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Abstract: Grape peels (GP) use in pasta formulation represents an economic and eco-friendly way to
create value-added products with multiple nutritional benefits. This study aimed to evaluate the
effect of the GP by-product on common wheat flour (Triticum aestivum), dough and pasta properties in
order to achieve the optimal level that can be incorporated. Response surface methodology (RSM) was
performed taking into account the influence of GP level on flour viscosity, dough cohesiveness and
complex modulus, pasta color, fracturability, chewiness, cooking loss, total polyphenols, dietary fibers
and resistant starch amounts. The result show that 4.62% GP can be added to wheat flour to obtain
higher total polyphenols, resistant starch and dietary fiber contents with minimum negative effects
on pasta quality. Flour viscosity, dough cohesiveness, complex modulus and pasta fracturability
of the optimal sample were higher compared to the control, while chewiness was lower. Proteins’
secondary structures were influenced by GP addition, while starch was not affected. Smooth starch
grains embedded in a compact protein structure containing GP fiber was observed. These results
show that GP can be successfully incorporated in wheat pasta, offering nutritional benefits by their
antioxidants and fiber contents, without many negative effects on the final product’s properties.

Keywords: grape peels; pasta; wheat flour; fibers; antioxidants

1. Introduction

Nowadays, consumer behavior is changing and functional foods with significant
health benefits are gaining increasing attention. The food industry generates high amounts
of by-products that may be considered an opportunity for a sustainable valorization in order
to minimize the waste impact and to ensure environmental protection. Winery by-products’
conversion into value-added products is of high interest for producers, consumers and
researchers. One method of valorization is the inclusion of byproducts in food products
in order to increase their nutritional value. Pasta is consumed worldwide and can be
considered a good matrix for bioactive compounds’ incorporation [1].

About 50% of the grape pomace is composed of grape peels (GP), depending on the
grape variety and pedo-climatic conditions [2,3]. Some health problems such as cardio-
vascular diseases, stroke and some cancer types can be prevented by an adequate intake
of fruits and vegetables due to their high amounts of bioactive compounds [4]. GP are
a source of polyphenolic compounds and dietary fiber [5–7], components that can exert
antioxidant an antimicrobial action [8,9]. The most important GP components with antioxi-
dant characters are anthocyanins, hydroxycinnamic acids, catechins and flavonols, which
can determine the inhibition of oxidative processes of low-density lipoproteins [10,11].

The potential applications of polyphenols and dietary fiber to preserve foods and
prolong their shelf-life were demonstrated in some previous studies [12,13]. GP contain up
to 60% (dm) dietary fiber, the insoluble fraction prevailing, followed by sugars, which can
total up to 70%, depending on the vinery process applied [10,14]. Due to the essential role
played by dietary fiber for human health, such as improvement of gastrointestinal activity,
reducing glycemic responses and cholesterol levels in the blood [13], it is necessary to take
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alternative sources of dietary fiber to achieve the recommended consumption, which is
about 25–30 g per day [1].

There are some studies revealing the possibility to create value-added products by
incorporating grape by-products in bakery products or pasta [15–18]. Grape by-products
can be used as semolina replacer in pasta with many positive effects on the technological
properties, such as firmness and adhesiveness, but also on the physico-chemical and
functional characteristics of the final product, such as increased total polyphenolics content
and antioxidant activity, and lowering of the glycaemic index trough resistant starch
content increase [1]. Simonato et al. [19] studied the effects of Moringa oleifera leaf powder
on wheat fresh pasta and observed an increase of cooking loss and a reduced firmness along
with nutritional value enhancement given by higher phenols and mineral contents. The
addition of coconut by-products to wheat pasta led to lower firmness and color changes,
while the fiber, protein and lipid contents increased [20]. Sobota et al. [21] underlined
the possibility to increase durum wheat pasta fiber content by incorporating different
vegetables powders (beet, carrot, kale), along with significant changes of color. According
to the results presented by Xu et al. [22], the incorporation of apple pomace in noodles
caused a cohesiveness and tensile strength reduction and a cooking loss increase, with the
hardness and adhesiveness of the noodles not being changed, while gumminess, chewiness,
and springiness recorded differences. Fortification of durum wheat pasta with onion skin
by-products resulted in increased dietary fiber, ash, total phenolic compounds, flavonoids
content and antioxidant activity, while cooking loss, water solubility index and redness
were higher and the optimal cooking time lower [23]. Zarzycki et al. [24] showed that the
addition of Moldavian dragonhead seeds residue in pasta resulted in higher nutritional
value by increasing proteins, dietary fiber and mineral contents, without negative effects
on the cooking and sensory characteristics of the pasta. Another study made by Simonato
et al. [25] underlined the opportunity to increase total polyphenol contents and antioxidant
capacity of pasta by supplementation with olive pomace. The authors found a decrease
of rapidly digestible starch and an increase of slowly digestible starch, resistant starch,
swelling index, water absorption, cooking loss and pasta firmness [25].

The addition of fiber-rich ingredients can have significant effects on dough rheological
properties and on the final product texture, microstructure and color. The effects of grape
by-products on the composite flour and final product properties are proportional to the
addition level [3]. Mironeasa et al. [16] revealed some negative effects of GP on dough
rheology caused by gluten dilution, which can be minimized by particle size reduction.
Food texture, volume and color are strongly affected by high levels of grape by-products,
Gaita et al. [17] suggesting that amounts up to 6% GP can be incorporated into pasta
containing eggs without significant negative effects on the sensory acceptance. On the
other hand, fortification of bakery and pasta products with grape by-products led to a
nutritional value increase due to the intake of fiber and polyphenolics with antioxidant
activity [4,5,15]. Grape peels’ phenolics, such as phenolic acids, tannins and flavonoids,
could have reducing effects on starch digestibility due to their abilities to inhibit enzyme
activity or by the formation of starch-polyphenol complexes with resistance to enzyme
attacks [26]. Furthermore, polyphenols can slow down starch gelatinization via the inter-
action through hydrogen bonds with amylose molecules [27]. Saad et al. [28] found that
wheat pasta dough rheological properties in terms of extensibility and water absorption
increased, while elasticity decreased, when cucumber pomace was added. The mineral
and polyphenols content of noodles were improved, while a reduction of protein and
carbohydrate contents was observed [28].

