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Abstract: Invasive alien plants can severely threaten biodiversity and cause economic losses in the
agricultural industry; therefore, identifying the critical environmental factors related to the distri-
bution of alien plants plays a crucial role in ecosystem management. In this study, we applied
partial least squares regression (PLSR) and geographically weighted regression (GWR) to estimate the
important environmental factors affecting the spread of two invasive and expansive plants, Lactuca
scariola L. and Aster pilosus Willd., across South Korea. GWR provides more accurate predictions than
ordinary least squares regression, and the local coefficients of GWR allow for the determination of
the spatial relationships between alien plant distributions and environmental variables. Based on
the model’s results, the distributions of these alien species were significantly associated with anthro-
pogenic effects, such as human population density, residential area, and road density. Furthermore,
the two alien species can establish themselves in habitats where native plants cannot thrive, owing
to their broad tolerance to temperature and drought conditions. This study suggests that urban
development and expansion can facilitate the invasion of these species in metropolitan cities.

Keywords: invasive alien plant; geographically weighted regression; partial least squares regression;
anthropogenic effect; Lactuca scariola; Aster pilosus

1. Introduction

Increasing global trade is one of the main reasons for biological invasions worldwide.
Such invasions have become a matter of great concern because of their potential negative
impacts on ecosystems and the agricultural industry [1]. Information regarding the critical
environmental factors affecting the expansion of alien plants is required for many aspects of
ecological research and for habitat protection strategies for native plant conservation [2,3].
The spread of invasive plants is determined by the complex interactions of diverse factors
including their biological traits, land use, climate, and anthropogenic disturbances [4,5].

Numerous studies have been conducted on the relationships between alien plant
distributions and environmental variables [6–8]. In this study, we applied geographically
weighted regression (GWR), which can incorporate spatial non-stationarity and estimate
local coefficients. Traditional statistical methods cannot accurately incorporate spatial non-
stationarity, although environmental variables usually show strong spatial dependence (i.e.,
autocorrelation). Specifically, ordinary least squares (OLS) regression and the stationary
coefficient model assume that the relationships between variables are the same across
the entire space and compute the parameters as average values across all locations [9].
However, GWR can calculate the local parameters for different spatial regions which take
neighboring observations into account [10]. GWR is a tool that is more frequently used in
healthcare and demographic research rather than ecological studies [11–13].

Two invasive alien plants, Aster pilosus Willd. and Lactuca scariola L., were introduced
into South Korea approximately 50 years ago [14,15]. These plants have rapidly spread
across South Korea. This has been attributed to their tolerance of harsh environmental con-
ditions and strong wind dispersal abilities [16–18]. Both species are designated as harmful
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invasive plants by the Ministry of the Environment of the Republic of Korea because of
their negative impacts on ecosystem diversity. They are also considered troublesome weeds
in several regions such as the United States, Europe, and Australia [17,18]. It is important
to estimate the critical environmental factors that facilitate the spread and establishment of
harmful alien plants. In particular, South Korea is likely to be increasingly prone to alien
plant invasions owing to the increasing volume of trade and anthropogenic pressure on
natural habitats.

The specific objectives of this study were to (1) estimate the effect of 13 environmental
variables (human population density, mountain area, elevation, temperature, etc.) on alien
plant distribution patterns using partial least squares regression; (2) explore the spatial
non-stationarity of local coefficients using GWR; (3) delineate the risk areas where invasive
alien plants could spread most easily.

2. Results

The spatial distributions of the two alien plant species are shown in Figure 1. A. pilosus
was identified at 1700 geographical points throughout South Korea and L. scariola at 1253
points. Among the 17 provinces, the two alien plant populations were more frequently
found in provinces 1, 2, 3, and 9 than in other provinces. Moreover, the southern districts
had lower alien plant densities. The population densities of the two species exhibited large
variability among the 165 districts. All the measured variables showed significant spatial
autocorrelation, meaning that there was a tendency for districts that are close together
in geographical space to have similar values. The A. pilosus population had a higher
population density and stronger spatial autocorrelation than the L. scariola population.

Figure 1. The density of A. pilosus (Ap) (A) and L. scariola (Ls) (B) in 165 districts (small polygons)
in South Korea. The bold numbers in the polygons represent the 17 provinces of South Korea. The
red points represent the points at which the two plant species were detected. The legends show
log-transformed A. pilosus and L. scariola population density.

