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Abstract: This study examined the effects of monochromatic illumination (blue, red, green and yel-
low) employing light-emitting diodes (LEDs), trophic conditions (photoautotrophic and mixotrophic),
and nitrogen availability (high and low peptone concentration) on the growth and biochemical com-
position of Auxenochlorella protothecoides. The results revealed that mixotrophic conditions did not
favor A. protothecoides, giving lower growth rates compared to heterotrophy (dark conditions). How-
ever, mixotrophy gave significantly higher growth rates compared to photoautotrophy. The best
light wavelengths for mixotrophic cultivation were that of white and red. In all cases investigated in
this study, high peptone concentration (4 g/L) resulted in decreased growth rates. Regarding the
biochemical composition of A. protothecoides, the strongest effect, irrespective of trophic conditions,
was caused by nitrogen availability (peptone concentration). Specifically, at nitrogen replete con-
ditions (4 g/L peptone), biomass was rich in proteins (32–67%), whereas under deplete conditions
(0.5 g/L peptone), A. protothecoides accumulated mainly carbohydrates (up to 56%). Mixotrophic
conditions generally favored higher carbohydrate content, whereas photoautotrophic conditions
favored higher protein content. The different illumination spectra did not have any clear effect on the
biochemical composition (metabolites content), except that, in all trophic conditions, the use of the
green spectrum resulted in higher chlorophyll b content. Chlorophyll a fluorescence studies revealed
that the trophic conditions and the high peptone concentrations impacted the photosystem II (PSII)
performance, and also affected plastoquinone re-oxidation kinetics and the heterogeneity of the PSII
reaction centers.

Keywords: mixotrophy; glycerol; monochromatic illumination; photosynthetic performance; mi-
croalgae; single-cell protein

1. Introduction

Microalgae are an important renewable source for the production of various biomolecules
applied in different sectors (food industry, chemical industry, medicine, etc.) and offer
numerous possibilities for developing a modern bioeconomy [1]. Microalgae are mainly
photoautotrophic (photosynthetic) microorganisms and thus have attracted interest as a
means of harvesting light energy and converting it into valuable metabolites [1,2]. How-
ever, microalgae display flexibility in their metabolism and are capable of growing under
different trophic conditions, namely photoautotrophy, heterotrophy, and mixotrophy. Un-
der photoautotrophic growth conditions, microalgae utilize sunlight as an energy source
and fix CO2. Under heterotrophic conditions, microalgae utilize organic molecules, such
as glucose, glycerol, and acetate, as energy and carbon sources, and under mixotrophic
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conditions, in addition to the effects of heterotrophy, they also perform photosynthesis and
can simultaneously utilize CO2 and organic substrates as a carbon source [3]. Mixotrophic
growth conditions are of particular importance, particularly at the industrial scale, be-
cause they overcome the light limitation of photoautotrophy and significantly reduce the
requirements of large land areas for the production of microalgal biomass [4]. A suit-
able organic carbon source for the mixotrophic or heterotrophic growth of microalgae is
glycerol, a waste-stream of industrial biodiesel production that is available in large quanti-
ties [5]. A highly promising microalgal species for glycerol utilization is Auxenochlorella
protothecoides, and several studies have demonstrated its strong potential to be grown using
glycerol [6–10].

