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Abstract: Melilotus is an important genus of legumes with industrial and medicinal value, partly due
to the production of coumarin. To explore the genetic diversity and population structure of Melilotus,
40 accessions were analyzed using long terminal repeat (LTR) retrotransposon-based markers. A
total of 585,894,349 bp of LTR retrotransposon sequences, accounting for 55.28% of the Melilotus
genome, were identified using bioinformatics tools. A total of 181,040 LTR retrotransposons were
identified and classified as Gypsy, Copia, or another type. A total of 350 pairs of primers were
designed for assessing polymorphisms in 15 Melilotus albus accessions. Overall, 47 polymorphic
primer pairs were screened for their availability and transferability in 18 Melilotus species. All the
primer pairs were transferable, and 292 alleles were detected at 47 LTR retrotransposon loci. The
average polymorphism information content (PIC) value was 0.66, which indicated that these markers
were highly informative. Based on unweighted pair group method with arithmetic mean (UPGMA)
dendrogram cluster analysis, the 18 Melilotus species were classified into three clusters. This study
provides important data for future breeding programs and for implementing genetic improvements
in the Melilotus genus.

Keywords: Melilotus; LTR retrotransposons; genome; polymorphisms; transferability

1. Introduction

Transposons, including retrotransposons or DNA transposons, are mobile genetic
elements that are common in the genomes of eukaryotes [1]. A single, open reading frame
(ORF) in which Gag and Pol are fused is common to both Ty1-copia and Ty3-gypsy elements,
although many retroelements have an extra ORF with an unknown function [2]. Long
terminal repeat (LTR) retrotransposons that possess two long terminal repeats are the most
abundant group of transposons in plants [3], and they are particularly abundant in species
with large genomes [4]. Moreover, LTR retrotransposons play key roles in plant phenotype
variations and in the evolution of genome structure and function [5–8]. Mascagni et al.
studied the relationship between changes in LTR retrotransposon abundance and the
evolution of a genus and confirmed that LTR retrotransposons have continued to evolve
during speciation [9]. Barghini et al. investigated LTR retrotransposon dynamics in the
evolution of the olive (Olea europaea) genome and found that retrotransposon activity has
impacted the olive genome structure in more ancient times than in other angiosperms [10].
Copia and Gypsy are the two main subgroups of LTR retrotransposons, and the major
structural difference between the Copia and Gypsy groups is based on the order of reverse
transcriptase (RT) and integrase [11].

Given the abundant, ubiquitous, and transcriptionally active retrotransposons in plant
genomes, many molecular marker systems have been developed to exploit insertional
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polymorphisms [12]. Several molecular barcoding methods have been developed for LTR
retrotransposons on the basis of PCR technology, including the use of retrotransposon-
microsatellite amplified polymorphism (REMAP), retrotransposon-based insertion poly-
morphism (RBIP), inter-primer binding sequence (IPBS), inter-retrotransposon amplified
polymorphism (IRAP), and sequence-specific amplified polymorphism (SSAP) markers [13].
These developed markers have been deployed in a range of crop and wild plant species.
Previous studies of the genetic diversity and evolution of field pea (Pisum), as revealed
by RBIP analysis, grouped 3020 Pisum germplasms into landraces, cultivars, and wild
Pisum [14].

Melilotus presents industrial value for coumarin production and is a highly important
legume crop that includes annual or biennial types. Moreover, it is an extremely important
green manure crop for agriculture and animal husbandry and is distributed mainly in the
northern part of China [15]. Compared to most other forage types, Melilotus tends to show
tolerance to harsh environmental conditions and exhibits high seed yields [16,17]. As a
forage legume, Melilotus possesses the ability to fix nitrogen in a symbiotic interaction with
soil rhizobia [18] and shows excellent nitrogen production, making these plants useful
for crop rotations [19]. Because of the biological activity of its flavones, coumarins, and
saponin, Melilotus (also known as wild alfalfa) is used in traditional Tibetan medicine and
is grown as a honey plant [15,20], but high coumarin content can prohibit the use of this
genus for forage. Melilotus has an extremely high market value and is widely used in
Chinese herbal medicine, so studying the genetic diversity of Melilotus genus is a worthy
endeavor [21]. Additionally, genetic studies of Melilotus are required to better understand
the extent of interspecific variations in the genus. In general, molecular markers are ex-
tremely useful in assessing genetic diversity and identifying novel genotypes among the
Melilotus germplasm. However, LTR retrotransposon markers, which are excellent and
sensitive tools for detecting genetic diversity and rapid genome changes, still have not
been used to study Melilotus. Thus, the identification and study of LTR elements are
two of the basic and indispensable steps for understanding the biology and evolution of
this genus [22]. Our research group completed the whole-genome sequencing of diploid
M. albus, with a genome size of approximately 1.04 Gb (BioProject ID: PRJNA674670)
and eight chromosomes (2n = 16) [23]. In all, 772,285 transposable elements (TEs) and
181,040 LTR-RTs (retrotransposons) were identified. The LTR-RTs accounted for 55.28%
of the Melilotus genome, which is higher than the value determined from the Medicago
truncatula genomes [24]. Neutrality is a desirable feature in evaluations of genetic differ-
ences between populations, so we identified outlier loci and performed neutrality tests on
the developed markers. Herein, we aimed to identify and develop LTR retrotransposon
markers in the Melilotus genome on the basis of the above data to assess the population
structure and genetic diversity in other members of the genus.

