in Germany). Plants were grown in
a growth chamber at 25 ± 2 ◦C with a 16 h photoperiod under a photon flux density
of 45 ± 5 µmol m−2s−1 provided by daylight fluorescent tubes (TLD 36W/830, Philips),
as indicated in De la Rubia et al. (2021) [47].

4.2. Bacterial Strain and Growth Conditions

Pseudomonas syringae van Hall 1902, CECT321 (Pph) was grown for two days at 30 ◦C
on liquid King’s B (KB) medium at 220 rpm. For infection experiments, a final concentration
of 108 CFU/mL Pph was used. The Pph solution for inoculation was prepared by removing
the media by centrifugation and resuspending in the same volume of sterile water, as
indicated in De la Rubia et al. (2021) [47].

4.3. Elicitation, Pathogen Inoculation, and Sample Preparation

Leaves from common bean plants at V1 stage (with two cotyledonary leaves ex-
panded, but not the true leaves developed) were sprayed with 2 mL per leaf of 100 µM
2,6-dichloropyridine-4-carboxylic acid (INA, Alfa Aesar, LOT: 10160271) (INA) or sterile
water (Mock), as described in Martínez-Aguilar et al. [49]. After 7 days, some plants
previously treated or not with INA were sprayed with 2 mL of the Pph solution on foliage
leaves, resulting in Mock + Pph and INA + Pph treatments. All plants were grown for
7 more days and then the foliage leaves of 10 plants per treatment were collected and
homogenized with liquid nitrogen to form a pool for each condition. All pools were stored
at −80 ◦C until their use. Three complete independent experiments (n = 3) were performed
(see Supplementary Figure S1A).

4.4. Reactive Oxygen Species Detection

The ROS production was determined in V1 plants leaf disks using the luminol as-
say [100] in a Multi-Detection Microplate Reader Synergy HT (BioTek). Leaf disks were
transferred to a multi-well plate (see Supplementary Figure S1B), containing 200 µL water
or 100 µM INA, and they were incubated overnight. Afterwards, the previous solution
was removed, and 100 µL per well of a solution containing 20 µM luminol L-012 (Wako)
and 100 µg/mL peroxidase from horseradish type VI.A (Sigma, P6782) were added, and
incubated in the dark for 30 min. Then, the reactions were started by adding 100 µL of
water (Mock condition) as negative control, 100 µL of 2 µM flg22 (flg22 condition) as
positive control, 100 µL of 200 µM INA (INA condition), and 100 µL of 2 µM flg22 to
those disks previously incubated overnight with 100 µM INA (preINA + flg22). The ROS
production, measured as relative luminescent units (RLUs), was measured over 90 min,
with an integration time of 0.6 s. Data shown represent mean ± SE from one representative
experiment of three independent ones performed with similar results (see Supplementary
Figure S1A). The total areas under the kinetic curves were integrated, and the resulting
values were statistically analyzed by One way ANOVA (p < 0.05), post hoc Tukey test.

4.5. Cell Wall Isolation

The plant material (a pool of foliage leaves of 10 plants for each replicate) was pow-
dered by homogenizing the samples in liquid nitrogen with a mortar and pestle. Three g of
fresh weight powder were then treated with 50 mL 70% ethanol (v/v) for 24 h, centrifuged
to remove the supernatant (×2), and then incubated with 50 mL 80% acetone (v/v) for
24 h (×2). The insoluble residues were incubated with 50 mL 2.5 U mL−1 α-amylase
(Sigma type VI-A) in 0.01 M phosphate buffer pH 7.0 for 24 h at 37 ◦C (×2). Then, the
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remaining pellets were treated with 50 mL phenol-acetic acid-water (2:1:1 v/v/v) for 16 h
at room temperature, with a change of solvents after 8 h of incubation. Finally, 50 mL 70%
ethanol (v/v) (×3) and 50 mL 100% acetone (v/v) (×3) were sequentially added to wash
the samples, and the final air-dried residues were considered CWs [61].