In countries where durum wheat is not widely cultivated, common wheat usually
represents the basic ingredient for pasta production. There are some studies revealing the
possibility to use fiber and polyphenols-rich ingredients in pasta formulation, but to our
knowledge, there are no studies revealing the effects of GP on common white wheat flour
for pasta production. The approach of this study is complex, evidencing the technological,
nutritional, molecular and structural changes of flour, dough and pasta. The knowledge of



Plants 2021, 10, 926 3 of 18

the interactions of grape peels with other biopolymers from wheat is very important for
the development of novel pasta products. Thus, the aim of this study was to underline the
impact of GP components on white wheat flour (WWF), dough and pasta properties, and
to optimize the addition level in order to obtain the best product quality. Furthermore, a
characterization of the optimum and control products was made.

2. Results
2.1. Diagnostic Checking of the Models

The ANOVA results for the model fitting presented in Table 1 show that all of the
mathematic models chosen were significant and predicted accurately the responses, the
F-value being significant (p < 0.01) in all cases and R2 values being more than 0.76.

Table 1. ANOVA results for the fitted models for different characteristics of flour, dough and pasta.

Response Model F-Value p-Value R2 Adj.-R2

ηmax (Pa·s) quadratic 36.23 <0.01 0.83 0.81
G* (Pa) quartic 31.27 <0.01 0.91 0.88

Co quadratic 24.14 <0.01 0.76 0.73
C* quartic 32.72 <0.01 0.91 0.88

F (g) quartic 179.30 <0.01 0.98 0.98
Ch (J) quadratic 26.38 <0.01 0.78 0.75

CL (%) quartic 91.58 <0.01 0.97 0.96
RS (%) cubic 181.00 <0.01 0.98 0.97

TPC (µg GAE/g) quartic 85.84 <0.01 0.96 0.95
TDF (%) fifth 1503.06 <0.01 0.99 0.99

ηmax—peak viscosity, G*—complex modulus, Co—cohesiveness, C*—chroma, F—fracturability, Ch—chewiness,
CL—cooking loss, RS—resistant starch, TPC—total polyphenols content, TDF—total dietary fiber.

Flour peak viscosity (ηmax), dough cohesiveness (Co) and boiled pasta chewiness (Ch)
data were fitted to the quadratic model, which described 83%, 76% and 78% of the data
variation, respectively. Dough complex modulus (G*), dry pasta chroma (C*), fracturability
(F), cooking loss (CL) and polyphenolic content (TPC) results were fitted to the quartic
model, with 91%, 91%, 98%, 97% and 96%, respectively, of the data variation being ex-
plained. The cubic model explained 98% of data variation for resistant starch content (RS),
while the results for the dietary fiber content (TDF) were fitted to the fifth model, which
explained 99% of the variation.

2.2. Effects of GP on Flour and Pasta Characteristics

A Supplementary Materials section containing the graphics for the variation of the
responses with GP level is provided.

Peak viscosity increased with GP level increase (Figure S1), the biggest significant
(p < 0.01) positive influence being obtained for the linear term Equation (1).

ηmax(Pa·s) = 0.42 + 0.14A∗∗ − 0.01A2 (1)

where ηmax—peak viscosity, A—GP level, ** significant at p < 0.01.
An increase of G* as the GP level was higher was observed (Figure S2a), the linear and

quadratic terms having significant influence (p < 0.05) on the response Equation (2).

G∗(Pa) = 96083.29 + 23997.76A∗∗ + 38352.65A2∗ + 808.26A3 − 27020.94A4 (2)

where G*—complex modulus, A—GP level, ** significant at p < 0.01, * significant at p < 0.05.
More cohesive dough was obtained as the GP addition level was higher (Figure S2b),

the linear term having the greatest significant (p < 0.01) influence Equation (3). The negative
effects of GP, which are a fiber-rich ingredient, were minimized because small particle size
(<180 µm) was used.

Co = 0.40 + 0.02A∗∗ + 0.01A2 (3)
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where Co—cohesiveness, A—GP level, ** significant at p < 0.01.
Pasta color was affected by GP incorporation, a significant (p < 0.01) decrease of C*

being observed with the addition level increase (Figure S3a). The biggest negative influence
was obtained for the linear term of the factor Equation (4).

C∗ = 23.08 − 2.72A∗∗ + 1.42A2 − 0.35A3 + 0.03A4 (4)

where C*—chroma, A—GP level, ** significant at p < 0.01.
Dry pasta fracturability expressed as the maximum force needed to break the sample

can be an indicator of pasta resistance to transport and manipulation. The addition of GP
caused an increase of F with the level increase (Figure S3b). The linear and cubic terms
presented significant positive influence (p < 0.05), while the quadratic term had a negative
effect on the response Equation (5).

F(g) = 3158.72 + 1837.63A∗∗ − 1052.11A2∗∗ + 256.32A3∗ − 19.84A4∗ (5)

where F—fracturability, A—GP level, ** significant at p < 0.01, * significant at p < 0.05.
GP addition caused a CL rise with the level increase (Figure S4a), the linear, quadratic

and quartic terms presenting significant (p < 0.05) influences based on Equation (6). An
acceptable cooking loss value should be less than 12% [5].

CL(%) = 0.66 + 6.33A∗∗ − 3.02A2∗ + 0.61A3 − 0.04A4∗ (6)

where CL—cooking loss, A—GP level, ** significant at p < 0.01, * significant at p < 0.05.
Pasta chewiness is expressed as the energy required to chop the sample until it is

ready to swallow [29]. GP level increase caused a proportional decrease of pasta chewiness
(Figure S4b), the highest influence being observed for the linear term Equation (7).

Ch = 3696.18 − 287.20A∗∗ + 79.49A2 (7)

where Ch—chewiness, A—GP level, ** significant at p < 0.01.
Resistant starch content was significantly influenced (p < 0.01) by the linear, quadratic

and cubic terms in Equation (8). A rise in RS with GP addition level increase was observed
(Figure S5a).