2. Results
2.1. Identification and Analysis of LTR Retrotransposons in the Melilotus Genome

The number of identified LTR-RTs was 181,040 in the Melilotus genome (Table S1), with
101,240 belonging to the Ty3-gypsy group, 77,935 belonging to the Ty1-copia subgroup, and
1865 belonging to the other subgroup. In all, 168,428 LTR-RTs were successfully mapped
to eight chromosomes of Melilotus. The maximum LTR-RTs was found on chromosome 2
(∼1.38%), and the minimum was observed on chromosome 4 (∼1.18%) (Figure S1). Their
total length was 585,894,349 bp, which accounted for 55.28% of the Melilotus genome. In
total, 350 primer pairs were designed on the basis of RBIPs, IRAPs, ISBPs, and REMAPs
(Table 1).
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Table 1. Statistics of the type, number of identified, and designed primers of LTR-RTs.

Total Length of LTR-RTs Screened
(bp) No. of LTR-RTs Identified No. of Primers Designed for Each Type of

LTR-RTs

585,894,349 Ty1/Copia 77,935 RBIP 232
Ty3/gypsy 101,240 IRAP 105
Unknown 1865 ISBP 10

REMAP 3

RBIP: retrotransposon-based insertion polymorphisms, IRAP: inter-retrotransposon amplified polymorphisms, ISBP: insertion-site-based
polymorphisms, REMAP: retrotransposon-microsatellite amplified polymorphisms.

2.2. Amplification with LTR Primers in Melilotus

To amplify the genomic DNA of four accessions (Acc3, Acc5, Acc6, and Acc7) that
were randomly selected for primer identification, 350 LTR-RT primer pairs were initially
used. The total number of primer pairs that generated amplification products was 320, and
79 primer pairs showed polymorphism in four accessions. The polymorphic primers were
chosen for further screening using 15 M. albus accessions, and each accession included four
individual plants (Figure S2). Among the primer pairs, 47 produced bands and revealed
polymorphisms, including 34 pairs of RBIP primers and 13 pairs of IRAP primers (Figure 1,
Table S2). Additionally, to confirm the authenticity and accuracy of the PCR amplification
bands obtained, the electrophoretic bands produced by primer pair Ma_LTR_302, which
amplified variant alleles ranging from 411 to 426 bp in the seven Melilotus species, were
sequenced. The primer pair Ma_LTR_302 belongs to the RBIP type, with the forward
primer located outside of the LTR in the surrounding genome sequence of the LTR-RTs and
the reverse primer located in the LTR regions of the LTR-RTs (Figure 2). We found that the
flanking sequence inserted by LTR-RT is the main cause of polymorphisms, which is in
accordance with previous studies [12].
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2.3. Transferability of the Newly Developed LTR Retrotransposon-Based Markers

In the first step, 79 pairs of primers were selected and further screened in 15 M. albus
accessions. In total, 47of the 79 LTR primer pairs showed polymorphisms among 15 M. albus
accessions. A total of 182 alleles were obtained, and 3 to 7 alleles were observed per
locus, with an average of 3.96. Primer 229 had the largest number of polymorphic bands
(7) and highest polymorphism information content (PIC) value. The average expected
heterozygosity (He) was 0.61, ranging from 0.42 to 0.8. The PIC values were between 0.38
and 0.77, with a mean of 0.54 (Table 2).
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Table 2. Primer sequence, allele size range and polymorphism information for 47 LTR retrotransposon loci among 15
M. albus accessions.