The PLSR model showed that 13 variables influenced the densities of the two alien
plant species differently. A. pilosus’ density was mainly explained in the PLSR model by
the first two components (61.4%). Four explanatory variables (i.e., population density,
residential area, road, and industrial area) were highly correlated with each other, which
was also observed in the correlation matrix (Figure S1). The most influential predictor
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of A. pilosus’ density was identified as anthropogenic activity (i.e., population density,
residential area, and road), followed by temperature variables (i.e., bio1 and bio7), based
on the variable importance of the PLSR projection. Stream, farm, mountain, and the
precipitation-related variables were only weakly influential compared to the other variables.
Six explanatory variables (e.g., farm, mountain, ocean, elevation, and bio12) showed
negative associations with A. pilosus’ density (Figure 2).

Figure 2. Partial least squares regression (PLSR) biplot of the first two components (A). Regression coefficient (B) and
variable importance to the projection (VIP) (C) from the PLSR of A. pilosus (Ap) density. The variables with VIP > 1 are
good candidates to explain A. pilosus density; pop.: human population density, resid.: residential area, ind.: industrial area,
road: road length ratio, stream: stream area, farm: farm area, Mt.: mountain area, ocean: facing the ocean, elev.: elevation,
bio1: annual mean temperature, bio7: annual temperature range, bio12: annual precipitation, and TWI: topographic
wetness index.

The anthropogenic activity (population density, residential area, and industrial area)
were also the most influential explanatory variables for L. scariola density, followed by
mountain and the topographic wetness index (TWI). The regression coefficient of the
PLSR showed that the mountain, elevation, and bio12 (annual precipitation) variables had
negative associations with L. scariola density (Figure 3). The mountain, elevation, and TWI
variables were significantly related to each other (Figure S2).

When the same data were used in the OLS and GWR models, the estimated param-
eters and model performances differed in the final models. Both explanatory variables
(Residential area and Bio7) were positively associated with A. pilosus density at the p < 0.001
level in the OLS model. In contrast, the GWR model estimated that over 99.9% of the local
coefficients for residential area were positively associated with A. pilosus density, and 17%
of the local coefficients for bio7 were negatively associated with A. pilosus density. The
model performances increased in the GWR model. For example, the GWR model accounted
for 66% of the differences in A. pilosus density among the 165 districts, which is 22% higher
than the OLS model (Table 1). The AIC value was also lower in the GWR model than the
comparative value in the OLS model, suggesting that the variables showed a better fit in
the GWR model. The OLS model for L. scariola density showed that the mountain variable
was negatively associated with L. scariola density at the p = 0.03 level. The GWR model
revealed that 98% of the local coefficients for mountain were negatively associated with
L. scariola density, indicating that L. scariola population density decreases in 98% of the
districts with higher mountain percentages. The GWR model for L. scariola accounted for
48% of the variation in L. scariola population density, which is 21% higher than the OLS
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model. The lower AIC value of the GWR model also shows that model performance is
higher in the GWR model than in the OLS model. The Moran’s I of the residuals for the
OLS model was higher than that for the GWR model, indicating that residuals in the OLS
model had a greater tendency toward clustering than those in the GWR model.

Figure 3. Partial least squares regression (PLSR) biplot of the first two components (A). Regression coefficient (B) and
variable importance to the projection (VIP) (C) from the PLSR of L. scariola (Ls) density. The variables with VIP > 1 are good
candidates to explain L. scariola density. Variable abbreviations are given in Figure 2.

Table 1. Comparison between ordinary least squares (OLS) and geographically weighted regression (GWR) model results.

Category
OLS GWR

Coefficient SE t-Value a 2.5% 50% 97.5%

A. pilosus

Coefficient
Intercept 0.000 0.059 0.000 −0.839 −0.141 0.894

Residential area 0.492 0.059 8.376 ** 0.134 0.416 0.602
Bio7 0.421 0.059 7.171 ** −0.310 0.333 0.704

Performance
Adjusted R2 0.44 0.66

AIC 379.8 304.2
Moran’s I for residuals 0.098 (p = 0.110) 0.078 (p = 0.078)

L. scariola

Coefficient
Intercept 0.000 0.067 0.000 −0.365 0.030 0.335

Residential area 0.392 0.085 4.604 ** −0.133 0.279 0.675
Mountain −0.186 0.085 −2.186 * −0.486 −0.278 −0.013

Performance
Adjusted R2 0.27 0.48

AIC 422.1 379.6
Moran’s I for residuals 0.121 (p = 0.023) 0.047 (p = 0.184)

a Significance level: ** p < 0.001, * p < 0.05; bio7: annual temperature range; AIC: Akaike Information Criterion.