RS(%) = 4.49 + 0.34A∗∗ − 0.43A2∗∗ + 0.50A3∗∗ (8)

where RS—resistant starch content, A—GP level, ** significant at p < 0.01.
A significant positive influence (p < 0.01) was obtained for the linear term of GP

level, while the quadratic and quartic terms exhibited a negative and significant (p < 0.05)
effect on TPC response (Equation (9). TPC showed higher values with GP level increase
(Figure S5b), as a result of polyphenols present in the added ingredient.

TPC(%) = 29.25 + 117.50A∗∗ − 55.362A2∗ + 11.17A3 − 0.77A4∗ (9)

where TPC—total polyphenols content, A—GP level, ** significant at p < 0.01, * significant
at p < 0.05.

GP are a rich source of soluble and insoluble dietary fibers, their incorporation in
wheat pasta determining an increase of TDF with the level increase (Figure S5c). Significant
positive influences (p < 0.01) were obtained for the linear, cubic and fifth terms, while the
quadratic and quartic terms presented negative effects on the response (Equation (10)).

TDF(%) = −4.58 + 9.17A∗∗ − 6.31A2∗∗ + 2.01A3∗∗ − 0.30A4∗∗ + 0.02A5∗∗ (10)

where TDF—total dietary fiber content, A—GP level, ** significant at p < 0.01.
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2.3. Optimization of GP Level and Models Validation

To obtain the maximum nutritional benefits with minimum quality characteristics’
impairment, the optimization of GP level as a function of the considered responses showed
that wheat flour can be supplemented with 4.62% GP (Table 2), with a desirability of 0.57.

Table 2. Confirmation of the optimized parameters and control sample characteristics.

Parameter
OGP

Control
Predicted Value Experimental Value Relative Deviation * (%)

A-GP (%) 4.62 ± 0.00 4.62 ± 0.00 - -
ηmax (Pa·s) 0.83 ± 0.06 x 0.85 ± 0.06 xa 2.35 0.42 ± 0.02 b

G* (Pa) 113,595.55 ± 6604.45 x 113,733.33 ± 950.44 xa 0.12 51,170.00 ± 1822.44 b

Co 0.41 ± 0.01 x 0.41 ± 0.01 xa 0.00 0.36 ± 0.01 b

C* 19.07 ± 0.40 x 19.26 ± 0.06 ya 0.99 21.89 ± 0.06 b

F (g) 5432.15 ± 106.15 x 5659.67 ± 159.22 xa 4.02 4207.33 ± 123.18 b

Ch (J) 3583.12 ± 116.08 x 3353.11 ± 162.77 xa −6.86 4910.27 ± 72.29 b

CL (%) 6.81 ± 0.25 x 7.03 ± 0.24 xa 3.13 5.53 ± 0.19 b

RS (%) 4.60 ± 0.10 x 4.79 ± 0.01 ya 3.97 2.58 ± 0.10 b

TPC (µg GAE/g) 141.48 ± 4.21 x 144.99 ± 2.78 xa 2.42 106.75 ± 4.18 b

TDF (%) 1.43 ± 0.03 x 1.38 ± 0.03 xa −3.62 0.02 ± 0.00 b

OGP—optimal formulation of wheat flour with grape peels, A—GP (grape peels) level, ηmax—peak viscosity, G*—complex modulus,
Co—cohesiveness, C*—chroma, F—fracturability, Ch—chewiness, CL—cooking loss, RS—resistant starch, TPC—total polyphenols content,
TDF—total dietary fiber, means in the same row followed by different letters (x–y for differences among predicted and observed values,
a–b for differences between OGP and control) are significantly different (p < 0.05), * relative deviation = [(experimental value − predicted
value)/experimental value] × 100.

For the model’s validation, a pasta sample was made using the optimal level of GP that
resulted after optimization. The responses were checked in triplicate and the experimental
values were less than 5% different from the predicted ones (Table 2), except for chewiness,
which was lower by 6.86% than the predicted value. Compared to the control, significantly
(p < 0.01) higher G*, ηmax, dough Co, F, CL, RS, TPC and TDF contents were obtained,
while C* and boiled pasta Ch were smaller (Table 2). Consequently, the nutritional and
functional values of the optimized pasta were enhanced compared to the control and the
quality parameters were kept. Even if higher CL was obtained (6.81%), the value was less
than 12%, the limit recommended for acceptable pasta. The OGP sample presented a more
cohesive, elastic and viscous dough, which was probably related to the higher resistance to
break (F) of pasta, which was desirable.

2.4. Determination of Control and Optimal Product Properties
2.4.1. FTIR Analysis of Flours

FTIR analysis allowed the identification of changes in bonding and possible interac-
tions between composite flour components, underlying the impact of GP addition to WWF.
The representative spectra of OGP and control samples is presented in Figure 1 and shows
the peaks of the functional groups and the vibration ways of the compounds. Several
peaks were identified in the analyzed spectra (650–4000 cm–1) and were attributed to the
molecular linkages of some chemical components such as starch, proteins and polyphenols.

The deconvoluted spectra in the range of 800–1300 cm−1 (Figure 1b1) showed the
characteristics of starch grains. The amount of hydrated starch structures was identified at
995 cm−1, the amorphous starch at 1022 cm−1 and the short-ordered starch structures at
1047 cm−1 [30]. No significant changes (p > 0.05) were observed in starch structure between
OGP and control samples (Table 3). The intermolecular associations were identified at
1613–1620 cm−1, the intramolecular associations at 1627–1635 cm−1, β-sheets structures
at 1620–1644 cm−1, α-helix at 1650–1660 cm−1 and β-turn at 1660–1680 cm−1 [31,32]. The
OGP sample presented higher inter- and intra-molecular associations compared to the con-
trol, which lacked absorbance for intramolecular associations. Significant lower (p < 0.01)
α-helix conformations were identified for OGP compared to the control, while β-turn and
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antiparallel β-sheets structures were higher (Table 3). The presence of fibers could be
observed from the peaks at 1149 and 1077 cm−1 [30], while the phenolic compounds could
be identified at 1609–1608 and 1519–1516 cm−1 [33] (Figure 1b2) and 1747 cm−1.
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Figure 1. (a) Average spectra of optimal wheat-grape peels (OGP) and control samples in mid-infrared region; (b1) starch
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Table 3. Optimal and control product properties.

