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Abstract: Maize is one of the most economically important cereal crops worldwide. Salinity coupled
with waterlogging is a major challenge for successful crop production. Understanding the underlying
mechanisms and impacts of individual and combined salinity and waterlogging stress on the morpho-
physio-biochemical and molecular responses and oxidative metabolism of maize during stress and
recovery periods is essential. The present study was carried out to assess the response of four
hybrid maize cultivars viz. DK-6142, FH-1231, FH-949, and MALKA-2016 under individual and
combined salinity and waterlogging conditions. The treatments comprised the control (no stress),
NaCl (salinity with 10 dSm−1), WL (waterlogged conditions with 3 cm flooding), and NaCl + WL
(combined salinity and waterlogging stress). The data regarding morpho-physiological attributes
were collected at 22 days after sowing (DAS; stress phase) and 30 DAS (recovery phase). The results
revealed that both stresses, either individually or in combination, substantially reduced the root-shoot
length, root-shoot fresh and dry weights, leaf width, and the number of leaves per plant as well
as the leaf chlorophyll (Chl) and carotenoids contents; however, the inhibitory effects were more
severe in combined stresses than for individual stress factors in many cultivars. Both individual
and combined stress conditions enhanced hydrogen peroxide (H2O2) accumulation, whereas the
antioxidant enzyme activities, i.e., superoxide dismutase (SOD), peroxidase (POD) catalase (CAT),
and ascorbate peroxidase (APX), remained higher under stress conditions compared to the control.
The expression levels of antioxidant genes (CAT and POD) were also upregulated under stress
conditions. All of the cultivars recovered better from individual stresses than combined stress
conditions; however, the hybrid DK-6142 performed better than the other maize hybrids under stress
conditions and showed faster recovery.

Keywords: plant growth; waterlogging; antioxidant machinery; ROS production; chlorophyll pig-
ments; salt stress

1. Introduction

Salinity coupled with waterlogging is a major challenge for successful crop production.
Both of these stresses are major obstacles to the long-term sustainability of irrigated lands,
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efficient crop production, and farmer subsistence, especially in the Indus Basin area of
Pakistan [1]. Little research has previously been carried out on plant responses and
tolerance to combined salinity and waterlogging stresses. Identifying crop genotypes
resistant to these stresses is thus critical for the long-term viability of agriculture in stress-
prone areas.

Maize is an important cereal crop and consumed as a staple food worldwide [2],
whereas salinity and waterlogging are the major constraints to its growth and produc-
tivity [3,4]. Salinity causes Na+ toxicity in plants and thus leads to a distinct reduction
in crop growth mainly during the early growth stages [5]. The effects of salinity at the
germination and seedling stages were more drastic than the lateral growth stages of field
crops [6]. Salinity has been reported to impair root and shoot lengths, and the biomass
of different field crops [6–8]. For instance, under high salt concentrations, large amounts
of Na+ and Cl- were transported to the vegetative parts of maize, which antagonistically
decreased the K+ and Ca2+ levels in these plants [9]. Besides damaging the embryo and
changing the signal transduction pathway, salinity lowers osmotic potential and reduces
water uptake during seed imbibition [2,10]. Salinity also affects leaf initiation, internodal
growth, and leaf expansion, thereby reducing shoot growth in plants [11]. Furthermore,
under salinity stress, the accumulation of Na+ disrupts the uptake of K+, which reduces
stomatal conductance and thus creates water-deficit conditions for plants [12]. Reduced
stomatal conductance under salt stress may also lead to a reduction in photosynthetic
activities [13]. Salinity also results in excessive production of reactive oxygen species
(ROS) [14] and a decrease in chlorophyll contents [15].

Waterlogging also leads to substantial decreases in root respiration [16], seedling
growth [17], root and shoot lengths, as well as biomass accumulation [18–20]. It further
causes an imbalance in the plant–nutrient relationship [21]. Increased concentrations of
abscisic acid under waterlogged conditions may result in stomatal closure and a decrease in
the photosynthetic rate [22]. Waterlogging also induces the overproduction of ROS includ-
ing hydrogen peroxide (H2O2), hydroxyl radical (OH.), singlet oxygen (1O2), and superox-
ide radical (O−