Primer Code Type Primer Sequence Allele Size Range (kp) NA He PIC

25 RBIP F:GAGAACTGAGAAGAGGGTC
R:CTCCACCTTGACTTGAATC 0.2–0.3 5 0.76 0.72

40 RBIP F:GAAAGGATTCTGAGCGTAG
R:ATACTCTCCACCACTGTCA 0.5–0.7 3 0.67 0.6

41 RBIP F:GAAAGGATTCTGAGCGTAG
R:GTAATACTCTCCACCACTGTC 0.4–0.7 5 0.67 0.63

45 IRAP F:TATGCTTCAACCTGAGGG
R:GTTCATTTCTGCTCGCTC 0.3–0.4 4 0.62 0.56

46 RBIP F:GAAAGTCTAATGCCGAGG
R:AATACTCTCCACCACGGT 0.4–0.5 5 0.45 0.43

54 RBIP F:TCTCAGACATAGAACCCG
R:AGTGATGGTAACCCAACC 0.3–0.4 4 0.59 0.53

55 RBIP F:GTGTCCACAAAGGATTCC
R:TCTCCACAAGACCACTTC 0.2–0.4 4 0.43 0.4

62 IRAP F:ATTTAGTGGCAGCCCTTC
R:GACCTTTCTTTCCGCATC 0.3–0.4 3 0.6 0.52

67 RBIP F:GACAACTTGAACGGACAAAC
R:AGGGTAAAGGCTAAGGGAG 0.15–0.2 3 0.57 0.48

68 RBIP F: GGGACAACTACATAACTTGG
R: GCTGCCACTAAATCAGAG 0.4–0.5 3 0.54 0.44

69 RBIP F: TCACTTACCTATTGCTCTCC
R: TGCTTCCTTGACAGTCTTAG 0.15–0.4 3 0.64 0.57

74 RBIP F:TTCATACCACTCCGAGAG
R:GGATGTCCATTAGAGGCT 0.15–0.3 4 0.68 0.61

76 RBIP F: TGTGTGTGTGTGTCTGTTCT
R: AACCTCGTAGTTCGGGTA 0.4–0.5 3 0.51 0.45
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Table 2. Cont.

Primer Code Type Primer Sequence Allele Size Range (kp) NA He PIC

78 RBIP F: CATCCTGAATAGAGTCCCT
R: ATCGGTATCCCTTAGCAC 0.2–0.3 3 0.49 0.43

83 RBIP F: CTGTAGTATTCAAGGGTGG
R: GAAGCCATTCTAAGGGTC 0.2–0.4 4 0.58 0.49

93 RBIP F: CTCCTTGACTGTTGCCATTA
R: GGGAAGAAACCCTGGATT 0.2–0.3 3 0.57 0.51

95 RBIP F: CCTGAAGAAGAATGGTCC
R: GTGGTAAGAAGTTGAAGCC 0.15–0.3 4 0.58 0.52

105 RBIP F: TCTCAACTCCAATGGCAG
R: TTCAGAGGCAGAAGCATC 0.2–0.4 4 0.52 0.43

138 IRAP F: GCATTGTTGTCACAGTCAAG
R:GCAAGTTACTCTTCATACCTGG 0.3–0.7 5 0.64 0.59

146 RBIP F: ATCCCTTCTCTCCTTCCCT
R: TCACCTTGATACTTGCCG 0.1–0.2 3 0.57 0.48

148 IRAP F: GGTGTGGACAGATAGTAAGG
R: GAGTTGGTAGGTTGAGTTTG 0.1–0.2 5 0.77 0.73

149 RBIP F: CTAAATGGAGGGAAGAGAGA
R: GTGACAACTTGAGTGCCA 0.2–0.3 3 0.56 0.46

152 IRAP F: CTTATCTCCCTCAACAAGC
R: CTACAGAAATGGCGACTTC 0.1–0.2 4 0.7 0.65

153 IRAP F: CAGCAACATAACGAGAACG
R:CCGAGAGAAATGAGAGAGAAGT 0.2–0.5 4 0.68 0.62

155 RBIP F: CTTGTTGCGTTAGTGTGC
R: AACTGGGATGGTCCGTAT 0.5–0.7 3 0.42 0.38

170 RBIP F: GTGACGAGAAGAAGAAAGG
R:CACAGATTTACCACTGGC 0.2–0.3 3 0.63 0.56

183 RBIP F: TTACTAATCCCACCACCC
R: GACGAAGGAGAAGAGAATG 0.2–0.4 3 0.56 0.47

196 RBIP F: GATTGTTCCGATTCAGGC
R: AGGACTTGCTGGATTTGG 0.3–0.5 5 0.66 0.6

209 RBIP F: GTCTCACACACAAGATTCC
R: GGTGGTTAGGGAGGTTAT 0.15–0.3 5 0.75 0.71

210 RBIP F: GTCTCACACACAAGATTCC
R: GGTGGTTAGGGAGGTTAT 0.15–0.3 5 0.76 0.72

226 RBIP F: GCTTCAAGTGTGGTGGAT
R: AACGCAACCCTTCTCTCT 0.15–0.3 5 0.64 0.59

229 RBIP F: ATCGGAATGGACTCTACC
R: GTGTATGCGTATGTGTGAG 0.15–0.3 7 0.8 0.77

277 RBIP F: TCAGATGGAGTTGTGAGG
R: GAGGCTAAACCCTACGAT 0.2–0.3 4 0.56 0.52

280 RBIP F: GAACTGTATGTGTCCAAGG
R: CCAGGAAGAGAACAAGAC 0.15–0.3 3 0.58 0.51

281 RBIP F: AGAGGAAGAAGACAACCG
R:GTCACAAAGGATGAGGGT 0.15–0.3 4 0.67 0.61

283 RBIP F: CCCGAATCTAAGGTCAAAGT
R: CACGCAAGAAACACATCAC 0.3–0.5 3 0.52 0.41

284 IRAP F: ATTTGGACCAGGCACACT
R: AAGCACTCCGTCATCGTA 0.2–0.4 4 0.63 0.55

286 IRAP F: CGGATGATACGAAAGTGAG
R: GCTTCTGTTGTTAGCCCAT 0.15–0.3 5 0.73 0.69

290 RBIP F: ACTAAGGTTCCAGGCTGT
R: GACTCATCCAACAATCCC 0.3–0.4 3 0.59 0.51

293 RBIP F: CGGCAAGGTAGAGAGAAGT
R: AATGGGCTTTGGAGTAGG 0.15–0.3 4 0.58 0.52
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Table 2. Cont.