Figure 4 shows the patterns of standardized residuals and local adjusted R2 values for
the A. pilosus and L. scariola GWR models. The residual values in the GWR model were
randomly distributed across the 165 districts. The A. pilosus model had lower residual
values than the L. scariola model. The spatial distributions of the local R2 values show that
lower values occurred in the east Gyeongbuk (9), Gwangju (15), Jeonnam (16), and Jeju (17)
for the A. pilosus GWR model and in the Incheon (2), east Gyeongbuk (9), Daegu (10), and
Ulsan (11) for the L. scariola GWR model. This indicates that the models did not fit well,
and additional covariates are needed to explain the distributions of the two alien plants in
those districts.
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Figure 4. Spatial mapping of the residual and locally weighted coefficients of determination (R2) of
A. pilosus density (A,B) and L. scariola density (C,D) in geographically weighted regression models.

The spatial variation in the parameter estimates for the local coefficients and t-values
are shown in Figure 5. The map of the intercept term represents the distributions of the
two alien plant species when the selected explanatory variables, such as residential area,
bio7, and mountain, are equal to zero. Negative intercept values were found in southwest
provinces. These spatial patterns imply that there were other influential variables that
reduced alien plant distributions. The A. pilosus GWR model shows that the coefficients of
residential area and bio7 were statistically significant for 131 and 100 of the 165 districts,
respectively. Residential area showed positive effects in 131 districts, and the strongest
effects were found in the northern districts. In addition, annual temperature range (bio7)
showed positive effects in all districts, except for northeast Gangwon (4) Province. The L.
scariola GWR model revealed that the coefficients of residential area and mountain were
statistically significant in only 73 and 49 of the 165 districts, respectively, and that the two
explanatory variables had positive effects on L. scariola distribution.
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Figure 5. Spatial mapping of the coefficients of the A. pilosus GWR model (intercept (A), residential area (B), bio7 (C))
and L. scariola GWR model (intercept (D), residential area (E), mountain area (F)). The significance of the local coefficients
was determined by pseudo t-values; the regions with t-values between −1.96 and +1.96 (nonsignificant parameters) are
indicated in white; resid.: residential area, bio7: annual temperature range, and Mt.: mountain area.

3. Discussion

This study applied GWR to explore the spatially non-stationary relationships between
invasive alien plant distributions and environmental factors. Although OLS can show an
intuitive global effect direction (either negative or positive), GWR provides more accurate
predictions and a set of local coefficients, by reducing spatial autocorrelation [19,20]. Our
results show that the distributions of the two alien plant species were spatially autocorre-
lated at this study scale. Furthermore, the main environmental variables that have a critical
effect on alien plant distribution also showed strong spatial autocorrelation. We expect
these GWR results to provide policy makers with a more specific basis for eradication and
prevention strategies, because this model provides a local coefficient for each district.

Our study found faster geographical expansion and higher spatial clustering of the two
alien plants in urbanized areas than in rural areas. Our results show that the invasiveness
of the two alien plants was strongly associated with anthropogenic effects such as human
population density, residential area, and road density. However, climate factors, such as
annual mean temperature and precipitation, were not significantly associated with the
densities of the two alien plants. We predict that these spatial distribution patterns are
affected by seed dispersal strategy and human activity.

Previous studies reported that wind is the primary dispersal force for these species [17,18],
owing to the morphological features of their seeds, such as the bristled pappi and lightweight
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achenes (less than 1 mg). This is similar to other Asteraceae plants [17,18,21]. Furthermore,
both A. pilosus and L. scariola produce many seeds in autumn; approximately 25,000–58,000
and 10,000–100,000 seeds per plant, respectively [18,22]. In urban areas, high-rise buildings
cause strong building winds, and fast-running vehicles generate strong winds along road-
sides. Additionally, roads provide corridors through which seeds can be transported from
one site to another via the mud attached to cars. The interconnected road systems between
cities can therefore facilitate the expansion of alien Asteraceae plants [23,24].

Our study also revealed that the population densities of these species were higher in
ruderal habitats than in natural habitats (i.e., mountain areas). The two studied alien plants
frequently occur in disturbed ruderal areas such as roadsides, dumps, and fallow lands in
Europe and North America [17,18]. L. scariola is considered an “r” strategist owing to its
short life cycle, strong self-fertilization ability, and rapid germination and flowering [25].
Our results indicate that this species can germinate and successfully complete its life
cycle in open ruderal habitats within a short period [16]. Temperature, photoperiod, and
precipitation may be influential environmental factors for its flowering and fruiting [26].
Previous studies also mentioned that hot, dry weather in the summer may enhance fruiting
in this species because low rainfall can maintain open habitats [22,24]. We suppose its
seeds can be moved by wind more easily in open-flat sites than in mountainous regions.