2.) [23,24] and disturbs normal plant metabolism [25]. Plants have adapted
complex antioxidant defensive mechanisms to protect cells from the detrimental effects
of ROS [26], such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase
(GR), ascorbate peroxidase (APX), and peroxidase (POD). These are the major scavenging
enzymes that protect plants from the deleterious effects of ROS [26,27]. Although, previous
studies have reported the negative effects of salinity [6,28] and waterlogging [17,29] on
various field crops, nevertheless, the combined effects of both of these stresses on the
morpho-physiological and biochemical attributes of maize are not well understood. It was
hypothesized that the combined occurrence of salinity and waterlogging stress might have
more detrimental impacts on the maize crop than individual salinity or waterlogging stress
and that the responses of different maize hybrids to these stress factors might be variable.
The specific objectives of the present study are (a) to evaluate the individual as well as
interactive effects of waterlogging and salinity on morpho-physiological, biochemical, and
molecular responses of maize hybrids; (b) to compare the salt and waterlogging tolerance
in different maize hybrids during the stress and recovery phases, and (c) to explore the
tolerance mechanism of maize hybrids to combined salinity and waterlogging stresses.

2. Materials and Methods
2.1. Experimental Design and Plant Cultivation

A pot experiment was conducted in a greenhouse at the Department of Agronomy,
University of Agriculture (Faisalabad Pakistan) during summer 2017. Four maize hy-
brids, i.e., FH-1231, FH-949, MALKA-2016, and DK-6142 were exposed to four different
treatments, i.e., the control (no stress), NaCl (salinity with 10 dSm−1), WL (waterlogged
conditions with 3 cm flooding), and NaCl + WL (combined). The maize hybrids were
selected in a preliminary experiment based on germination and seedling growth data.
All of these hybrids are commonly grown by local farmers in Punjab-Pakistan. FH-1231,
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FH-949, and MALKA-2016 were procured from the Ayub Agricultural Research Institute
(AARI), Faisalabad Pakistan, and DK-6142 was procured from Monsanto, Pvt. Pakistan.
The hybrid FH-949 was developed by crossing two inbred lines F-165 (male) and F-271
(female) at Maize Research Station, AARI, Faisalabad Pakistan. Each pot was filled with
7 kg of soil, and 10 seeds were sown in each pot. Well-sieved sandy clay loam soil was used
to fill the pots, and 5, 1.4, and 0.9 g of NPK were applied per pot. After seed emergence,
the plants were thinned to six plants per pot. After 15 days of seed emergence, the salt and
waterlogging treatments were applied. The first sampling was performed after 7 days of
treatment implementation (22 DAS) for morpho-physiological attributes. After sampling,
normal conditions were then provided for recovery.

2.2. Measurement and Physiological Analysis

Two samplings were performed after 22 and 30 DAS. The seedlings were heavily
irrigated to soften the soil and were carefully harvested to avoid any root damage and were
then washed. Root length was assessed with a meter rod. The shoot length of uprooted
seedlings was clipped for shoot cutting, and shoot length was measured by using a meter
rod and averaging. The uprooted seedlings were washed and dried in the shade for 20 min.
Then, an electronic weighing balance was used to measure the fresh weights of the roots
and shoots. A scale meter was used to measure the maximum leaf width/seedlings, and
an average was taken. For the measurement of root and shoot dry weights, the plant roots
were separated with a knife, sundried for three days, and oven-dried at 68 ◦C until constant
weight [27]. After that, the dry weight was measured to calculate the root dry weight of
each plant.

The chlorophyll and carotenoid contents were assessed with a spectrophotometer, as
described previously by Peizhou et al. [30]. Fresh leaves of plants were ground in 5 mL
of 80% acetone for the determination of chlorophyll contents. The filtered solution was
centrifuged at 13,000 rpm for 20 min at 4 ◦C. The chlorophyll a (Chl a), chlorophyll b (Chl
b), and carotenoid concentrations were determined at 665, 649, and 470 nm, respectively,
with the help of a spectrophotometer (UV-4000, OR1, Germany) [30]. The Chl a, Chl b, total
chlorophyll, and carotenoids contents were calculated using the following equations:

Chlorophyll ‘a’ = 11.75 A665 − 2.350 A649

Chlorophyll ‘b’ = 18.61 A649 − 3.960 A665

Total Chlorophyll = Chlorophyll a + Chlorophyll b

Total Carotenoid = (1000 A470 − 2.270 Chl a − 81.4 Chl b)/227

2.3. Biochemical Parameters
2.3.1. Determination of Reactive Oxygen Species (ROS)

The H2O2 contents from maize leaves were calculated as suggested by Velikova et al. [31]
with slight modifications. Two grams of leaf tissues were extracted with 10 mL of TCA
(0.1%, w/v) at 45 ◦C and homogenized. The homogenate mixture was centrifuged at
13,000 rpm for 12 min. To 1 mL supernatant, 2 mL of a 1 M potassium iodide solution
and 1 mL of a 0.05 M sodium phosphate buffer (pH 7.0) were used. The absorption of the
mixture was measured at the wavelength 390 nm using a spectrophotometer. The H2O2
contents were calculated by using an extinction coefficient (o) of 0.28 mM−1 cm−1 and
expressed as mg/g FW.