4.6. FTIR Spectroscopy

Crude CWs were used to obtain the FTIR spectra using a Jasco 4700 instrument (Tokyo,
Japan). The average FTIR spectra (n = 10), from 800 to 1800 cm−1, were normalized and
baseline-corrected with an ATR module of 4 cm−1 resolution, using Spectra Manager
version 2 (2016) software by Jasco corporation (Tokyo, Japan). A Principal Component
Analysis was carried out from normalized spectra with R [101], and visualized with the
FactoMineR package [102].

4.7. Sequential Polysaccharide Extraction

The sequential polysaccharide extraction followed the protocol previously described
by Rebaque et al. (2017) [61] with slight modifications. Crude CWs (10 mg CW/mL)
were treated with cyclohexane-trans-1,2-diamine-N,N,N′,N′,-tetraacetic acid sodium salt
(CDTA) at pH 6.5 for 8 h. After centrifugation, the pellets were washed with distilled
water. The residues obtained were treated with 0.05 M Na2CO3 + 0.02 M NaBH4 and
washed with distilled water, to obtain the Na2CO3 fractions. The residues obtained after
centrifugation were then incubated in 0.1 N KOH + 20 mM NaBH4 for 8 h, and washed
with distilled water, obtaining the KI fractions. For the KII fractions, the remaining pellets
were treated with 4 N KOH + 20 mM NaBH4 for 8 h and washed with distilled water. KI
and KII fractions were acidified to pH 5.0 with pure glacial acetic acid, and after that, the
samples were agitated and centrifugated. Water was added to the pellets obtained after KII
fraction, and then were acidified to pH 5 by adding pure glacial acetic acid. The extracts
and their respective washings were combined. After its centrifugation, the supernatants
were collected to form the Supernatant-Cellulose Residue (SnCR) fractions. The remaining
residues were hydrolyzed with 3 mL 2N trifluoroacetic acid (TFA) for 2.5 h at 120 ◦C,
centrifuged, and clarified supernatant was referred as TFA fraction.

4.8. Cell Wall Sugar Content Analysis

The cellulose content of CWs was quantified by the Updegraff method [103], under
the hydrolytic conditions described by Saeman, [104], using glucose as standard.

The total sugars and uronic acids were determined by the phenol-sulfuric acid
method [105], and the m-hydroxydiphenyl method [106], using D-glucose and galac-
turonic acid as reference, respectively. For the neutral sugar estimation, the values for total
sugars and uronic acids were subtracted.

For the neutral sugar composition, samples from each fraction were hydrolyzed with
2 N TFA for 1 h at 121 ◦C, which resulted in monosaccharides that were derivatized
to alditol acetates following the method described by Albersheim [107]. Furthermore,
the alditol acetates were quantified by gas chromatography (GC) using a Perkin-Elmer
equipment with a flame ionization detector (GC-FID), using a Supelco SP-2330 column
and a Perkin-Elmer GC-FID, as described in Rebaque et al. (2017) [61]. Inositol was used
as internal control, and monosaccharides L(−)rhamnose (Merck), L(−)fucose (Sigma),
L(+)arabinose (Merck), D(+)xylose (Merck), D(+)mannose (Merck), D(+)galactose (Merck),
and D(+)glucose (Panreac) as standard markers.

4.9. Gel Permeation Chromatography

The CW polysaccharides were size-fractionated by using a sepharose CL-4B column
in a 120 mL bed-volume (1.5 cm diameter) column in pyridine/acetic acid/water (1/1/23
v/v/v) at 0.3 mL/min. The column was calibrated with sucrose and different commercial
dextrans of known relative average molecular weight (Mw) as described by Kerr and
Fry [65]. By using the Kav(1/2) method [65], a calibration curve was obtained (log Mw =
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−5.333 Kav(1/2) + 8.103). V0 and Vi (Kav 0 and 1) were defined by dextran blue (2000 kDa)
and sucrose, respectively. Then, the polysaccharides were loaded into the column at a
concentration of 100 µg/mL, and the total sugars were estimated for each fraction. The
nominal Mw for each fraction was determined (nominal rather than absolute due to the
conformational differences between dextran standards and CW polysaccharides).