A. pilosus commonly occurs in abandoned fields in the first year and becomes the
dominant species in second- and third-year fields [18]. A. pilosus has various competitive
strategies for establishment and expansion in disturbed ruderal habitats. First, under
resource-limited conditions or in the winter season, this plant can survive in the form
of rosettes, from which flowering stems can emerge the following summer [27]. Second,
Aster frequently allocates a large proportion of its total biomass to stems and roots, which
enhances its ability to acquire moisture and withstand considerable water limitation [18].
Lastly, high rates of photosynthesis were measured over a broad range of temperatures
and under drought conditions, indicating that this plant is physiologically tolerant to harsh
environmental conditions [27]. Our results also show that the population density of this
plant was positively associated with annual temperature range (bio7), suggesting that this
plant can adapt to a broad range of temperature conditions.

This study provides insight for policy makers to guide decisions regarding target
locations and the effort necessary to control and prevent the spread of these alien plants. We
predict that urban development and expansion may facilitate the invasion of these plants,
especially around metropolitan cities (i.e., Seoul, Incheon, and Daegu). The annual alien
plant, L. scariola, may be able to establish in urbanized areas more rapidly than perennial
plants, but more effort may be needed to eradicate A. pilosus than L. scariola. Above all,
natural habitats and forests should be protected from reckless development to prevent the
expansion of these invasive alien plants.

4. Materials and Methods
4.1. Study Area

A national non-native species survey was conducted all over South Korea to estimate
the distribution status of alien species, which extends from 33◦0′ to 38◦9′ N and 124◦5′

to 132◦0′ E, covering an overall geographical area of nearly 100,340 km2 (Figure 6). Two
districts (Ongjin-gun and Ulleung-gun), consisting of small islands, were excluded because
of the difficult accessibility of the islands. Almost 64% of the land in South Korea is
mountainous, followed by 16% which is agricultural land. The total population was
51.7 million people in 2020, and half of the population lived around Seoul and the capital
cities in provinces 1, 2, and 3 [28]. According to the Köppen climate classification, the
main climate types are a monsoon-influenced, hot-summer, humid continental climate
(in the northern inland regions) and a humid, subtropical climate (in the southern coastal
regions) [29]. The mean annual temperature is 12.5 ◦C, and the mean precipitation over the
last 30 years is approximately 1300 mm [30].
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Figure 6. Location of the study area and the background topography. The bold numbers in the polygons represent the
17 provinces of South Korea.

4.2. Study Species

Aster pilosus Willd (syn: Symphyotrichum pilosum; frost aster) is an herbaceous perennial
plant (Asteraceae). This plant is native to North America and was introduced into European
countries (France, Germany, Spain, Belgium, Italy, etc.), India, and South Korea [31].
This species has expanded rapidly throughout South Korea since it was first recorded
in the 1980s [15]. In their late autumn flowering season, the large robust individuals
have a shrubby appearance. The Ministry of the Environment of the Republic of Korea
designated this species as a harmful invasive plant in 2009 because of its invasiveness
and the possibility that it decreases biodiversity. Frost aster achenes are mainly dispersed
by wind to distant habitats from late fall to early winter and can also be propagated via
division of the rosettes and from stem cuttings. The number of achenes produced per plant
varies from 25,000 (first year) to 58,000 (second year) in the field. This plant overwinters as
seeds or rosettes. After the flowering stems die down, the individuals can survive winter
in the form of rosettes [18].

Lactuca scariola L. (prickly lettuce) is an herbaceous annual or biennial plant (Aster-
aceae). This plant is native to Eurasian and has spread globally, including East Asia, South
Africa, North America, and Australia [31]. This plant was introduced into South Korea in
the 1980s and has rapidly expanded across the country. L. scariola was also designated as
a harmful invasive plant in 2012 owing to its competition with native plants and crops.
This plant is a problematic weed in Australia and North America [32]. This plant can
produce up to 87,000 seeds per plant in non-crop areas [33] and can germinate quickly
under optimal temperature and soil moisture conditions.