2.3.2. Antioxidant Enzyme Activities

To prepare the standards for various antioxidant enzyme extraction, fresh leaves
(0.4 g) were ground by using a pestle and mortar in 10 mL of a 50 mM phosphate buffer
(pH 7.8). The homogenized mixture was centrifuged at 14,000 rpm for 25 min at 4 ◦C, and
the supernatant was used for determination of the enzyme.
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Catalase activity (CAT) in fresh leaves was measured by the method described by
Aebi [32] with some modifications. In a 10 mL tube, 0.4 mL of an enzyme solution and
0.4 mL of a phosphate buffer were added and pre-heated at 28 ◦C in a water bath for 4 min.
Then, 0.6 mL of a (100 mM H2O2) solution was added to a 10 mL tube. To neutralize the
enzyme solution, the control tube was heated in a boiling water bath for 5 min. Absorbance
at the wavelength of 240 nm was calculated at intervals of 1 min for 3 min. One unit of
enzyme activity (U) was a decrease of 0.1 for A240 within 1 min. Peroxidase (POD) activity
was assayed by using the guaiacol method as described by Pütter [33] with slight changes.
The mixture prepared from this technique was the 50 mM phosphate buffer (pH 7.0), which
contains 10 mM guaiacol and 5 mM H2O2. This reaction mixture was first pre-heated at
20 ◦C in a water bath. After centrifugation, in a 10 mL tube, 2.8 mL of the reaction solution
and 0.2 mL of the enzyme were mixed. Absorbance was recorded at the wavelength of
470 nm at an interval of 1 min once and determined for 4 min continuously. The superoxide
dismutase (SOD) activity was measured using the method described by Dhindsa et al. [34]:
fresh leaves (0.2 g) were ground in 2 mL of the 50 mM phosphate buffer (pH 7.8) with the
precooled pestle and mortar. The homogenized mixture was centrifuged (13,000 rpm) at
5 ◦C and the supernatant was stored at 5 ◦C. The SOD activity was assayed by its ability
to reduce the photochemical reduction of nitrob1ue tetrazolium. The test tubes with the
assayed mixture (3 mL of the reaction buffer, 0.4 mL of methionine, 0.2 mL of the enzyme
extract, and equal amounts of Na2CO3) were heated in light with 15 W inflorescent lamps
for 20 min. Absorbance was measured with the blank and read at the wavelength of 560 nm
using a spectrophotometer. The activity of ascorbate peroxidase (APX) was carried out
as reported by Nakano and Asada [35] with some modifications. The reaction mixture
was prepared by mixing 50 mM phosphate buffer (pH 7.0), 0.25 mM ascorbic acid, 1 mM
H2O2, and 0.1 mM EDTA. In a 10 mL centrifuged tube, 2.8 mL reaction solution and 0.2 mL
enzyme solution were mixed immediately, and the absorbance was measured at 290 nm at
one-minute intervals, and the measurement continued for 4 min.

2.4. Gene Expression Analysis

The expression levels of the antioxidant enzyme genes including catalase isomer
3 (CAT) and peroxidase 39 isoform X1 (POD) were assessed in the four maize hybrids
using quantitative real-time PCR (qRT-PCR) analysis. Total RNA and cDNA synthesis
were performed from plant tissues following the protocols of the RNeasy Plant Mini
kit and Reverse Transcription kit (Qiagen, Hilden, Germany), respectively. According
to the procedures of QuantiTect SYBR Green PCR kit (Qiagen, Hilden, Germany), the
PCR reactions were prepared in triplicates. The amplification circumstances were set up
as follows: 95 ◦C for 10 min, and 40 cycles of 95 ◦C for 20 s, 60 ◦C for 30 s, 72 ◦C for
2 min, and 72 ◦C for 4 min. A melt-curve analysis was performed in order to verify the
amplification specificity. Specific primers for the CAT and POD genes [36] were utilized for
the amplification process. The Actin2 gene was utilized as a housekeeping gene [36], and
the relative gene expression levels were assayed following the 2−∆∆Ct method.