4.10. Immunodot Assays

IDAs were carried out as described by García-Angulo et al. (2006) [89]. The refer-
ence compounds were commercial pectin (P41) and arabic gum. Monoclonal antibodies
(mAbs) LM1, LM2, JIM5, JIM7, LM5, LM6, LM11, and LM15 were used with mung bean
as standard. The reference compounds, as well as samples of fractions, were diluted
1/5, five times. Then aliquots of 1 µL from each dilution were spotted on nitrocellulose
membranes. After drying, the membranes were blocked with 0.14 M NaCl, 2.7 mM KCl,
7.8◦ mM Na2HPO4.12H2O and 1.5◦ mM KH2PO4, pH 7.2 (PBS), with 4% fat-free milk
powder, during 1.5 h at room temperature and incubated in primary antibody (hybridoma
supernatants diluted 1/10). After washing the membranes, they were incubated in sec-
ondary antibody (antirat horseradish peroxidase conjugate, Sigma) diluted 1/1000, during
1.5 h at room temperature. The color was developed with 25 mL deionized water, 5 mL
methanol with 10 mg mL−1 4–chloro–1–naphtol, 30 µL 6% (v/v) H2O2, and stopped by
washing the membranes. A value ranging from 0 to 5 was assigned depending on the
number of colored spots that were shown after developing the membranes as described in
De Castro et al. (2014) [108]. As it corresponded with dilutions, this was used to establish a
semiquantitative scale which was processed in a Heatmap, and clustering was performed
with R [101].

4.11. Cell Wall Degradability

The CW degradability was assayed on 5 mg of crude CWs hydrolyzed with a cocktail
of hydrolytic enzymes, containing 1% macerozyme (R10, from Rhizopus sp., Duchefa, EC
number 232-885-6), 1% driselase (from Basidiomicetes, Sigma, EC number 286-055-3), 1%
cellulase (Onozuka R10, from Trichoderma viride, Phytotechnology Laboratories, EC number
3.2.1.4), and 1% endo-polygalacturonase (M2, from Aspergillus aculeatus, Megazyme, EC
number 3.2.1.15), in 20 mM sodium acetate (pH 4.8) (Fornalé et al., 2012). Samples were
incubated at 37 ◦C by shaking. Aliquots of the CW hydrolysate were collected at different
times, and 10 µL of 99% formic acid (Panreac) was added to stop the enzymatic digestion.
The total sugars were quantified by the phenol-sulfuric method [105].

4.12. Statistical Analyses and Software

Results were represented using GraphPad Prism 6, GraphPad Software (La Jolla,
California USA; www.graphpad.com), while the statistical analyses were performed with
SPSS software (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0.
Armonk, NY: IBM Corp). Data normality was checked firstly by Kolmogorov-Smirnov test.
The ROS and CW polysaccharide and monosaccharide quantification were analyzed by one-
way ANOVA with a Tukey post-test to evaluate the differences between treatments. Data
on digestibility were analyzed by a two-way ANOVA with a Tukey post-test. Results were
significantly different considering p < 0.05. As mentioned above, the PCA and Heatmap
were analyzed with R [101].

Foliar lesion areas were quantified using imageJ software [109].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10081514/s1, Figure S1: Experimental design. (A) Seeds of common bean P. vulgaris
L. cultivar Riñón were grown in vitro. Leaves from common bean plants at V1 stage were sprayed
with 2 mL of 100 µM INA (INA condition) per leaf or with sterilized water (Mock condition). After
7 days, some plants previously treated or not with INA were sprayed with 2 mL of the Pph solution
on foliage leaves, resulting in INA + Pph and Mock + Pph treatments. All plants were grown for
7 days more and then, the foliage leaves of 10 plants per treatment were collected. The experiment
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was repeated three independent times (n = 3). Afterwards, CWs were isolated, fractionated and their
components analyzed by means of different techniques. (B) The ROS production was determined
in V1 plants leaf disks. The reactions were triggered by adding 100 µL water (Mock condition) as
negative control, 100 µL 200 µM INA (INA condition) as negative control for toxicity, 100 µL 2 µM
flg22 (flg22 condition) as positive control, and also 100 µL 2 µM flg22 to those disks previously
incubated overnight with 100 µM INA (preINA+flg22) as experimental condition. The experiment,
with 8 plants assayed, was repeated three independent times (n = 3).
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