4.3. Data Preparation

The distribution data for the alien plants were mainly obtained from national non-
native species survey, which was conducted 165 districts of South Korea (total 167 districts)
by 20 scientists from 2015 to 2019, and from the Clearing-House Mechanism (CHM) website
of Korea (https://www.kbr.go.kr/home/bio. accessed on 8 January 2021). We selected
12 explanatory variables associated with alien plant expansion and settlement (Table 2).
All explanatory variables were categorized into four groups based on their information

https://www.kbr.go.kr/home/bio
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properties and data sources: anthropogenic activity, land use, topographic, and climate
properties. The anthropogenic activity and land-use variables were obtained from a public
data portal [34]. We extracted elevation and TWI data from the digital elevation model
(1 km × 1 km resolution) and current raster climate datasets (1980–2010) were downloaded
from WorldClim (version 2.1) [35]. We selected three climate variables considering the
eco-physiological characteristics of the two alien plants (i.e., annual mean air temperature
(bio1), annual temperature range (bio7), and annual precipitation (bio12)). The obtained
topographic and climatic variables were calculated as the average values of each district
using QGIS (version 3.16). To determine the spatial non-stationarity of each variable,
the highest values of Moran’s I statistic were obtained for the climatic and topographic
properties. Skewed data sets (population density, residential area, industrial area, road, and
stream) were log-transformed to obtain near-normal distributions, based on the Shapiro–
Wilk test. Then, min–max normalization was performed to normalize all the variables.
Pearson’s correlations (r pairwise ≥ 0.7) and variance inflation factors (VIF ≥ 3) were
calculated to avoid potential multicollinearity among the explanatory variables [36].

Table 2. Descriptive statistics of A. pilosus and L. scariola population density and 12 explanatory variables in 165 districts.

Category Variables Mean Minimum Maximum SD Moran’s I

Dependent
variables

A. pilosus population/100 km2 3.2 0 32.8 5.3 0.632 *
L. scariola population/100 km2 2 0 25.7 3.4 0.316 *

Anthropogenic
activity

Population (people/km2) 1101 19 16,074 2457 0.571 *
Residential area (%) 4.9 0.04 53.7 8.4 0.505 *
Industrial area (%) 2.4 0.02 20.1 3.7 0.338 *

Road (km/km2) 1.6 0.3 13.7 1.9 0.397 *

Land use
Stream area (%) 3 0.002 13.1 2.1 0.285 *

Farm (%) 20.1 2.6 50 9.9 0.607 *
Mountain (%) 58.5 15.2 89.4 17.7 0.664 *

Topographic
properties

Elevation (m) 175.3 7.0 894 158.3 0.686 *
Normalized TWI 0.42 0 1 0.22 0.613 *

Climate properties
Bio1 (◦C) 11.6 7.9 14.1 1.3 0.836 *
Bio7 (◦C) 35.3 27.3 38.4 2.1 0.847 *

Bio12 (mm) 1296 1100 1869 104 0.869 *

TWI: topographic wetness index, bio1: annual mean temperature, bio7: annual temperature range, bio12: annual precipitation. * Statistically
significant Moran’s I value (p < 0.001).

4.4. Data Analysis

Geographically weighted regression (GWR) was applied to explore the local spatial
relationships between alien plant distributions and explanatory variables. It is a useful
regression method to examine geographically non-stationarity relationships and estimate
the causal relationships between a response variable (y) and a set of explanatory variables
(xi) (i=1, 2, . . . , n) at a local scale [37]. GWR generates a separate coefficient for each
location, which can be expressed as follows [38]:

yi = β0(ui, vi) + ∑ βk(ui, vi)xik + εi, (1)

where yi is the response variable, βk is the coefficient, xik is the explanatory variable, (ui, vi)
are the coordinates of i, and εi is the error term; εi ∼ N

(
0, σ2).

The coefficient for this model takes the form of:

ˆ
βi =

[
XTW(ui, vi)

]−1
XTW(ui, vi)Y, (2)
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where W(ui, vi) is the square matrix of weights relative to the position of (ui, vi) in the
study area, XTW(ui, vi)X is the geographically weighted variance–covariance matrix, and
Y is the vector of the values of the dependent variable.

The weighted matrix W(ui, vi) for geographic location i, in its leading diagonal, is
calculated as follows [39]:

W(ui, vi) =

 w1(ui, vi) o o
o . . . o
o o wn(ui, vi)

. (3)

Within the matrix, Wn(ui, vi) refers to the weight assigned to location i. The GWR
model can assess spatial influences among neighborhoods, which cannot be achieved
through an OLS model. This means that data points closer to each other are more influential
in the local regression than data points distant from each other. The weight was calculated
by applying a Gaussian function, which is frequently used for applications with regular
spatial distributions [40].

Moran’s I values were used to determine the spatial autocorrelation of the residuals in
our spatial models. Moran’s I value approaches 0, spatial autocorrelation rarely appears
and the residual values were randomly dispersed; as it approaches +1, a positive spatial
autocorrelation exists; and as it approaches−1, a negative spatial autocorrelation exists [41].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10071377/s1, Figure S1: Pearson correlation matrix comparing paired variables.
Figure S2: Raw values of transformed environmental variables.
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