Parameter OGP Control

Intermolecular associations (%) 1.71 ± 0.09 a 0.00 ± 0.00 b

Intramolecular associations (%) 4.75 ± 0.05 a 0.00 ± 0.00 b

β-sheets (%) 13.17 ± 0.44 a 13.23 ± 0.58 a

α-helix (%) 17.25 ± 0.71 a 26.67 ± 1.89 b

β-turn (%) 13.22 ± 0.39 a 2.23 ± 0.59 b

Antiparallel β-sheets (%) 19.74 ± 0.93 a 5.44 ± 0.85 b

Hydrated crystallin starch structure (%) 32.16 ± 0.37 a 34.66 ± 1.90 a

Short-ordered crystallin starch structure (%) 27.26 ± 0.20 a 27.25 ± 0.20 a

Amorphous starch structure (%) 34.26 ± 0.13 a 34.00 ± 0.31 a

Protein content (% dm) 14.29 ± 0.10 a 13.93 ± 0.09 b

Lipid content (% dm) 0.21 ± 0.02 a 0.13 ± 0.02 b

Ash (% dm) 0.80 ± 0.08 a 0.63 ± 0.01 a

Carbohydrates (% dm) 83.07 ± 0.22 a 85.28 ± 0.11 b

Radical scavenging activity (%) 38.74 ± 1.14 a 20.15 ± 0.26 b

RDS (% dm) 54.38 ± 0.24 a 69.78 ± 0.69 b

SDS (% dm) 19.61 ± 0.95 a 17.35 ± 0.20 b

OGP—optimal formulation of wheat flour with grape peels, RDS—rapid digestible starch, SDS—slowly digestible
starch, dm—dry matter, a–b means in the same row followed by different letters are significantly different
(p < 0.05).
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2.4.2. Pasta Chemical Properties

The chemical compositions of the OGP and control sample are presented in Table 3.
GP addition to wheat flour caused a significant (p < 0.01) increase of the protein, lipid,

ash and carbohydrate contents (Table 3) of pasta. The OGP sample presented higher radical
scavenging activity (38.74%) compared to the control (20.15%). On the other hand, cooked
pasta RDS significantly decreased (p < 0.01) when GP was added, while SDS increased
compared to the control.

2.4.3. Microstructure Analysis

Dry pasta microstructure analysis revealed a well-developed matrix comprised of a
gluten network, which encompassed starch grains and fiber fractions (Figure 2). In both
the control and OGP samples round and lenticular starch shapes with smooth surfaces
were observed. The addition of GP resulted in a compact dough structure in which the
proteins embedded the fine particles of fibers and starch grains.
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The alternation of high and low regions was given by the use of the rigatoni mold.
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3. Discussion
3.1. Effects of Grape Peels on Flour, Dough and Pasta Quality

GP caused an increase of flour slurry peak viscosity, a similar trend being reported
by Mironeasa et al. [34] for wheat flour supplemented with GP and can be related to the
affinity of GP for water, which may determine a viscosity increase. Probably, the pectin
content of GP can be another factor responsible for the viscosity increase since it may assist
starch swelling [35]. Masoodi et al. [36] also reported a reduction of wheat flour peak
viscosity when more than 5% apple pomace was incorporated.

The dynamic complex modulus’ proportional increase with GP level could be ex-
plained by the strengthening effect of GP on the gluten network due to the presence of
non-starch polysaccharides, tannins and polyphenols, which can form complexes with
proteins [37]. Additionally, the oxidation of sulfhydryl groups to disulfides caused by the
raised content of oxidizing compounds can possibly contribute to the complex modulus
increase [3]. In this study, GP caused more cohesive dough. Mironeasa et al. [34] reported
increased dough cohesiveness when small particle sizes of GP were used probably due to
the ability of fine particles to better absorb water. GP fibers present many hydroxyl groups
in their structure, which will determine higher interactions with water trough hydrogen
bonds [38]. The sugars present in GP can also influence dough cohesiveness due to their
water solubility [39]. Saad et al. [28] showed that pasta soft wheat dough supplemented
with cucumber pomace rheological properties changed compared to the control, an increase
of the extensibility and water absorption and a decrease of elasticity being observed.

Dry pasta chroma decreased as the amount of GP was higher. In the literature, Smith
and Yu [40] reported higher b* (yellow nuance) and lower a* (red nuance) values of bread
supplemented with grape pomace. High amounts of sugars found in GP can promote
Maillard reactions and, along with the polyphenol’s presence, may determine C* decrease.
Additionally, the natural pigments from GP are responsible for color intensity decrease [41].
Other studies reveled that the addition of by-products such as dragonhead seeds, coconut
residue or Moringa oleifera L. leaf [19,20,24] produced significant changes in pasta color,
depending on the pigments present in the ingredient added. The quality of the final product
depends on the chemical composition of the ingredient added, soluble dietary fibers such as
inulin and fructooligosaccharides playing an important role in pasta network strength [42].
Polyphenol interactions with proteins can determine stronger dough structure [18,43],
leading to higher fracturability values.

The higher cooking loss obtained in this study for pasta enriched with GP can be
attributed to the polymer interactions in the gluten matrix and/or to the competition of
proteins for water, leading to starch loss [44]. A similar trend of cooking loss was reported
for fettuccini pasta supplemented with grape marc [5] and can be due to the dietary fiber
content of the added ingredient. Xu et al. [22] reported also a proportional increase of pasta
cooking loss with the addition level of apple pomace increase. Pasta texture can be a good
predictor for consumer preferences. The results obtained showed a decreasing trend of
pasta chewiness with GP level increase. The interference of GP components with starch,
which led to a reduction of starch gelatinization during cooking, can be associated with
lower chewiness [45]. The use of a small particle size (<180 µm) for GP flour can be an
advantage for pasta quality by diminishing the negative impact on the texture. A study
regarding the influence of apple pomace on wheat pasta showed that this fortification
caused a decrease of pasta chewiness as the level was higher [22], similar trend being
reported also by Chen et al. [33] for pasta enriched with more than 1% grape seeds.