Light intensity (quantity) and light spectra (quality) are important parameters for
microalgal growth. Although microalgal growth using solar energy is the most economi-
cal way to produce microalgae, it requires large outdoor areas and also suffers from the
eventually low photosynthetic efficiency observed at full sunlight intensities, i.e., the low
conversion of light energy into biomass (in practice 1–1.5% of solar light) equivalent to
2–3% of photosynthetically active radiation. Even at the maximum theoretical efficiency
of solar energy conversion (≈11%), the strongest illuminated outer cell layers lead to a
high dissipation rate (>80%) of light energy because unused thermal energy activates
photoprotective mechanisms (such as non-photochemical quenching), thus resulting in
overall low photosynthetic efficiencies. This high energy dissipation is due to the mismatch
between the absorption and the utilization of energy during the dark reactions [11–13].
Artificial illumination can significantly increase photosynthetic efficiency by avoiding
photoinhibition due to high light intensities [14]. Light spectra have an important impact
on the photosynthetic process and hence on growth because not all light wavelengths are
absorbed equally by the photosynthetically active pigments of microalgae. Chlorophyll a
is the core photosynthetically active pigment of the reaction centers, whereas chlorophyll
b, c and d are accessory pigments that extend the range of light absorption. Chlorophylls
(green pigments) have two major absorption bands: blue or blue-green (450–475 nm) and
red (630–675 nm) [15]. Moreover, several studies have demonstrated that the light quality
has an impact on the biochemical composition of microalgae, triggering the accumulation
of major metabolites, such as lipids, proteins, and carbohydrates, or pigments such as
chlorophylls, carotenoids, or cyanobacterial phycocyanin [16–19]. Light-emitting diodes
(LEDs) can serve as an energy efficient light source for microalgal growth compared to
traditional lighting (halogen bulbs, fluorescence bulbs, incandescent bulbs, etc.), because
they emit only at given bands of wavelengths that are absorbed by the photosynthetic pig-
ments [18,20]. Moreover, LEDs can potentially serve as an effective light source providing
improved capabilities for the control and manipulation of the biochemical composition
of microalgae. However, there is a lack of published research work using monochro-
matic illumination for the growth and the manipulation of the biochemical composition of
microalgae grown under mixotrophic conditions.

Chlorophyll fluorescence analysis is a highly useful tool for obtaining information
about the photosynthetic process and in particular of the photosystem II (PSII). Although a
vast literature exists on chlorophyll fluorescence studies on higher plants and photosyn-
thetic microorganisms (such as microalgae) grown under different conditions (focusing
mainly on stress conditions), few data are available regarding chlorophyll fluorescence
of mixotrophically grown microalgae [21,22]. Hence, the overall aim of this work was to
study the effect of selected monochromatic LEDs (blue, green, yellow, and red) on the
growth and biochemical composition of the microalga A. protothecoides. In addition, this
study aimed to study the effect of the trophic conditions on the PSII performance through
chlorophyll fluorescence measurements and analysis.

2. Results and Discussion

There is an increased interest in utilizing artificial light for growing microalgae, partic-
ularly for the production of high value products, such as pigments, unsaturated fatty acids,
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and proteins. Among different artificial light types, the use of LEDs is considered to be
the most energy efficient, mainly because they emit precise light wavelength bands that
can be absorbed by the photosynthetic antenna [23,24]. Therefore, in this study different
LED colors were used to assess the growth ability of A. protothecoides and its biochemical
composition changes in photoautotrophic and mixotrophic metabolisms. The cultures with
low glycerol concentration (0.5 g/L) were considered as photoautotrophic, and those with
high glycerol concentration (10 g/L) as mixotrophic (see Section 3.2 for more details on the
experimental design).

2.1. Effect of Trophic Conditions and Monochromatic Illumination on the Growth Rates of
A. protothecoides
2.1.1. Photoautotrophic Conditions