Primer Code Type Primer Sequence Allele Size Range (kp) NA He PIC

300 IRAP F: CTCTCACACATACACAAAGG
R: ATCTGGAGTTCTGGAAGTC 0.3–0.5 4 0.56 0.51

301 RBIP F: CAAGCACGGTAAGTTAGC
R: CGAGTTCAAGAGCACCTT 0.15–0.4 4 0.49 0.46

302 RBIP F: AAAGAGGACAAAGACCCG
R: TAGTCAACGCACATACGC 0.2–0.5 5 0.5 0.47

324 IRAP F: GGTATCAGAGCCTGGTTAG
R: AAACAGTCCTCAGTTCCTC 0.15–0.3 5 0.65 0.6

336 IRAP F: GAGGAAGTAGACGCTTATTG
R: GTTGGTGGTGTCATTCAC 0.2–0.3 3 0.57 0.51

350 RBIP F: TCACAGAGTTTGAGTCCC
R: GAAGAAGAAGGTGGGTTC 0.2–0.3 4 0.62 0.54

Mean 3.96 0.61 0.54

NA: number of alleles, He: expected heterozygosity, PIC: polymorphic information content, RBIP: retrotransposon-based insertion
polymorphisms, IRAP: inter-retrotransposon amplified polymorphisms.

In this study, 47 newly developed LTR-RT markers generated polymorphic bands in
40 accessions of 18 Melilotus species. A total of 292 alleles were obtained at the 47 transfer-
able LTR-RT-based markers in 18 species, and 3 to 15 alleles were observed per locus, with
an average of 6.21 (Table S2), and 265 polymorphic loci were observed (90.75%). Primer 62
had the largest number of polymorphic bands (15) and highest PIC value, while primers
152, 277, and 290 produced the lowest number of polymorphic bands (3). The average He
was 0.70, ranging from 0.37 (primer 93) to 0.86 (primer 283). The PIC values were between
0.35 (primer 93) and 0.84 (primer 283), with a mean of 0.66.

2.4. Outlier Detection

We successfully tested a total of 47 polymorphic LTR-RT markers in 18 Melilotus
populations. We used the BayeScan 2.1 program and revealed 14 outlier loci in the group
of 292 amplified loci (Figure 3). All the detected outlier loci had positive alpha values and
high FST values (FST = 0.16771–0.25660; Table S3).
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Figure 3. BayeScan plot of 47 polymorphic LTR-RT markers in 18 Melilotus. Fst is plotted against the
log10 of the posterior odds (PO).

2.5. Genetic Diversity

The percentage of polymorphic loci (PPL), number of polymorphic loci (NPL), effective
number of alleles (Ne), observed number of alleles (NA), Shannon’s information index
(I), and Nei’s (1973) gene diversity (h) varied among the Melilotus species (Table 3). The
NPL ranged from 0 (M. sulcatus, M. segetalis, and M. wolgicus) to 98 (M. italicus), with a
mean of 37.67, and the highest and lowest PPL were 33.56% and 0%, respectively, with a
mean of 12.90. The NA ranged between 1 (M. segetalis, M. sulcatus, and M. wolgicus) and
1.3356 in M. italicus, with an average value of 1.1290. The Ne varied from 1 (M. segetalis,
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M. sulcatus, and M. wolgicus) to 1.2282 (M. italicus), with an average of 1.0879. The highest
level of h (0.1309) was observed for M. italicus, while the lowest level of h (0) was recorded
for M. segetalis, M. sulcatus, and M. wolgicus, with an average value of 0.0510. Accordingly,
the average I was 0.0750.

Table 3. Genetic variability of 18 Melilotus species detected by 47 LTR-RT-based markers.