The nutritional value of wheat pasta was increased by the incorporation of GP. The
raised resistant starch content of pasta enriched with GP can be attributed to the interac-
tions between polyphenols and starch [46,47] through non-covalent linkages formation.
Furthermore, starch digestion diminution produced by the formation of linkages between
polyphenols and starch can occur from the starch molecular structure modifications. A
similar RS increase was reported by Simonato et al. [25] for pasta fortified with olive
pomace. For instance, some studies revealed that these interactions can contribute to the
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ordered structure or development of starch crystallin areas, inducing RS formation [48,49].
On the other hand, the polyphenolics content of pasta increased with GP level increase.
Gaita et al. [17] also reported higher polyphenolic contents for pasta supplemented with
grape peels, the increase being directly proportional to the amount added. A study per-
formed by Michalak-Majewska et al. [23] showed that the addition of onion skin powder
caused an increase in total phenolic compounds, flavonoids content and antioxidant activity.
The phenolic compounds present in grape by-products are highly accessible and available
for metabolization in the human intestine [50]. In addition, the bioavailability polyphenols
in pasta are directly related to the hydrogen, ionic, covalent, and hydrophobic interactions
with proteins [3]. The addition of fiber-rich ingredients can be a useful technique to increase
the nutritional value of the final product. Wheat pasta fiber content was enhanced by GP
addition. Acun and Gül [51] also reported raised fiber content of cookies enhanced with
seedless grape pomace. Similar to our study, Saad et al. [28] showed that the addition
of cucumber pomace in soft wheat pasta induced the increase of fibers and polyphenol
contents. Fibers are known to have some biological functions, such as activity against
cancer, amelioration of gastrointestinal systems functioning, improvement of cardiovas-
cular system activity, and decrease of cholesterol and glycaemia levels in blood [52]. Balli
et al. [53] found that durum wheat tagliatelle with grape and olive pomace resulted in
improved quality in terms of organoleptic and nutritional properties, with high levels of
phenolic compounds and increased fibers content.

3.2. Control and Optimal Product Properties

In this study, the optimal amount of GP was found to be 4.62%; at this level accept-
able technological characteristics and superior nutritional value compared to the control
were obtained. The optimal sample with GP (OGP) and the control made of wheat flour
were characterized.

FTIR spectra showed the interactions between components of the composite flours.
The peak at 3284 cm−1 was attributed to the -OH stretching vibrations, while the peak
at 2926 cm−1 was assigned to the C-H stretching and showed higher absorbances for
OGP probably due to the phenolic compound’s presence [54]. The phenolic compounds
found in GP have specific absorptions at 1712–1704 cm−1 corresponding to the carbonyl
stretching and 1609–1608 and 1519–1516 cm−1 given by the stretching vibrations of
C=C [55] (Figure 1b2). The galloyl group’s presence could possibly be observed at about
1747 cm−1 (Figure 1b2), which corresponds to the stretching vibrations of carbonyl groups
(C=O) [54]. In the case of OGP, an increase of peak intensities at 1149 and 1077 cm−1

compared to the control could be due to the intake of small hemicellulose, cellulose and
pectin [30] found in GP. Starch structure characterized by the vibrations given at 1022 cm−1

for amorphous and at 1047 cm−1 for short-ordered regions [30] was not significantly af-
fected by the addition of GP. The absorption at 1700–1600 cm−1 was assigned to the Amide
I fraction, which could offer information about the secondary structure of proteins [30].
GP addition in wheat flour caused inter- and intramolecular associations compared to
the control, which lacked absorbance for these structures. Lower α-helix conformations
were observed for OGP compared to the control, while β-turn and antiparallel β-sheet
structures were present in higher proportion. These changes could be possibly related to
the protein–polyphenols interactions in the dough matrix, a similar opinion being reported
by Ertürk and Meral [56]. Sivam et al. [57] also reported lower α-helices and lower inter-
molecular associations when polyphenols were added to bread. Chen et al. [33] obtained
a reduction of β-turn conformational composition of gluten proteins with grape seeds’
level increase, while β-sheet conformations increased. The α-helix secondary structures
were dominant for both the OGP and control samples, similar results being obtained by
Nawrocka et al. [58], who studied the influence of dietary fibers on gluten proteins. Dough
rheological properties are directly influenced by protein secondary structure. Our results
indicated a stronger and more cohesive dough structure of OGP, which can be related to
the formation of protein–fiber complexes. The band at 1670 cm−1 is due to non-hydrogen
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linkages of carbonyl groups in the β-turn structures of proteins; when carbonyl groups are
hydrogen bonded with other compounds, a decrease of their absorption band to smaller
wavenumbers should be observed [58]. The results of the present study revealed that in
the control sample the protein carbonyl groups were bonded trough non-hydrogen link-
ages, a fact evidenced by the presence of the 1670 cm−1 band, while in OGP the carbonyl
groups would have formed hydrogen bonds with fibers or other GP components, a fact
suggested by the shift to the left of the absorption band. This band shift could possibly
be attributed also to the presence of polysaccharides such as pectin from GP [58]. On
the other hand, the appearance of the absorption band at 1661 cm−1 in the OGP sample
(Figure 1b2) could be related to the development of intramolecular and intermolecular
hydrogen linkages between glutamine side chains and peptide groups, which was probably
due to the influence of the GP fiber-rich ingredient [58]. The band at 1625 cm−1 observed
for OGP can be associated with the hydrogen bonding of protein aggregates and/or of
polypeptide chains complexed with phenolic compounds [59] from GP, as shown by their
chemical composition.

GP raised the protein, lipid, ash and carbohydrate contents of pasta due to their intake
of nutrients. Compared to our study, Saad et al. [28] showed that cucumber pomace addi-
tion in soft wheat noodles increased the mineral and polyphenols content, but decreased
protein and carbohydrates. The addition of GP caused higher radical scavenging activity
compared to the control, in agreement with the polyphenols content, which presented a
raised value for pasta samples with GP. Gaita et al. [17] also reported higher antioxidant
capacity of pasta enriched with grape peels. Cooked pasta RDS significantly decreased
(p < 0.01) when GP were added, while SDS increased compared to the control. Similar
trends of RDS and SDS were reported by Simonato et al. [25] when wheat pasta was forti-
fied with olive pomace, which may be due to the starch content reduction caused by the
addition of the fiber-rich ingredient. These results could be related to the starch–polyphenol
interactions that may occur during pasta making. It has been demonstrated that polyphe-
nols can reduce starch digestion rates due to their interactions trough hydrophobic forces
with amylose and the linear fraction of amylopectin and/or to the inhibition effects on
enzymes [49]. On the other hand, fibers from GP could compete with starch granule for
water, reducing starch gelatinization, thereby causing starch digestibility limitation [25].