Figure 1 presents the effect of the trophic conditions and the monochromatic illumi-
nation on the growth rates of A. protothecoides with 0.5 and 4 g/L peptone (PL and PH,
respectively). Figure 1a shows the photoautotrophic cultures with low peptone concentra-
tion (PL), which are considered to reflect a typical form of photoautotrophy (see Section 2.2
for more details). The highest growth rates were obtained with white LEDs (0.18 1/d)
followed by red (0.158 1/d; with statistically significant differences between them; p < 0.05),
whereas blue (0.111 1/d), green (0.101 1/d), and yellow light (0.074 1/d) displayed much
lower growth rates. However, all cultures illuminated with monochromatic lights had
significantly higher growth rates compared to the negative control (grown on dark condi-
tions). Because the PL cultures grew photoautotrophically, the differences in the growth
rates reflect the diverse ability of A. protothecoides to harvest the different light wavelengths.
Figure A2 (see Appendix A) shows the spectrum analysis of each monochromatic LED
used in the study and the associated absorption peaks of the different pigments of the
photosynthetic antenna of microalgae. Based on the absorption peaks of chlorophyll a,
b, and carotenoids, yellow and green lights are poorly absorbed, whereas white, blue,
and red are absorbed by the main photosynthetic pigments. Because white, red, and blue
are the main light wavelengths that are absorbed by the photosynthetic pigments, it was
initially hypothesized that they would display higher growth rates compared to the poorly
absorbed green and yellow. The effects on the PL cultures confirm this hypothesis. A few
other reports confirm that microalgae do not grow well under green light [25–27] because
this wavelength is poorly absorbed by the photosynthetic antenna and cannot provide
useful energy for photosynthesis. However, there is disagreement concerning yellow light,
as Hultberg et al. [26] and de Mooij et al. [28] found that yellow light was very effective
for biomass production of Chlorella vulgaris and Chlamydomonas reinhardtii, respectively. de
Mooij et al. [28] indicate that yellow light could be used more efficiently, especially when
light is provided in high densities compared to red, blue, or white because the latter result
in an oversaturation of the photosynthetic antenna, whereas the excess light is wasted as
energy through heat dissipation. However, because light was provided in the present study
significantly below the saturation point (usually around 200–400 µmol/m2/s) [15], yellow
light resulted in lower growth rates compared to red, white, and blue.
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Figure 1. Growth rates of A. protothecoides cultivated photoautotrophically for seven days with different light wavelengths: 
(a) with low peptone (PL) and (b) with high peptone (PH). Each bar represents the average ± SD of n = 3 replicates. The
letters (b: blue, g: green, y: yellow, r: red. w: white, and d: dark) indicate that there were no statistically significant differ-
ences between the means (two-way ANOVA; Duncan method; p < 0.05) of the pairwise comparisons between the different 
wavelengths. Between the variable groups PL and PH there were statistically significant differences (p < 0.01).

2.1.2. Mixotrophic Conditions 
Figure 2 illustrates the growth rates of A. protothecoides grown mixotrophically on 

glycerol with 0.5 and 4 g/L peptone (ML and MH, respectively) and illuminated with dif-
ferent light wavelengths. Mixotrophy gave significantly higher growth rates (p < 0.01) 
compared to the autotrophic conditions, which shows the positive response and ability of 
A. protothecoides to grow on glycerol as a source of energy and organic carbon. Dark con-
ditions in the presence of glycerol (heterotrophic) gave the highest growth rates for both
MH and ML (0.231 and 0.279 1/d, respectively). In the series of cultures with low peptone
concentration (ML; 0.5 g/L), the highest growth rates were obtained under mixotrophic
conditions with yellow illumination (0.277 1/d), followed by white illumination (0.245
1/d), red and green (0.220 and 0.212 1/d, respectively), whereas blue light displayed the
lowest values (0.189 1/d). As in photoauthotrophic conditions, under mixotrophy the in-
creased peptone concentration also showed lower growth rates in all individual treat-
ments studied (p < 0.01). Among the light wavelengths tested on MH cultures, yellow,
white, and blue gave the highest values (0.215, 0.208, and 0.207 1/d, respectively) followed
by green and red lights (0.181 and 0.165 1/d, respectively).
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Figure 1. Growth rates of A. protothecoides cultivated photoautotrophically for seven days with different light wavelengths:
(a) with low peptone (PL) and (b) with high peptone (PH). Each bar represents the average ± SD of n = 3 replicates. The
letters (b: blue, g: green, y: yellow, r: red. w: white, and d: dark) indicate that there were no statistically significant
differences between the means (two-way ANOVA; Duncan method; p < 0.05) of the pairwise comparisons between the
different wavelengths. Between the variable groups PL and PH there were statistically significant differences (p < 0.01).

In Figure 1b the effect of the different light wavelengths on the cultures with high
peptone (PH) content is shown. In all cases there is a marked decrease (p < 0.01) in the
growth rates compared to the low peptone cultures (PL), except for the negative control
(dark conditions), where it seems that peptone acted in the long term as an energy source
for cells and supported a slightly better growth (see Section 3.2 for more details on peptone
used as a carbon source). The decreased growth rates of PH suggest that peptone at
relative higher concentrations has an inhibitory effect on A. protothecoides grown under
photoautotrophic conditions. Among the wavelengths that are more strongly absorbed
by the photosynthetic pigments, blue LEDs showed significantly lower growth rates
compared to white and red. These results are in agreement with the study of Chen and
Su [29], who also obtained lower biomass production using blue light in Auxenochlorella
pyrenoidosa compared to red and white. Blue light has shorter wavelengths and therefore
contains higher energy [30]. Hence, it is more likely to cause photo-inhibition. However,
various studies demonstrate that blue color is very effective and promotes higher biomass
production in other microalgal species [19,24,31]. The diverse results on the literature
reflect that the effectiveness of light wavelength on biomass production could be species
dependent. This could be the outcome of the content and ratio of photosynthetically active
pigments, the light saturation level, and in general the physiological characteristics of each
microalgal species [15,32]. The present results suggest that A. protothecoides reproduction
capacity is not favored by the illumination with blue light.