2.5. Experimental Design and Statistical Analysis

The experiment was laid out in a completely randomized design with four replications.
The data collected were analyzed statistically by using two-factor factorial experiments and
subjected to Fisher’s analysis of variance technique. The treatments’ means were compared
at the 5% probability level according to Tukey’s HSD (honestly significant difference) test.

3. Results
3.1. Plant Growth and Development
3.1.1. Root and Shoot Length

Salinity, waterlogging, and the cultivars exhibited a significant effect on the root and
shoot lengths of maize (Figure 1). Compared with the control, the root length of maize was
substantially reduced in response to the stress conditions. The combined application of
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salinity and waterlogging was more destructive compared with their individual effects, and
the negative effects of salinity alone were more obvious than that of waterlogging alone.
Combined salinity and waterlogging reduced the root length by 31–49% compared with
the control. Only salinity or waterlogging reduced the root growth by 30–47% and 9–24%,
respectively, compared to the control (Figure 1a). Among the cultivars, larger reductions
in root growth were reported for FH-1231 and FH-949, which were 20–48% higher than
that of DK-6142 and MALKA-2016. The higher root length under the control and stress
conditions was recorded in DK-6142, followed by MALKA-2016. In the recovery phase,
root length differed significantly with stress treatments and cultivars (Figure 1b). The root
length of DK-6142 was higher than that of the other cultivars. Irrespective of cultivars, the
root length of maize cultivars at 30 DAS was increased by 87%, 85%, 86%, and 82% under
the control, salinity, waterlogging, and combined salinity and waterlogging treatments,
respectively, compared with those at 22 DAS. Moreover, under waterlogging stress, the
root length was restored to the maximum level, followed by sole salinity, and combined
salinity and waterlogging.
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do not differ significantly at p ≤ 0.05.

Correspondingly, salinity stress caused a greater reduction in shoot length than water-
logging. Shoot length under salinity, waterlogging, and combined stresses were reduced (as
% of controls) by 24%, 14%, and 30% in DK-6142; 27%, 19%, and 42% in FH-1231; 32%, 22%,
and 36% in FH-949; and 22%, 12%, and 31% in MALKA-2016, respectively, compared with
the control (Figure 1c). Moreover, in the recovery phase, the DK-6142 and MALKA-2016
cultivars performed better than other cultivars. Regardless of the cultivars, the shoot length
of maize under waterlogging alone at 30 DAS was 84–90% higher than those under salinity
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alone or combined salinity and waterlogging, indicating the faster recovery of maize after
waterlogging stress (Figure 1d).

3.1.2. Root and Shoot Fresh Weights

The fresh weight of roots and shoots of maize cultivars differed significantly under
salinity and waterlogging stresses (Figure 2). Compared with the control, salinity, wa-
terlogging, and combined salinity and waterlogging reduced the root fresh weight of all
cultivars by 23–49%, 1–21%, and 28–44%, respectively. In general, salinity caused a greater
reduction in root fresh weight compared to waterlogging stress. Among the cultivars, the
stress-induced inhibitory effect was more prominent in FH-1231 than that in other cultivars
(Figure 2a). In the recovery phase, DK-6142 performed better than all other cultivars.
Regardless of the cultivars, the root fresh weight at 30 DAS under waterlogging stress was
significantly higher (72%) compared with salinity alone or combined salinity and water-
logging (Figure 2b). Furthermore, the fresh weights of the shoot were also significantly
reduced under stress conditions in all cultivars. Averaged across cultivars, a maximum
reduction was recorded under combined salinity and waterlogging stress compared with
salinity and waterlogging alone. Among the cultivars, the shoot fresh weight of DK-6142
was higher under stress conditions than other cultivars (Figure 2c). In the recovery phase,
the negative impact of stress treatments on shoot weight was substantially reduced. Re-
gardless of the cultivars, the root fresh weight increased at 30 DAS under the control and
stress conditions compared with that recorded at 22 DAS. Compared with other stress
treatments, the maximum increase (as % of the stress phase, 22 DAS) under waterlogged
stress was 83% (Figure 2d).
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3.1.3. Dry Weight of Roots and Shoots