GP incorporation resulted in a compact dough structure in which the proteins em-
bedded the fine particles of fibers and starch grains. Similar results were presented by
Tolve et al. [1] for durum wheat pasta with grape pomace. The denser gluten network of
pasta with GP is probably due to the intake of protein, cellulose and polysaccharides, which
can act as fillers in the gluten matrix, while the polyphenols present in GP may interact
with gluten proteins to support the formation of a gluten matrix, similar observations being
made by Chen et al. [33] for pasta enriched with 1% grape seeds. Huang et al. [60] also
reported a dense structure of wheat noodles formed of starch granules embedded in a
developed fiber matrix. Pasta surface roughness was higher when GP was added. This
increase could be possibly due to the difference in the water absorption capacity of the
composite flour compared to the control, a difference caused by the presence of fibers from
GP [34]. According to the study of Chen et al. [33], the incorporation of more than 3%
grape seeds in wheat noodles induced the appearance of jagged edges and uneven mesh
structure of pasta caused by the non-gluten components.

4. Materials and Methods
4.1. Materials

The research was conducted on 650 white wheat (Triticum aestivum) flour (WWF) type
from the 2019 harvest, provided by Dizing S.R.L. (Brusturi, Neamt, Romania). Wheat
flour chemical components reported to dry matter were: lipids content of 1.11 ± 0.03%,
protein content of 14.41 ± 0.21%, carbohydrates 81.26 ± 0.16%, ash content of 0.60 ± 0.05%,
moisture of 14.01 ± 0.16%, total polyphenols content of 105.59 ± 4.42 µg GAE/g. The
falling number was 404 ± 1.73 s, wet gluten content was 29.75 ± 0.15%, dry gluten was
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10.04 ± 0.13%, gluten deformation index was 6.17 ± 0.29 mm and the water absorption
capacity was 59.54 ± 0.31%. Grape pomace from the Fetească Regală variety was provided
by Ias, i Research and Development Center for Viticulture and Vinification and was dried in
a convection oven at 50 ◦C for 18 h. Grape peels were manually separated, ground and
sieved to obtain the particle size of <180 µm. Grape peels contained 2.50 ± 0.19% lipids,
9.85 ± 0.05% proteins, 25.25 ± 0.05% fibers, 55.73 ± 0.20% carbohydrates, 4.47 ± 0.03% ash,
8.00 ± 0.08% moisture and 1448.69 ± 15.39 µg GAE/g polyphenols, 0.40 ± 0.01% pectin
reported to dry matter (dm) and a water absorption capacity of 271.10 ± 4.34%. Wheat
flour was sieved before mixing in order to achieve a particle size of <300 µm. Composite
flours were mixed for 15 min in a Yucebas Y21 machine (Izmir, Turkey).

4.2. Pasta Processing

Pasta dough was mixed in a Kitchen Aid mixer (Whirlpool Corporation, Benton
Harbor, MI, USA) by adding the amount of water calculated in order to obtain 40% moisture.
Pasta modeling was performed after 15 min of the dough resting at room temperature,
by using a rigatoni mold of the Kitchen Aid machine. Pasta drying was performed in a
convection oven, according to the method described by Bergman et al. (1994) as follows:
30 min drying in open air at room temperature, followed by a first step of drying for 60 min
at 40 ◦C, a second for 120 min at 80 ◦C and a third for 120 min at 40 ◦C.

4.3. Evaluation of GP Effects on WWF and Pasta Quality
4.3.1. Flour Pasting Properties

Flour pasting behavior in terms of peak viscosity ηmax (Pa·s) was simulated on a
dynamic rheometer Thermo-HAAKE, MARS 40 (Karlsruhe, Germany) with a Peltier tem-
perature controller, by using a cup-cylinder geometry. The method described by Ahmed
et al. [61] was adapted as follows: the slurry was kept at 50 ◦C for 60 s, followed by a
heating at 95 ◦C for 222 s, keeping at 95 ◦C for 210 s, cooling at 50 ◦C for 228 s and keeping
at 50 ◦C for 120 s.

4.3.2. Fundamental Rheological Behavior

Laminated dough samples were rested for 30 min for internal strain removal and
tested for linear viscoelastic region (LVR) by using a Thermo-HAAKE, MARS 40 (Karlsruhe,
Germany). A frequency sweep test was performed for the determination of the complex
modulus G* (Pa). For this purpose, the sample was placed between the parallel plates
at a 3 mm gap and a vaseline layer was applied on the exposed edges for moisture loss
prevention. The frequency was varied from 0.1 to 20 Hz, at a strain of 15 Pa that was in
the LVR.

4.3.3. Dough Texture

For dough cohesiveness (Co) determination, a texture analysis was performed by
using a Perten TVT-6700 texturometer (Perten Instruments, Hägersten, Sweden). A double
compression was applied to dough balls of 50 g weight, at 50% height, a speed of 5.0 mm/s
and a trigger force of 20 g [62].

4.3.4. Dry Pasta Color

Pasta chroma C* Equation (11) of the CIE Lab system was determined by reflectance
by using a Konica Minolta CR-400 (Tokyo, Japonia) colorimeter.

C∗ =

√
a∗2 + b∗2 (11)

where C*—chroma, a*—red or green nuance, b*—yellow or blue nuance.
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4.3.5. Pasta Fracturability

Pasta fracturability as the maximum force F (g) required to break a dry pasta piece
was determined with a Perten TVT-6700 texturometer (Perten Instruments, Sweden). An
aluminum break rig set adjusted to 13 mm width was used, the test speed being set to
3 mm/s and the trigger force to 50 g [62].