2.1.2. Mixotrophic Conditions

Figure 2 illustrates the growth rates of A. protothecoides grown mixotrophically on
glycerol with 0.5 and 4 g/L peptone (ML and MH, respectively) and illuminated with
different light wavelengths. Mixotrophy gave significantly higher growth rates (p < 0.01)
compared to the autotrophic conditions, which shows the positive response and ability
of A. protothecoides to grow on glycerol as a source of energy and organic carbon. Dark
conditions in the presence of glycerol (heterotrophic) gave the highest growth rates for both
MH and ML (0.231 and 0.279 1/d, respectively). In the series of cultures with low peptone
concentration (ML; 0.5 g/L), the highest growth rates were obtained under mixotrophic
conditions with yellow illumination (0.277 1/d), followed by white illumination (0.245 1/d),
red and green (0.220 and 0.212 1/d, respectively), whereas blue light displayed the lowest
values (0.189 1/d). As in photoauthotrophic conditions, under mixotrophy the increased
peptone concentration also showed lower growth rates in all individual treatments studied
(p < 0.01). Among the light wavelengths tested on MH cultures, yellow, white, and blue
gave the highest values (0.215, 0.208, and 0.207 1/d, respectively) followed by green and
red lights (0.181 and 0.165 1/d, respectively).
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Figure 2. Growth rates of A. protothecoides cultivated mixotrophically for seven days with different light wavelengths:
(a) with low peptone (ML) and (b) with high peptone (MH). Each bar represents the average ± SD of n = 3 replicates.
The letters (b: blue, g: green, y: yellow, r: red. w: white, and d: dark) indicate that there were no statistically significant
differences between the means (two-way ANOVA; Duncan method; p < 0.05) of the pairwise comparisons between the
different wavelengths. Between the variable groups ML and MH there were statistically significant differences (p < 0.01).

The lower growth rates of illuminated cells were most probably due to a potential
inhibition effect of light on A. protothecoides grown mixotrophycally. As was reported by
Xiao et al. [33], the proteomics analysis of A. protothecoides cultivated in glucose revealed
that light had an apparent restrictive effect on the metabolic process of organic carbon
assimilation. In addition, it was demonstrated here that the mixotrophic conditions also
affected the photosynthetic process and the photosynthetic apparatus heterogeneity of
A. protothecoides. The various parameters and indexes of chlorophyll fluorescence (such
as Fv/Fm and PIABS) revealed that in the presence of glycerol the overall photosynthetic
performance was reduced (see Section 2.3). These results suggest that A. protothecoides
is not favored by the mixotrophic conditions, probably due to a combination of reduced
organic carbon assimilation and lower photosynthetic performance. It should be noted
however that various microalgal species, for example Nannochloropsis sp. (Xu et al., 2004)
or Platymonas subcordiformis (Xie et al., 2001), display higher growth rates and grow more
quickly under mixotrophic conditions and therefore mixotrophy is considered as a ben-
eficial culturing technique [34]. A three-way ANOVA analysis revealed that there was a
statistically significant difference (p < 0.01) between all three variable categories studied
(light wavelengths, glycerol presence, and high/low peptone concentrations), confirming
that each one of the three variables is a significant bioprocess parameter that influences the
overall growth capability of A. protothecoides.