Species Accessions NPL PPL (%) NA Ne h I

M. albus 3 79 27.05 1.2705 1.1679 0.0998 0.1493
M. altissimus 2 29 9.93 1.0993 1.0702 0.0411 0.0601
M. dentatus 3 50 17.12 1.1712 1.1128 0.0655 0.0970
M. elegans 2 45 15.41 1.1541 1.1090 0.0638 0.0932
M. hirsutus 2 43 14.73 1.1473 1.1041 0.0610 0.0891
M. indicus 3 70 23.97 1.2397 1.1583 0.0918 0.1360
M. infestus 3 61 20.89 1.2089 1.1452 0.0826 0.1213
M. italicus 3 98 33.56 1.3356 1.2282 0.1309 0.1929

M. officinalis 3 49 16.78 1.1678 1.1150 0.0658 0.0968
M. polonicus 2 24 8.22 1.0822 1.0581 0.0340 0.0497
M. segetalis 1 0 0.00 1 1 0 0
M. siculus 3 56 19.18 1.1918 1.1342 0.0762 0.1117

M. speciosus 2 38 13.01 1.1301 1.0920 0.0539 0.0787
M. spicatus 2 2 0.68 1.0068 1.0048 0.0028 0.0041

M. suaveolens 2 17 5.82 1.0582 1.0412 0.0241 0.0352
M. sulcatus 1 0 0.00 1 1 0 0
M. tauricus 2 17 5.82 1.0582 1.0412 0.0241 0.0352
M. wolgicus 1 0 0.00 1 1 0 0

Mean 37.67 12.90 1.1290 1.0879 0.0510 0.0750

NPL: number of polymorphic loci, PPL: the percentage of polymorphic loci, NA: observed number of alleles, Ne: effective number of
alleles, h: Nei’s (1973) gene diversity, I: Shannon’s information index.

2.6. Cluster and Population Structure Analysis

The unweighted pair group method with arithmetic mean (UPGMA) dendrogram
showed that the 18 Melilotus species were divided into three clusters (Figure 4). Cluster I
included M. elegans, M. dentatus, M. albus, M. hirsutus, M. altissimus, M. segetalis, M. officinalis,
M. polonicus, M. suaveolens, M. tauricus, and M. wolgicus, except for germplasm PI317635 of
M. italicus. Cluster II contained four species, namely, M. infestus, M. speciosus, M. sulcatus,
and M. siculus. Cluster III contained the remaining three species, namely, M. italicus,
M. indicus, and M. spicatus. In the dendrogram constructed, bootstrap values ranged from
36% to 100% between clusters, and the average bootstrap value observed in this study
was 75%.

Cophenetic correlation analysis was carried out to confirm the grouping pattern of
the Melilotus species (Figure S3). The correlation test results showed that the correlation
coefficient r was equal to 0.817 (Figure S3B).

Furthermore, 15 individual plants of M. albus were classified into four main clusters
(Figure S4). The cluster analysis showed that single plants from an accession were clustered
together, and the genetic similarity coefficients of 15 germplasms ranged between 0.75 and
0.95, thus revealing their close genetic relationships.

In accordance with the observed optimal goodness of fit (K = 2), the Bayesian clustering
model, which was carried out with STRUCTURE software on all individuals and run for
K = 1–11, divided the 40 evaluated accessions belonging to 18 Melilotus species into two
groups (Figure 5). Group 1 contained 16 individuals belonging to 7 species, namely,
M. sulcatus, M. siculus, M. spicatus, M. speciosus, M. italicus, M. infestus, and M. indicus.
Group 2 contained 11 species, namely, M. altissimus, M. albus, M. hirsutus, M. dentatus,
M. elegans, M. segetalis, M. officinalis, M. polonicus, M. suaveolens, M. wolgicus, and M. tauricus,
except for germplasm PI317635 of M. italicus.

Genetic variation within and among the Melilotus were determined by analysis of
molecular variance (AMOVA). All species were analyzed to be a single group by AMOVA
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(Table 4). According to the AMOVA results, there were highly significant differences
(p < 0.001) in genetic differentiation among species and within species. Of the total genetic
variance, 45.19% was due to differences among species, and 54.81% was due to differences
within species. Therefore, the results showed significant genetic differences among the
18 Melilotus species of the one group.

Table 4. Analysis of molecular variance (AMOVA) for 18 Melilotus species of the two groups.

Source of Variation Degrees of
Freedom

Sum of
Squares

Variance
Components

Percentage of
Variation p-Value

Among groups 1 167.759 5.198 12.13 <0.001
Among species within groups 16 963.857 18.976 44.29 <0.001

Within species 22 410.833 18.674 43.58 <0.001
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Table 5. The four classifications of molecular phylogeny, SSR, EST-SSR, and LTR-RT makers in Melilotus.

Categories Classification Subclassification Species

Molecular phylogeny [25] Clade I
M. albus, M. altissimus, M. hirsatus, M.officinalis,
M. polonicus, M. suaveolens, M. wolgicus,
M. elegans, M. dentatus, M. tauricus

Clade II Clade 1 M. spicatus
IIb M. indicus, M. segetalis

Clade 2 M. infestus
IIa M. siculus, M. sulcatus, M. speciosus, M. italicus

SSR makers [26] A
M. albus, M. altissimus, M. hirsutus, M. officinalis,
M. polonicus, M. suaveolens, M. wolgicus,
M. elegans, M.infestus, M. spicatus, M. sulcatus,

A1 M. italicus, M. speciosus
B M. dentatus, M. siculus, M. tauricus

B1 M. indicus, M. segetalis

EST-SSR markers [27] I
M. albus, M. altissimus, M. hirsutus, M. officinalis,
M. polonicus, M. suaveolens, M. wolgicus,
M. elegans, M. dentatus, M. tauricus