There was a significant difference between all treatments for the root and shoot dry
weights. Compared with the control, the root dry weight decreased under the stress
treatments. Averaged across cultivars, the maximum reduction (29%) was recorded under
combined salinity and waterlogging stress. Moreover, the only salinity treatment reduced
the root dry weight more severely compared to the only waterlogging treatment. Under
stress conditions, the relative reduction in root dry weight was significantly higher for
the FH-1231 and FH-949 cultivars compared to the DK-6142 and MALKA-2016 cultivars
(Figure 3a). In the recovery phase, the root dry weight increased (% of stress phase) by 74%,
65%, 72%, and 62% under the control, salinity, waterlogging, and combined salinity and
waterlogging stress, respectively, regardless of the cultivar (Figure 3b). Among the stress
treatments, upon averaging the cultivars, a larger reduction in shoot dry weight (38% of
control) was recorded under combined salinity and waterlogging stress compared to only
salinity and waterlogging stress. Among the cultivars, a minimum reduction in shoot dry
weight was recorded for MALKA-2016 (Figure 3c). In the recovery phase, the dry weight
of shoot under stress treatments was increased, and the maximum increase (72% compared
to 22 DAS) was found under only waterlogging stress (Figure 3d).
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3.1.4. Leaf Width and Number of Leaves per Plant

Both salinity and waterlogging stresses reduced the leaf width and the number of
leaves of maize; however, such reductions under salinity alone were more severe compared
with waterlogging alone (Figure 4a). Among the cultivars, leaf width was slightly reduced
in DK-6142 and MALKA-2016; however, the reduction was more pronounced in the FH-949
cultivar. Moreover, in the recovery phase, DK-6142 and MALKA-2016 performed well
compared with the other cultivars (Figure 4b).
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with same letter do not differ significantly at p ≤ 0.05.

Salinity and waterlogging as individual and concurrent stresses significantly hindered
the number of leaves per plant. However, a significantly smaller number of leaves were
recorded under the combined stresses than for salinity or waterlogging alone (Figure 4c).
Among the cultivars, MALKA-2016 and DK-6142 recorded a greater number of leaves
compared to the FH-1231 and FH-949 cultivars. The number of leaves following the
recovery phase from the stress conditions was increased significantly to that of the stress
phase. Additionally, the maximum increase was recorded under the waterlogged condition
than that under other stress treatments (Figure 4d).

3.2. Physiological Parameters
3.2.1. Chlorophyll and Carotenoids Contents

Significant differences in the chlorophyll contents of maize cultivars were recorded
under the influence of salinity and waterlogging stresses. The lowest Chl a content was
observed in the combined salinity and waterlogging stress, which was about 29–38% lower
than that in the control (Figure 5). During the recovery phase, the Chl a content under
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stress treatments improved significantly and the maximum recovery in Chl a content was
observed in waterlogging stress alone, which was about 7–95% higher than the stress phase
(22 DAS), depending on the cultivars (Figure 5). Similarly, salinity and waterlogging stress
significantly decreased the Chl b content. The highest decrease in Chl b content was found
in combined salinity and waterlogging stress, which was about 25-41% compared to the
control. Moreover, during the recovery phase, an increment in Chl b content was recorded
under all stress treatments.
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phase respectively. Error bars denote the standard error of three replications. Bars with same letter
do not differ significantly at p ≤ 0.05.
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Salinity and waterlogging stress significantly reduced the Chl a + Chl b contents
of maize leaves (Figure 5). Under the combined salinity and waterlogging stress, the
Chl a + Chl b contents decreased by 32–47% compared with the control, depending on
the cultivars. Both the Chl a + Chl b contents following the recovery phase increased
significantly under stress conditions. The maximum increase (% of stress phase) of 92%
was recorded under sole waterlogging stress. For the cultivars, the chlorophyll contents
in DK-6142 and MALKA-2016 were higher in all treatments compared with that in the
FH-1231 and FH-949 cultivars. In general, the inhibitory effects were more prominent in
combined salinity and waterlogging conditions than their individual effects.

The carotenoids content was also reduced under stress conditions, but the negative
effects of combined salinity and waterlogging stress were more severe than for stresses
applied alone for some cultivars. For individual stress, the negative effects of salinity were
more pronounced compared that of the waterlogged condition in some cultivars. In the
recovery phase, significant variations were observed among the stress treatments, with the
maximum increase (about 84%) in waterlogging stress.

3.2.2. Hydrogen Peroxide Contents

When plants were exposed to individual and combined salinity and waterlogging
stresses, the H2O2 content in all cultivars increased significantly, with the most significant
increase of 24–43% under combined salinity and waterlogging stress, depending on the
cultivars (Figure 6). The FH-1231 cultivar had higher H2O2 content compared with the
other cultivars. In the recovery phase, the H2O2 content decreased in all treatments
(Figure 6). Additionally, the DK-6142 cultivar performed well during the stress and
recovery phases compared with all other cultivars.
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Figure 6. Individual and interactive effects of salinity and waterlogging on the H2O2 concentrations of four maize cultivars
during the stress (22 DAS) and recovery (30 DAS) phases. Left and right sides of the figure are representing stress phase
and recovery phase respectively. Error bars denote the standard error of three replications. Bars with same letter do not
differ significantly at p ≤ 0.05.