2.2. Biochemical Composition and Pigment Content of A. protothecoides

Figure 3 illustrates the biochemical composition (proteins, lipids, and carbohydrates)
of A. protothecoides cultivated in the different conditions tested in this study. The main trend
observed was that cultures with higher peptone concentrations (PH and MH) generally
displayed increased (p < 0.01) protein content (49.5% on average) compared to PL and
ML (29% on average) apparently due to the higher availability of nitrogen. Carbohydrate
content was in general higher (p < 0.01) in the associated cultures with lower peptone
content (42.5% vs. 29% on average in low and high peptone, respectively). Between
the trophic conditions, photoautotrophic cultures gave higher contents for protein (48%
on average) and lipid (11% on average), and lower for carbohydrates (26% on average)
compared to the mixotrophic (30%, 5%, and 41% on average for proteins, lipids, and
carbohydrates, respectively) (p < 0.01). Regarding lipid content, it was found that higher
availability of nitrogen in the photoautotrophic cultures resulted in higher lipid content
(p < 0.05). These results are not in line with other studies on A. protothecoides, which
report lipid contents of more than 50% [35,36]. It appears that the strain used in this study
under the specific conditions resulted in the accumulation either of proteins (when grown
under nitrogen replete conditions) or carbohydrates (when grown under low nitrogen
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availability). It is well documented that under nitrogen limitation, microalgae change their
metabolic pathways towards the synthesis of carbonaceous compounds (carbohydrates
or lipids). In particular, the accumulation of carbohydrates has been observed as the first
response of microalgae to nitrogen starvation, whereas lipids start to accumulate in later
cultivation stages [37].
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centration and trophic conditions), whereas the light wavelength did not result in statisti-
cally significant interactions. These results suggest that biochemical composition was 
ruled mainly by the availability of nitrogen and the trophic condition. Regarding the effect 
of light wavelength on lipid production, no clear observation was drawn (no statistically 
significant differences p > 0.05). Overall, there was a strong negative correlation (R2 = 0.83) 
between the protein and carbohydrate content, which indicates that the accumulation of 
one of them was accompanied by the decrease in the content of the other. No other strong 
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0.5). 
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highly decreased (from about 2.1% on average for all pigments for PL and PH to about 
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Figure 3. Biochemical composition of A. protothecoides cultivated in different light wavelengths
under photoautotrophic conditions with (a) low peptone and (b) high peptone concentration, and in
mixotrophic conditions with (c) low peptone and (d) high peptone concentration. Each bar represents
the average of n = 3 replicates.

Regarding the effects of light wavelength, yellow light and dark conditions displayed
the highest protein content, whereas the wavelengths white, red, and blue resulted in
the triggering of the accumulation of carbohydrates. Overall, the three-way ANOVA
analysis revealed that there was a significant interaction between the two variables (peptone
concentration and trophic conditions), whereas the light wavelength did not result in
statistically significant interactions. These results suggest that biochemical composition was
ruled mainly by the availability of nitrogen and the trophic condition. Regarding the effect
of light wavelength on lipid production, no clear observation was drawn (no statistically
significant differences p > 0.05). Overall, there was a strong negative correlation (R2 = 0.83)
between the protein and carbohydrate content, which indicates that the accumulation
of one of them was accompanied by the decrease in the content of the other. No other
strong correlation between proteins or carbohydrates and lipids or pigments was obtained
(R2 < 0.5).

Mixotrophy significantly affected the pigment content (p < 0.01) (Figure 4), which
was highly decreased (from about 2.1% on average for all pigments for PL and PH to
about 0.35% on average for ML and MH). It has been frequently reported that mixotro-
phy itself influences the pigment content of microalgae [38], because in the presence of
organic molecules (such as glucose or glycerol) cells synthesize less photosynthetically
active pigments. Thus, under mixotrophic conditions cells can harvest energy from the
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organic compounds and are therefore less dependent on light availability compared to the
photoautotrophic conditions, under which they absolutely depend on light energy for their
growth [38]. A strong effect was also observed in green light, where chlorophyll b content
was the highest in both PL and PH cultures (1.35% and 1.21%, respectively). No other
clear effect of light wavelength on pigments was observed. Three-way ANOVA analysis
revealed that the only statistically significant variable was the trophic conditions, and any
other interaction was not significant.
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Figure 4. Pigments content of A. protothecoides cultivated in different light wavelengths under
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mixotrophic conditions with (c) low peptone and (d) high peptone concentration. Each bar represents
the average of n = 3 replicates.