4.3.6. Total Polyphenolics Content

The extracts were prepared according to the method described by Melilli et al. [63].
An amount of 2 g of grinded uncooked dry pasta was extracted with 20 mL of methanol
80% (v/v) in a sonication bath at 37 ◦C and 45 Hz for 40 min, and then the mix was filtered.
Total polyphenols content (TPC) (µg GAE/g dm) of dry pasta was evaluated by using the
Folin–Ciocalteu method [64]. The extract was diluted in a ratio of 1:4 with distillated water
and mixed with Folin–Ciocalteu reagent (1N) and sodium carbonate 20% (v/v) and left
to rest in darkness for 40 min. The absorbance was read at 725 nm on an UV–VIS–NIR
Shimadzu 3600 (Tokyo, Japan) spectrophotometer. TPC was calculated from a calibration
curve (R2 = 0.99) made with gallic acid (GAE).

4.3.7. Total Dietary Fiber Content

For dietary fiber content TDF (% dm) estimation, a FOSS 6500 NIR (FOSS NIRSystems,
Silver Springs, FL, USA) infrared spectrometer was used. Uncooked dry pasta samples
were ground before the analysis and the spectra were collected at room temperature. For
calibration, off the shelf INGOT commercial calibrations (AUNIR, Towcester, UK) were
used. Standard materials provided by AUNIR were used for bias corrections [65].

4.3.8. Pasta Cooking Behavior

The loss of solids CL (%) during pasta cooking was determined gravimetrically by
evaporation of the water that resulted after boiling 10 g of pasta in 200 mL of water for the
optimum cooking time previously established [66].

4.3.9. Boiled Pasta Texture

Pasta chewiness Ch (J) was determined by double cycle compression on one piece of
pasta by using a Perten TVT-6700 device (Perten Instruments, Sweden) equipped with a
35 mm cylinder probe, at 50% of the sample height, a test speed of 5.0 mm/s and a trigger
force of 20 g [62].

4.3.10. Rapid Digestible Starch (RDS), Slowly Digestible Starch (SDS) and Resistant Starch
(RS) Contents

The international AOAC 2017.16 method was used for RDS, SDS and RS determination
from boiled pasta, by using Megazyme kit. After 20 min (for RDS), 120 min (for SDS) or
240 min (for RS) of sample digestion with α-amylase and amyloglucosidase the reaction
was stopped and the mix was digested again with amyloglucosidase. The resulting glucose
was determined by using GOPOD reagent and reading of the absorbance at 510 nm. The
results were reported as percent to dry matter.

4.4. Optimization of Grape Peels Level and Models Validation

GP level optimization was performed by using the trial version of Design Expert
software (Stat-Ease, Inc., Minneapolis, USA). For this purpose, the multiple response
optimization and the desirability function were used and the goals were selected as follows:
G*, Co, C*, F, TPC, TDF and RS were maximized, CL and Ch were minimized, and ηmax*
was kept in range. The experimental design matrix containing mean values of three
replications of the responses is presented in Table 4.
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Table 4. The effects of GP on the responses used in the experimental design.

GP
(%)

ηmax
(Pa·s)

G*
(Pa)

Co
(adim.)

C*
(adim.)

F
(g)

CL
(%)

Ch
(J)

RS
(% dm)

TPC
(µg GAE/g dm)

TDF
(% dm)

1.00 0.56 ± 0.03 82,936.67 ± 4914.90 0.39 ± 0.01 21.46 ± 0.63 4181.00 ± 103.00 4.55 ± 0.30 4034.97 ± 9.10 3.20 ± 0.08 102.00 ± 7.11 0.02 ± 0.01
2.00 0.62 ± 0.05 90,176.67 ± 7961.22 0.39 ± 0.01 20.94 ± 0.47 4357.00 ± 199.02 5.43 ± 0.18 3975.14 ± 168.70 4.10 ± 0.05 118.72 ± 2.76 0.35 ± 0.05
3.00 0.74 ± 0.12 96,045.00 ± 1395.00 0.40 ± 0.00 20.58 ± 0.49 4519.00 ± 139.54 5.72 ± 0.17 3700.57 ± 140.00 4.31 ± 0.09 124.91 ± 3.36 0.60 ± 0.00
4.00 0.81 ± 0.04 99,103.33 ± 7081.74 0.41 ± 0.01 19.65 ± 0.26 4998.33 ± 15.50 6.09 ± 0.31 3621.45 ± 100.87 4.57 ± 0.01 129.12 ± 2.00 1.05 ± 0.05
5.00 0.83 ± 0.16 122,600.00 ± 6080.60 0.42 ± 0.01 18.78 ± 0.23 5685.67 ± 54.78 7.28 ± 0.36 3589.50 ± 119.78 4.67 ± 0.04 149.27 ± 2.02 1.30 ± 0.00
6.00 0.87 ± 0.07 131,893.33 ± 8144.26 0.43 ± 0.01 18.54 ± 0.25 5961.00 ± 17.00 7.99 ± 0.14 3478.03 ± 102.51 4.88 ± 0.16 157.02 ± 4.38 1.50 ± 0.00

GP—grape peels level, ηmax—peak viscosity, G*—complex modulus, Co—cohesiveness, C*—Chroma, F—fracturability, Ch—chewiness, CL—cooking loss, RS—resistant starch, TPC—total polyphenols content,
TDF—total dietary fiber.
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For model validation, pasta was made using the optimal level of GP obtained and the
response values were checked. The real values of the optimum sample characteristics were
compared to the control made of untreated wheat flour. For the evaluation of differences
among the predicted and the experimental results of the optimal solution, and among the
optimal and control sample, t tests for two samples (p < 0.05) were performed.

4.5. Determination of Control and Optimal Product Properties
4.5.1. Chemical Composition and Antioxidant Activity

The chemical composition was determined according to the Romanian and Inter-
national standard methods and the results are reported to dry matter: moisture (SR EN
ISO 712/2010), ash (SR ISO 2171/2002), protein (SR EN ISO 20483/2007) and lipids (SR
91/2007). TDF was determined by NIR (as described in Section 4.3.6) and the carbohydrates
were calculated by difference.

The radical scavenging activity (%) was evaluated by using 2, 2-di (4-tert-octylphenyl)-
1-picrylhydrazyl (DPPH). The extract prepared as described in Section 4.3.5 (0.5 mL) was
diluted with methanol 80% (0.5 mL) and mixed with 5 mL of DPPH. After resting 30 min
in the darkness the absorbance was read at 517 nm on an UV–VIS–NIR Shimadzu 3600
(Tokyo, Japan) spectrophotometer [67].