3.3. Antioxidant Enzymes

The activities of the antioxidant enzymes (CAT, POD, SOD, and APX) in maize leaves
increased significantly under individual and combined application of salinity and waterlog-
ging stress for all cultivars (Figures 7 and 8). The CAT activities were increased by 24–65%,
20–58%, and 29–67% under salinity, waterlogging, and combined salinity and waterlogging,
respectively, compared with their respective controls. In the recovery phase, a substantial
decline in CAT activity was reported for all stress treatments and cultivars. In the stress and
recovery phases, more CAT content was recorded in DK-6142 and MALKA-2016 compared
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to FH-1231 and FH-949 (Figure 7). The POD activity was also affected significantly by
stress treatments and cultivars. A substantial increase in POD activity was reported for all
stress treatments, with the maximum increase (% of control) in the range of 23–45% under
combined salinity and waterlogging stress. In the recovery phase, the POD activity was
decreased significantly compared with the stress phase.

A significant variation in SOD activity was observed under individual and concurrent
effects of stress treatments. Averaged across cultivars, a greater increase in SOD activity in
the range of 23–41% was observed under the concurrent effect of these stresses compared
with the control plants (Figure 8). In the recovery phase, a substantial decline in SOD
activity was observed for the stress treatments. Among the cultivars, better performance in
the DK-6142 cultivar was recorded compared to the other cultivars. The APX activity of
all four maize cultivars increased under stress conditions, and their activity was higher
under combined salinity and waterlogging stress compared with salinity and waterlogging
alone. The APX activity in the DK-6142 and MALKA-2016 cultivars was higher compared
to that in the FH-1231 and FH-949 cultivars. After the recovery phase, the plants showed a
decreasing trend in APX activity.
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3.4. Gene Expression Analysis

The expression levels of the two antioxidant genes (CAT and POD) in maize leaves
increased significantly under individual and combined application of salinity and water-
logging stress for all cultivars (Figure 9). The expression levels of CAT gene were enhanced
by 50–70%, 44–58%, and 57–82% under salinity, waterlogging, and combined stress, re-
spectively, compared with their respective controls. In the recovery phase, a substantial
decline in CAT expression levels was reported for all stress treatments and cultivars. In
the stress and recovery phases, a higher expression level of the CAT gene was recorded
in DK-6142 and MALKA-2016 compared to that in FH-1231 and FH-949 (Figure 9). The
expression level of the POD gene was also affected significantly by the stress treatments
and cultivars. A substantial increase in the POD gene expression level was recorded for
all stress treatments, with a maximum increase of 58–92% under combined salinity and
waterlogging stress. In the recovery phase (30 DAS), the expression level of the POD gene
decreased significantly compared with the stress phase (22 DAS).
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4. Discussion