II M. indicus, M. segetalis, M. italicus, M. spicatus
III M. infestus, M. siculus, M. speciosus, M. sulcatus

LTR-RT markers GI
M. albus, M. altissimus, M. hirsutus, M. officinalis,
M. polonicus, M. suaveolens, M. wolgicus,
M. elegans, M. dentatus, M. tauricus, M. segetalis

GIII
GII

M. indicus, M. italicus, M. spicatus
M. infestus, M. siculus, M. speciosus, M. sulcatus
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3. Discussion

Molecular markers based on LTR retrotransposons show broad applications in genetic
mapping, genetic diversity assessment [28,29], phylogenetic evolution analysis [30], and
variety identification [31]. Additionally, compared with traditional phenotypic markers,
molecular markers are more efficient, accurate, and reliable for differentiating varieties
and closely related species [32]. Nevertheless, relatively few molecular markers have been
found in numerous non-model plants, including Melilotus, which considerably limits the
genetic research on these species. In previous studies, the genetic diversity of Melilotus
has been investigated using different molecular markers, such as simple sequence repeats
(SSRs) [26,33] and expressed sequence tags-simple sequence repeats (EST-SSRs) [27,34]. In
plant research, retrotransposons play a major role in genome evolution [35], and the pres-
ence of a very large number of error-prone retrovirus replications can lead to accumulation
of genetic variations [36]. Ramakrishnan et al. deployed retrotransposon-based markers
to reveal the genetic diversity and population structure of Asian bamboo [37]. However,
LTR-RT-based molecular markers, which are remarkable tools in detecting genetic diversity,
have not previously been used in Melilotus.

In this study, 181,040 LTR retrotransposons were used to develop 350 LTR primer
pairs for PCR amplification. In total, 47 of the 79 LTR primer pairs showed polymorphisms
among 15 M. albus accessions, which indicated that this type of molecular marker can
distinguish 15 M. albus accessions well (Figures S2 and Figure S3). The high levels of
polymorphism observed may be due to the M. albus materials selected for screening
the primers. In addition, the polymorphic primer pairs were screened to validate the
availability and transferability of LTR-RTs in a panel of 40 Melilotus accessions, which
yielded 292 clear strong bands. The average number of alleles per primer pair found in this
study was higher than the number of EST-SSRs [27,38], while 265 (90.75%) of 292 bands
were polymorphic and showed the potential for use in genotyping. Moreover, all of the
47 primer pairs could amplify products successfully in most species and showed stable
transferability, exhibiting a higher transferability rate than that obtained in chokecherry
(Prunus virginiana L.) [39] and that from Melilotus EST-SSR primers [27]. Molecular markers
are feasible for evaluating genetic diversity in plant species [40]. The genetic diversity
revealed at LTR-RT loci was supported by high values of He and PIC. In this study, the
mean He and PIC were 0.70 and 0.66, respectively. Primer 283 showed a stronger ability to
discriminate genotypes due to its high PIC value (0.84). The primer 93 marker showed a
lower PIC value (0.35), suggesting that this primer had less discriminatory ability in the
present study. These results clearly suggest that more diverse LTR-retrotransposon marker
loci can be identified and effectively applied to breeding programs to obtain the plant types
desired for commercial cultivation. The I value can be used to evaluate the level of genetic
diversity in a population, where the greater the I is, the greater the genetic diversity [41].
Yan et al. [27] obtained a lower average I value (0.0670) than this study (0.0750) using EST-
SSR markers, indicating that the Melilotus accessions evaluated in this study were more
diverse. In addition, the EST-SSR marker analysis did not consider mononucleotide repeats
because of the difficulty of distinguishing single nucleotide repeats from polyadenylation
products and single nucleotide stretch errors produced by sequencing [27].

In previous molecular phylogenetic analyses [25], 18 Melilotus species were classified
into clade I and clade II (Table 5). An SSR maker analysis showed that all Melilotus species
were clustered into A and B [26], which were further divided into A1 and B1, respectively
(Table 5). An EST-SSR marker analysis showed that the 18 Melilotus species were grouped
into I, II, and III [27]. According to the UPGMA cluster analysis involving the LTR-RT
markers conducted in this study, the 18 species were grouped into three clusters. Among
the 11 species in cluster I, 10, 10 and 8 of the species were consistent with clade I, I and
A, respectively. Except for M. segetalis, the GIII of the phylogenetic trees was consistent
with II. Cluster II contained the remaining species, which was consistent with III. As the
primers increased, the results became more similar. Melilotus germplasms from different



Plants 2021, 10, 890 11 of 15

countries clustered together, indicating that kinship has a greater impact on the genetic
structure than the location provenance used in the present study.