2.3. Chlorophyll Fluorescence Studies
2.3.1. Maximum Quantum Yields of Primary Photochemistry and Non-Photochemical
Quenching (NPQ)

Figure 5 illustrates the maximum quantum yields for primary photochemistry (Fv/Fm)
of A. protothecoides cultivated under the different conditions. The results clearly show that
the PL cultures, which represent the most typical photoautotrophic conditions, displayed
Fv/Fm values in the range of 0.62–0.69, while all other cultures (MH, ML, and PH) had
Fv/Fm in the range of 0.05–0.15. These results indicate that in the presence of organic
substrate (glycerol) and under relatively high concentration of peptone, the photosynthetic
efficiency of A. protothecoides was impacted and all the calculated parameters of the chloro-
phyll fluorescence analysis (Figure 5, Table 1) were significantly different compared to
the PL cultures. The overall results (data not shown) indicated that there were similar
trends in the chlorophyll fluorescence analysis of A. protothecoides grown under the different
wavelengths, suggesting that the main factors influencing the photosynthetic performance
were the trophic conditions and the availability of nitrogen. Therefore, in the following,
for an easier discussion of the findings, only the results of the white LEDs as the reference
light source are shown.
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Figure 5. Maximum quantum yields of primary photochemistry (Fv/Fm) of A. protothecoides culti-
vated under the different conditions (each circle represents a different cultivation treatment; MH

and ML stand for mixotrophy with high and low peptone, respectively, and PH and PL stand for
photoautotrophy with high and low peptone, respectively).

Table 1. Selected calculated parameters of the OJIP and non-photochemical quenching (NPQ) tests of A. protothecoides
cultivated under white light. Inset figures: OJIP (a) and NPQ (b) signals of the associated cultures. Data represent the
average ± SD of three replicates (n = 3). (MH and ML stand for mixotrophy with high and low peptone, respectively, and
PH and PL stand for photoautotrophy with high and low peptone, respectively).
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DIo/RC 50.42 ± 3.46 24.60 ± 4.72 160.94 ± 33.47 0.40 ± 0.02
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Table 1 lists the main calculated OJIP and non-photochemical quenching (NPQ) pa-
rameters that give an overview of the photosynthetic performance and photoprotection
process. As shown in the inset figures of Table 1, chlorophyll fluorescence kinetics strongly
impacted the cultures MH, ML, and PH. The presence of glycerol in MH and ML, i.e., the
switching of the trophic conditions into mixotrophy and probably the alteration of the
pigment content (Section 3.2) strongly impacted the photosynthetic processes, as shown
by the chlorophyll fluorescence analysis. Regarding PH, the decrease in Fv/Fm should
be related to some kind of inhibitory effect of peptone, because it is also reflected by the
impacted growth rates (see Section 2.3.1). The most apparent changes revealed by the
OJIP test were the increased absorption of light per reaction center (RC) and the increased
dissipated energy (DIo/RC and ϕDo) of A. protothecoides in all three series (MH, ML, and PH).
This subsequently had a strong effect on PIABS (Table 1). The parameter PIABS is an index
that reflects the functionality of PSII, giving quantitative information on the current state of
the PSII performance. This index can indicate whether the photosynthetic microorganisms
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are under stress conditions or whether they diversify their photosynthetic process for other
reasons [39].

NPQ and qp values were very low for MH and PH, whereas they were much higher
for ML and PL. These results suggest that under high peptone concentration the lower
values of NPQ and qp indicate that non-photochemical and photochemical mechanism(s)
were not able to be activated, and thus might cause photoinhibition, leading subsequently
to lower growth rates. The low values of NPQ and qp may indicate possible alterations
in the proton gradient formation across the thylakoid membrane. In contrast, ML and
PL had significantly higher NPQ values, and therefore in these cultures the excess of
light energy was probably dissipated more efficiently. These findings are more profound
considering that growth rates were significantly and negatively impacted in PH. This fact
suggests that mixotrophic conditions could provide somehow a growth protection against
photoinhibition. Li et al. [40] observed that in the cyanobacterium Arthrospira platensis the
addition of glucose protected against strong photoinhibition caused by ammonia toxicity.
This point deserves to be more thoroughly investigated.