This study, which was conducted under controlled conditions, examined the in-
dividual and simultaneous effects of salinity and waterlogging stress on the morpho-
physiological, biochemical, and molecular responses of maize crop. The exposure of maize
cultivars to salinity and waterlogging stress led to a significant reduction in growth traits,
i.e., root and shoot lengths, dry and fresh weights, leaf widths, and number of leaves per
plant. However, the combined salinity and waterlogging stresses caused greater reductions
than salinity and waterlogging stresses alone. These results are consistent with previously
published findings [37,38]. A greater accumulation of Na+ ions leads to a decrease in root
and shoot lengths [39]. Compared with individual salinity and waterlogging stresses, a
greater increase in Na+ content under combined salinity and waterlogging was reported
elsewhere [40]. The increase in Na+ content under the combined salinity and waterlogging
significantly affects plant metabolism, reduces the efficiency of photosynthesis, causes more
necrotic and chlorotic leaves, and ultimately leads to a serious decline in growth traits [40].
The combined effect of salinity and waterlogging stress also resulted in increases in Mn and
Fe contents in the soil [40]; excessive Mn adversely affected the photosynthetic apparatus,
reduced nutrient absorption, and thus reduced the plant growth [41]. More necrotic and
chlorotic leaves under excessive Mn conditions were also reported by Führs et al. [42].
The combined presence of these elements (Mn + Fe) can cause excessive accumulation of
ROS [43] and can reduce chlorophyll content and photosynthesis efficiency [40], which
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eventually led to a serious decline in plant growth. Under stress conditions, high concen-
trations of ROS can lead to turgidity loss and membrane damage [10,44]. In this study,
combined salinity and waterlogging also resulted in higher ROS production and reduced
chlorophyll content compared to the sole application of salinity or waterlogging (Figure 6).
During the recovery phase, a greater recovery of growth characteristics after waterlogging
may also be attributed to the increase in chlorophyll content and the decrease in ROS
production. Furthermore, the better growth of DK-6142 in the stress and recovery phases
may be attributed to the reduced ROS production and higher chlorophyll content. In addi-
tion to generating ROS, combined salinity and waterlogging can also reduce the oxygen
availability to a great extent [12,22,45]. This situation can lead to a greater reduction in
biomass accumulation. Under sole salinity, the decrease in growth traits, and root and shoot
lengths may be due to inappropriate Na+/K+ ratios, as higher values of Na+/K+ in plant
tissue impairs the transport of K+ and Ca2+, disturbs plant metabolism, and leads to re-
duced plant growth [46]. Under salinity stress, reduced leaf initiation, poor cell expansion,
lower intermodal distance, and higher risk of leaf abscission also result in reduced shoot
growth [11,47,48]. The increase in Na+ ions, the decrease in chlorophyll content, and the
overproduction of ROS are the main reasons for the decrease in maximum leaf width [39].
Under individual waterlogging stress, the decrease in root and shoot lengths may be due
to the change in soil redox potential, O-

2 depletion, and ROS production [24,49,50]. The
greater reduction in leaf widths and fewer leaves per plant were mainly attributed to
decreased water potential and stomatal conductance, increased root senescence, reduced
shoot and root growth [51], and decreased gaseous exchange between air and soil [52,53].

Chlorophyll is a main part of photosynthesis and is imperative for plant physio-
logical processes [54]. This study showed that salinity and waterlogging, as individual
and combined stresses, resulted in significant decreases in chlorophyll content; however,
such a reduction was more severe under the combined salinity and waterlogging stress
(Figure 5). These findings are consistent with the results of previous studies [40,55], where
the authors reported greater decreases in chlorophyll content under the combined salinity
and waterlogging conditions. The reductions under combined salinity and waterlogging
stresses were mainly due to the reduced photosynthesis rate under these stresses [55]. At
high salinity, waterlogging stress hinders the efficiency of photosystem II and reduces
the photosynthesis efficiency of plants [55]. Under waterlogging stress, oxygen deficiency
in the roots reduces aerobic respiration and markedly limits ATP production [56]. This
reduction seriously hampers plant metabolism and ultimately leads to a reduction in
chlorophyll content and photosynthetic efficiency. Reductions in ATP production (2–3 fold)
under combined salinity and waterlogged conditions were reported by Zeng et al. [40]. As
mentioned above, under the combined salinity and waterlogging stress, excessive Mn and
Fe disturb Na+/K+ homeostasis and ultimately lead to a decrease in chlorophyll content. A
large increase in Na+ and Cl- concentration was also reported under combined salinity and
waterlogging stress [51,57]; a greater accumulation of Na+ and Cl- ions caused a marked
reduction in chlorophyll content [58]. Under salinity stress, an inadequate supply of K
is the main reason for the growth reduction in maize, which reduces the photosynthetic
rate and increases oxidative damage [13]. Under salt stress, Na+ is a principally toxic ion,
which interferes with K uptake, leads to disturbance in stomatal conductance, and causes
water loss and necrosis [12]. The unbalanced ratios of Na+ and K+ under saline conditions
severely reduce the K+ content in the leaves and roots of maize [46]. Moreover, in the initial
stages of salt stress, high concentrations of Na+ can also disturb the calcium (Ca2+) levels,
and the transport of Ca2+ to young leaves is impaired [59]. A certain amount of Ca2+ is
required to maintain the integrity of the cell membrane, and therefore, leaf expansion was
reduced with lower Ca2+ content in the shoot tissues of maize under salinity stress [59].
Under waterlogged conditions, a lack of oxygen can cause a significant decrease in the net
photosynthetic rate [60]. The decrease in photosynthetic rate is attributed to the closure of
stomata, to decreased chlorophyll content, and to leaf senescence [61]. In the present study,
the better performances of DK-6142 and MALKA-2016 were due to the lower reduction
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in chlorophyll content during the stress period and to the greater increase in chlorophyll
content during the recovery period (Figure 5).