The detection of natural selection signatures within a genome can reveal which genes
are under the influence of natural selection. It is possible to identify loci with an atyp-
ical variation pattern (outlier loci) by comparing the genetic diversity of loci across the
genome, which is likely to be affected by selection. Outlier loci can better explain the
adaptive genetic variation that is not accounted for by neutral loci [42]. Although a
large number of loci were revealed in this study, less than 5% were identified as outliers
(Table S3). Additionally, the results obtained with the LTR-RT markers were similar to those
with the microsatellite (SSR) method, which revealed different sizes of DNA fragments
by electrophoresis. Although LTR retrotransposons are highly heterogeneous in plants,
homoplasy is also obviously important in evaluating phylogenetic relationships among
species. However, microsatellites follow a stepwise mutation process, considering allele
size difference, and it may be more suitable to use microsatellite data analysis [43].

4. Materials and Methods
4.1. Plant Materials, Genomic DNA Isolation, and PCR Primer Design

A total of 15 accessions of Melilotus albus were utilized to screen polymorphic LTR-
RT-based markers and evaluate genetic diversity (Table S4). In total, 40 accessions of
18 Melilotus species were obtained to assess the newly developed LTR-RT-based markers
for their transferability (Table 6). The seeds of the accessions utilized in this study were
obtained from the National Plant Germplasm System (NPGS, Beltsville, MD, USA). Total ge-
nomic DNA was extracted using the sodium dodecyl sulfate (SDS) method [44]. The quality
of the isolated DNA was assessed in 1% agarose gels and by a NanoDrop spectrophotome-
ter (ND-1000, Thermo Scientific™, Waltham, MA, USA). The DNA concentrations were
normalized to 20 ng/µL for polymerase chain reaction (PCR).

Table 6. Accessions of 18 Melilotus species used for analysis of primer transferability.

Code Species Accession Number Origin Latitude Longitude

1 M. albus PI 342739 England, United Kingdom N 52◦26′ W 19◦06′

PI 595327 China N 43◦18′ E 86◦40′

PI 662299 Vienna, Austria N 48◦20′ E 16◦33′

2 M. altissimus Ames 18376 Nebraska, United States N 41◦26′ W 99◦23′

PI 420163 France N 46◦13′ E 2◦12′

3 M. dentatus PI 108656 Armenia N 40◦4′ E 45◦2′

PI 90753 China N 35◦51′ E 104◦11′

PI 595334 China N 42◦49′ E 85◦30′

4 M. elegans PI 260271 Ethiopia N 9◦9′ E 37◦48′

PI 250873 Iran N32◦4′ E 54◦4′

5 M. hirsutus Ames 22882 Russian Federation — —
PI 129697 Sweden N 60◦7′ E 18◦38′

6 M. indicus Ames 21619 Nebraska, United States N 41◦29′ W 99◦54′

PI 107562 Uzbekistan N 41◦23′ E 69◦4′

PI 43595 — — —
7 M. infestus PI 306326 Algeria N 27◦13′ E 2◦29′

PI 306327 Italy N 41◦52′ E12◦34′

PI 306328 Hungary N 47◦9′ E 19◦30′

8 M. italicus PI 317635 Czechoslovakia N 14◦28′ E 121◦2′

PI 317638 Israel N 31◦2′ E 34◦51′

PI 317634 Manitoba Canada N 56◦11′ W 97◦4′

9 M. offcinalis PI 132270 Romania N 45◦49′ E 24◦29′

PI 342889 Germany N 51◦13′ E 10◦23′

PI 342898 France N 46◦34′ E 2◦18′
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Table 6. Cont.

Code Species Accession Number Origin Latitude Longitude

10 M. polonicus PI 314386 Former Soviet Union N 45◦5′ E 41◦50′

PI 108647 Former Soviet Union N 45◦5′ E 41◦50′

11 M. segetalis PI 317649 Czechoslovakia N 48◦2′ E 18◦22′

12 M. siculus PI 129703 Malta N 35◦56′ E 14◦22′

PI 318508 Greece N 39◦4′ E 21◦49′

PI 33366 Former Soviet Union — —
13 M. speciosus PI 317650 Manitoba, Canada N 53◦45′ W 98◦48′

PI 64995 Morocco N 31◦52′ W 6◦13′

14 M. spicatus Ames 18402 Nebraska, United States N 41◦29′ W 99◦54′

PI 314466 Uzbekistan — —
15 M. suaveolens Ames 23793 Mongolia N 48◦10′ E 91◦45′

PI 595395 United States N 41◦52′ W 93◦5′

16 M. sulcatus PI 227595 Tunisia N 33◦53′ E 9◦32′

17 M. tauricus PI 67510 Ukraine N 44◦24′ E 33◦49′

Ames 25789 Ukraine N 44◦24′ E 33◦49′

18 M. wolgicus PI 317666 Czechoslovakia N 48◦2′ E 18◦22′

—: note unknown.