2.3.2. QA
− Re-Oxidation Kinetics on Cultures with White Light

Table 2 shows the half-time (t1/2) of the three phases of the QA re-oxidation kinetics
(inset figures) without and with 50 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU).
In the kinetics without DCMU, the fast phase, which is related to the re-oxidation of QA

−

by QB, was significantly affected by the trophic conditions and the peptone concentration,
while the medium phase was not altered for MH and PL and was much slower for ML and
PH. The slow phase had higher values in MH and PH than in PL. In the presence of DCMU,
MH, ML, and PH displayed faster half times compared to PL, whereas the medium and slow
phases were significantly slower (Table 2). The medium and slow phases reflect the binding
of quinone to the QB site and the recombination of QA

− with the S2 state of the oxygen
evolving complex (OEC), respectively [41,42]. The faster kinetics of QA re-oxidation in PL
suggest a faster re-opening of RCs, which is consistent with the higher qp values also found
in this culture. The QA

− re-oxidization depends mainly on the rate of forward electron
transport and consequently on the redox state of the electron transfer chain, whereas in
the presence of DCMU, the QA

− re-oxidation kinetics are an indicator of the condition
of the donor side of PSII [42]. Overall, these results suggest that the trophic conditions
and the peptone concentration have a strong effect on the electron transfer chain process.
This could be an outcome of the overall alteration of some metabolic pathways, and of cell
organization under the mixotrophic conditions, as was also shown for Chlorella vulgaris
after transcriptomics and proteomics analysis [43].

2.3.3. Inactive PSII RCs and QB Non-Reducing RCs on Cultures with White Light

The S-States test, which was conducted for the determination of the inactive PSII
reaction centers (Table 3), revealed that the only involved inactive PSII RC was observed in
PL cultures, where 8.5% of the total PSII RCs was inactive. In the other cultures, the figures
were negative values, suggesting that under mixotrophic conditions or high peptone
concentration no inactive PSII RCs were present because no fluorescence decay after the
fourth flash (S4 → S0/S1) was observed. However, it should be noted that the fluorescence
signals in ML were significantly weaker than in the other cultures and that possibly the
calculations were influenced by strong noise. Moreover, the double OJIP protocol revealed
that the QB non-reducing RCs were almost doubled in the ML, MH, and PH compared to the
PL (Table 3). These results suggest that the trophic conditions and the peptone concentration
have a strong effect on the heterogeneity of the PSII reaction centers. However, no further
literature is available on this topic and more research is needed.
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Table 2. QA
− re-oxidation kinetics of A. protothecoides cultivated under white light. Inset figures: QA

− re-oxidation kinetics
without (a) and with 50 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) (b). Data represent the average ± SD of three
replicates (n = 3). (MH and ML stands for mixotrophy with high and low peptone, respectively, and PH and PL stands for
photoautotrophy with high and low peptone, respectively).

Kinetic Phases MH ML PH PL
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Table 3. Inactive PSII RCs and QB Non-Reducing RCs of A. protothecoides cultivated under white
light. (MH and ML stands for mixotrophy with high and low peptone, respectively, and PH and PL

stands for photoautotrophy with high and low peptone, respectively).

Culture Inactive PSII RCs QB Non-Reducing RCs

MH Negative value 21.36% ± 3.35%
ML Negative value 22.61% ± 0.93%
PH Negative value 23.24% ± 5.3%
PL 8.5% ± 1.3% 11.10% ± 1.34%

3. Materials and Methods
3.1. Microorganism and Cultivation Conditions

Auxenochlorella protothecoides (CCAP 211/8D) was taken from the Culture Collec-
tion of Algae and Protozoa SAMS Limited Scottish Marine Institute. The basic growth
medium (BGM) consisted of 0.5 g/L KH2PO4, 25 mg/L CaCl2, 10 mg/L Na2EDTA,
75 mg/L MgSO4·7H2O, 5 mg/L FeSO4·7H2O and 1.0 mL of trace elements stock solution:
2.86 g/L H3BO3, 20 mg/L (NH4)6Mo7O24, 1.8 g/L MnCl2·4H2O, 80 mg/L CuSO4·5H2O
and 220 mg/L ZnSO4·7H2O. For the growth of stock cultures, 2 g/L peptone as nitrogen
source and 5 g/L glycerol as organic carbon source were used. The inoculum cultures,
which were used to inoculate the main experimental cultures, were grown with 2.5 g/L
glycerol for three days under cool white LED panel illumination (100 µmol/m2/s; mea-
sured on the top of the transparent basis on which the photobioreactors where placed, i.e.,
on the outside of the bottom of the photobioreactors. Photon flux was measured with a
SpectraPen LM 510 (Photon Systems Instruments, Czech Republic)). The experimental
cultures were inoculated with 20% of inoculum cultures.