4.5.2. ATR-FT-IR Analysis of Flour

FT-IR spectra of the flours were collected in triplicate in the range of 650 to 4000 cm−1

by using a Thermo Scientific Nicolet iS20 (Waltham, MA, USA) spectrometer, at a reso-
lution of 8 cm−1 by 64 scans. The fractions of amide I (1835–1585 cm−1), polyphenols
(1516–1747 cm−1) and starch (800–1300 cm−1) were identified, the data being processed
with OMNIC software. The starch, polyphenols and protein structures were assessed
according to previous studies [31,68–70]. Fourier deconvolution was applied in order to
characterize starch and protein structures.

4.5.3. Microstructure

Electronic scanning microscopy was employed for flour microstructure evaluation
with a VEGA II LSH scanning electronic microscope (Tescan, Brno, Czech Republic). The
acceleration tension was 30 kV and the magnification 1000×, the samples being fixed with
adhesive carbon bands.

Pasta surface structure analysis was performed on a Mahr CWM100 microscope
(Gottingen, Germany). The data collected were processed with Mountain Map trial version
software (Digital Surf, Besançon, France).

4.6. Statistical Analysis

All of the analyses in the present study were performed in triplicate. XLSTAT for Excel
2021 version (Addinsoft, New York, USA) was used for statistical analysis of the data. In
order to evaluate the significant differences (p < 0.05) among samples the t-test was used.

For the assessment of GP addition effects on WWF and pasta quality, mathematical
modeling of the results was carried out by using the trial version of Design Expert software
(Stat-Ease, Inc., Minneapolis, USA), by applying response surface methodology (RSM). The
effect of GP level factor on the responses (ηmax, G*, Co, C*, Ch, F, CL, TPC, TDF and RS)
was observed by using a D-optimal design with one factor varied at six levels (1, 2, 3, 4, 5,
6%) and three replications. The model’s fitting was evaluated through a sequential Fisher
test, coefficients of determination (R2) and adjusted coefficient of determination (Adj.-R2),
at a 95% confidence level. The most suitable model was selected according to the highest
Adj.-R2 value.
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5. Conclusions

The addition of grape peels increased the amounts of nutrients in wheat pasta, espe-
cially fibers, resistant starch and polyphenols, which are compounds with many health
benefits. The optimal quantity of grape peels that can be added to wheat flour was found
to be 4.62%. Dough cohesiveness, dry pasta fracturability and cooked pasta chewiness
were enhanced compared to the control, while the cooking losses were within acceptable
limits (<12%). Starch digestibility of pasta was positively influenced by grape peels, higher
resistant starch, slowly digestible starch and lower rapid digestible starch being obtained.
Interactions between wheat flour and grape peels were shown trough FT-IR analysis, signif-
icant changes of protein structures being observed. A compact microstructure of pasta was
noticed at 4.62% addition of small particle sizes (<180 µm). Thus, this study can be helpful
for both processors and consumers, underlying the opportunity to enhance the nutritional
value of wheat pasta by incorporating grape peels, with benefits for human health and
environmental waste management. This research was performed on a laboratory scale, and
thus more investigations at the industrial level are needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10050926/s1, Figure S1: Effect of GP level on peak viscosity (ηmax); Figure S2: Effect of
GP level on dough: a. complex modulus (G*), b. cohesiveness (Co); Figure S3: Effect of GP level on
dry pasta: a. chroma (C*), b. fracturability (F); Figure S4: Effect of GP level on pasta: a. cooking loss
(CL), b. chewiness (Ch); Figure S5: Effect of GP level on pasta: a. resistant starch content (RS), b. total
polyphenols content (TPC), c. total dietary fiber (TDF).
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59. Nawrocka, A.; Miś, A.; Niewiadomski, Z. Dehydration of gluten matrix as a result of dietary fibre addition—A study on model
flour with application of FT-IR spectroscopy. J. Cereal Sci. 2017, 74, 86–94. [CrossRef]

60. Huang, D.-W.; Chan, Y.-J.; Huang, Y.-C.; Chang, Y.-J.; Tsai, J.-C.; Mulio, A.; Wu, Z.-R.; Hou, Y.-W.; Lu, W.-C.; Li, P.-H. Quality
Evaluation, Storage Stability, and Sensory Characteristics of Wheat Noodles Incorporated with Isomaltodextrin. Plants 2021, 10,
578. [CrossRef]

61. Ahmed, J.; Ramaswamy, H.S.; Ayad, A.; Alli, I. Thermal and dynamic rheology of insoluble starch from basmati rice. Food
Hydrocoll. 2008, 22, 278–287. [CrossRef]

62. Ungureanu-Iuga, M.; Dimian, M.; Mironeasa, S. Development and quality evaluation of gluten-free pasta with grape peels and
whey powders. LWT 2020, 130, 109714. [CrossRef]

63. Melilli, M.G.; Pagliaro, A.; Scandurra, S.; Gentile, C.; di Stefano, V. Omega-3 rich foods: Durum wheat spaghetti fortified with
Portulaca oleracea. Food Biosci. 2020, 37, 100730. [CrossRef]

64. FAO/IAEA. Quantification of Tannins in Tree Foliage. A Laboratory Manual For the FAO/IAEA Coordinated Research Project on Use of
Nuclear and Related Techniques to Develop Simple Tannin Assays for Predicting and Improving the Safety and Efficiency of Feeding Rumina;
IAEA: Vienna, Austria, 2000.

65. Haughey, S.A.; Chevallier, O.P.; McVey, C.; Elliott, C.T. Laboratory investigations into the cause of multiple serious and fatal food
poisoning incidents in Uganda during 2019. Food Control. 2021, 121, 107648. [CrossRef]

66. Giménez, M.; González, R.; Wagner, J.; Torres, R.; Lobo, M.; Samman, N. Effect of extrusion conditions on physicochemical and
sensorial properties of corn-broad beans (Vicia faba) spaghetti type pasta. Food Chem. 2013, 136, 538–545. [CrossRef] [PubMed]
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