The stress treatment has a significant effect on the carotenoid content, with the maxi-
mum reduction under combined salinity and waterlogging stress. Reductions in carotenoid
content under stress conditions have been discussed in earlier studies [12,62]. Carotenoids
play an essential role in the quenching of singlet oxygen, and their relative levels in the
cultivar(s) may indicate their tolerance [63].

Salinity and waterlogging treatments significantly affect H2O2 content, and the highest
H2O2 contents were recorded under combined salinity and waterlogging stress, compared
with salinity and waterlogging alone. Similar findings were reported by Duhan et al. [64],
who reported that combined salinity and waterlogging increased the H2O2 content in
the range of 43–75% in pigeon pea. Compared with salinity and waterlogging alone, the
H2O2 contents were also higher in a wheat plant affected by combined stresses [37]. A
greater accumulation of ROS is the cause of membrane damage, which is due to loss of
turgidity and reduced growth. ROS are very reactive and can interrupt normal cellular
activities through oxidative damage [26]. Previous studies have reported increased ROS
levels under salinity stress [14,65]. According to Mittler [66], an increase in salinity level
significantly increases the H2O2 content. Similarly, under waterlogged conditions, a
greater accumulation of H2O2 was also recorded in previous studies [23,24]. During the
recovery phase, the H2O2 content decreased significantly in all stress treatments. Among
the cultivars, the maximum recovery in the DK-6142 cultivar was due to the decreased
level of H2O2 (Figure 6).

Salinity and waterlogging, as individual or concurrent stresses, can lead to oxidative
damage in plants. Reducing the accumulation of ROS and detoxifying oxidative stress
are the main mechanisms for coping with abiotic stress. The accumulation of antioxidant
enzymes plays an important role in adapting plants to the adverse effects of ROS [67].
Salinity and waterlogging stress can cause higher ROS, which may activate the antioxidant
defense system. In the present study, the activities of CAT, POD, SOD, and APX in all maize
cultivars were enhanced under stress conditions. The expression levels of the antioxidant
genes (CAT and POD) were also upregulated under stress conditions. The higher activities
of the CAT enzyme were found under salinity, and combined salinity and waterlogging
stress compared with the control or waterlogging alone. These findings are consistent with
the results of Duhan et al. [64], which reported a 41–83% increase in CAT enzyme activity in
pigeon pea under combined salinity and waterlogging stress. Similarly, Haddadi et al. [68]
reported that under, combined salinity and waterlogging stress, the activity of CAT was
increased by 93–112% when compared with the control. The higher activity of CAT helps
to minimize the adverse effects of salinity and waterlogging [27]. The CAT enzyme is
present in peroxisomes and plays an important role in the dismutation of H2O2 into O2
and H2O [25]. In addition, POD activity was also found to increase under stress treatments,
and the maximum increase was recorded under combined salinity and waterlogging stress.
A similar increase in POD activity under combined salinity and waterlogging stress [64,69]
and its involvement in the detoxification of ROS [27,70] has been widely reported.

In the present study, an increased SOD activity was noted for all of the cultivars under
salinity and waterlogged conditions; however, a greater increase was observed under the
combined occurrence of these stresses. Under combined salinity and waterlogging stress,
an increase in SOD content has also been reported elsewhere [55]. A higher SOD activity
can play a role in minimizing the negative effects of abiotic stresses [65,71]. APX is an
important enzyme that helps in the detoxification of H2O2 [70]. In the present study, a
remarkable increase in APX activity was recorded for all stress treatments and cultivars.
Similar findings were also reported in previous research [68], where the combined salinity
and waterlogging led to greater increases in APX activity than the individual occurrence of
these stresses. Taken together, similar to the pronounced impacts of main environmental
stresses on plants [72–77], salinity and waterlogging stresses revealed morpho-physio-
biochemical and molecular impacts in maize.
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5. Conclusions

The present study demonstrated that salinity and waterlogging stresses hinder the
growth and physiological characteristics of all maize cultivars examined in this study.
However, the effects of combined salinity and waterlogging stress were more severe
compared to their individual effects. In the recovery phase, plants under only waterlogging
stress showed faster and better recovery in their growth traits and chlorophyll content
than salinity alone or combined salinity and waterlogging stress. Among the cultivars, the
performance of DK-6142 was better, followed by MALKA-2016, during the stress as well
as recovery phases. The better growth performance and stress tolerance of DK-6142 was
mainly attributed to the chlorophyll content and the more effective antioxidant defense
system, which ameliorates the negative impact of salinity and waterlogging stresses.
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