4.2. Identification of LTRs

Our research group completed the whole-genome sequencing of diploid M. albus,
with a genome size of approximately 1.04 Gb (BioProject ID: PRJNA674670). The M. albus
LTR sequences (LTRs) were identified using the ‘RepeatMasker’ tool on 20 December 2018
(http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker). The ‘cross_match’ search
engine was applied, and ‘Rice’ was specified as the DNA source. Other software parameters
were run according to the default options. In addition, the LTR primers were designed
using DNAMAN Version 6.0 (Lynnon Corporation, San Ramon, CA, USA) (Table S5).

4.3. Primer Selection and PCR Conditions

Four accessions of M. albus were randomly selected and used to screen 350 LTR-RT
markers by PCR amplification. Amplification was conducted in a 10 µL reaction solution
that included 1.0 µL of genomic DNA (20 ng/µL), 4.95 µL of 2× reaction mix (500 µM
dNTP, 20 mM Tris–HCl, 100 mM KCl, 3 mM MgCl2), 2.0 µL of double-distilled water,
1.0 µL of each LTR primer (4 µM each), and 0.05 µL of 2.5 U/µL Golden DNA Polymerase.
The PCR program consisted of a pre-denaturation of 3 min at 94 ◦C, followed by 35 cycles
of 94 ◦C for 30 s, 50–60 ◦C for 30 s, and 72 ◦C for 30 s, and finally, an extension cycle of
7 min at 72 ◦C. The PCR products were separated in 6.0% nondenaturing polyacrylamide
gels (400 V, 1.5 h) for visualization under UV Imager Gel Doc XR+ system lights (Bio-Rad,
Hengshui, Hebei, China).

4.4. Sequencing of PCR Amplification Products

PCR was conducted in a 25.2 µL volume consisting of 10 µL of 2× reaction mix, 0.2 µL
of Golden DNA Polymerase, 8.0 µL of ddH2O, 3.0 µL of genomic DNA (20 ng/µL), and
2.0 µL of each primer. The PCR products were sent to a commercial company (Shang-
hai Sangon Biological Engineering Technology, Shanghai, China) for sequencing (ABI
3730 DNA sequencer). Sequence information was used for multiple sequence alignment
using DNAMAN.

4.5. Data Analysis

The number of amplified bands was recorded to construct a “0, 1” binary matrix. The
polymorphism information content (PIC) and expected heterozygosity (He) were calculated
as reported previously [45]. BayeScan.V.2.1 software [46] can be used to detect genetic
markers under selection using differences in allele frequencies between populations. The
default parameters given in the program were used. The POPGENE 32 software was

http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker
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used to calculate the percentage of polymorphic loci (PPL), number of polymorphic loci
(NPL), number of observed alleles (NA), number of efficient alleles (Ne), Nei’s (1973)
diversity index (h), and Shannon’s information index (I) [47]. Analysis of molecular
variance (AMOVA) was carried out using the method of Arlequin suite version 3.5 [48].
The UPGMA dendrogram was produced using Free Tree V.9.1.50 software [49]. To assess
the reliability, the field repetition count we used was 100. The phylogram was visualized
by TreeViewX V.5.0 software [50]. In addition, the Cophenetic correlation test was carried
out by using a matrix comparison plot in NTSYSpc.V.2.1. To subdivide the individuals into
different subgroups, a Bayesian clustering analysis was carried out in STRUCTURE 2.3
software [51]. Because of the estimated ‘log probability of data’ [LnP(D)] of STRUCTURE
overestimating the number of subgroups [52], we used the ad hoc measure K [53] to
estimate the number of groups. Values of K to explore were chosen according to [53] and
were calculated in Excel tables. It was run for K = 1–11 with the admixture model, and a
total of 20 independent runs were set for each K value and for each run.

5. Conclusions

In conclusion, 350 pairs of LTR retrotransposon primers for identifying the molecular
markers were designed for M. albus. Overall, 47 primer pairs showed high polymorphism
among 15 M. albus accessions, and all of the polymorphic primer pairs showed transferabil-
ity among 40 accessions of 18 Melilotus species. In addition, the origin of the accessions
did not have an influence on the genetic structures in the 18 Melilotus species. Our results
suggest that the markers investigated here will be useful for studying the genetic diversity,
population structure, and germplasm of Melilotus species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10050890/s1, Table S1: The information of being identified LTR-RTs in the Melilotus
genome. Table S2: Primer sequence, allele size range and polymorphism information for 47 LTR
retrotransposon loci among 18 Melilotus species. Table S3: Detection of outlier loci using BayeScan.
Table S4: List of M. albus accessions used for LTR-RT molecular marker validation. Table S5: Informa-
tion of LTR primers designed using DNAMAN software. Figure S1: Distribution of the ratio of LTR
retrotransposons on eight chromosomes of Melilotus. Figure S2: The result of PAGE (polyacrylamide
gel electrophoresis) of primer 25 in 15 M. albus accessions. Figure S3: Matrix comparison plot for
cophenetic correlation test. Figure S4: Dendrogram of 15 M. albus by the UPGMA cluster analysis
based on LTR-RT analysis.
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