All cultivations were performed in 500 mL Duran flasks with a working volume of
300 mL (250 mL of fresh growth medium and 50 mL of inoculum). All cultures were
axenic and performed under sterile conditions. The cultures were aerated with 0.2 µm
filter-sterilized air for agitation and oxygen enrichment. Illumination was provided by five
LEDs (SMD type; 14.4 W per meter, 60 SMD LEDs per meter; GloboStar, Greece) per flask
(Figure A1 in the Appendix A). Illumination was provided from the bottom of the flasks
at a photon flux of 100 ± 5 µmol/m2/s. Four monochromatic colors of illumination were
used, namely blue, red, green, and yellow. Cool white LEDs were employed as controls
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(standard illumination). The Spectrum analysis of each monochromatic LED is shown in
Figure A2 in the Appendix A.

3.2. Experimental Design

For each different LED light, four cultures were used (Table 4), two in which A. pro-
tothecoides was grown mixotrophically on glycerol (10 g/L) (MH and ML = mixotrophic
conditions (M) with high (H) or low (L) peptone concentration)–and two cultures of A.
protothecoides grown photoautotrophically (PH and PL = photoautotrophic conditions (P)
with high (H) or low (L) peptone concentration), applying also KHCO3 as an inorganic
carbon source. For mixotrophic and photoautotrophic cultures, the photoperiod was set at
16 h light and 8 h dark. The overall duration of the cultures was 7 days. The varied nitro-
gen (peptone) concentrations aimed, in addition to the light wavelength, at investigating
the effect of nitrogen availability on the growth, biochemical profile, and photosynthetic
efficiency of A. protothecoides. Moreover, in preliminary trials it was obtained that A. protothe-
coides is unable to uptake nitrates or ammoniacal nitrogen as a nitrogen source, therefore
the use of peptone as a nitrogen source was also unavoidable in the photoautotrophic
cultures. However, because peptone is an organic compound that probably can also be
used as organic carbon, the low peptone concentration (0.5 g/L) in the PL cultures aimed
at ensuring that at the time point of conducting the Chl-fluorescence analyses on day 2,
A. protothecoides had consumed all the available peptone and therefore grew under pho-
toautotrophic conditions. Thus, PL cultures were considered as the main representative
of the photoautotrophic conditions in this study, whereas PH due to the higher peptone
concentration could not be fully considered as photoautotrophic cultures. However, for
the sake of the simplicity of the results presentation, photoautotrophic conditions were
assessed in both PL and PH. A series of cultures kept in the dark for the same duration
as the illuminated ones were performed in order to see if the microalga could grow het-
erotrophically using as sole carbon and energy sourcethe organic substances provided
(glycerol and peptone). Dark grown cultures are referred to as negative controls.

Table 4. Basic experimental design of A. protothecoides grown mixotrophically or photoauthotrophi-
cally under different light qualities. (MH and ML stands for mixotrophy with high and low peptone,
respectively and PH and PL stands for photoautotrophy with high and low peptone, respectively).

Culture Name Glycerol (g/L) KHCO3 (g/L) Peptone (g/L)

MH 10 - 4
ML 10 - 0.5
PH 0 2.5 4
PL 0 2.5 0.5

3.3. Analytical Methods
3.3.1. Biomass Analysis

Biomass production as dry weight was measured after separating cells from the
growth medium through centrifugation (2500 rpm for 10 min) and washing them with
deionized (DI) water at least 3 times to remove and exclude the culture medium, and
drying overnight in an oven (80 ◦C) until constant weight. Biomass concentration was also
measured indirectly by the optical density (OD) at the wavelength of 750 nm [44]. Specific
growth rates (µ) were calculated as: µ = (lnN1 − lnxN2)/(t), where N1, and N2 are the
biomass concentrations after the inoculation of the cultures (N1) and the time of harvesting
(N2), respectively after 7 days of cultivation (t).

Carbohydrates were measured by a modified phenol-sulfuric acid method [45]: briefly,
in 0.5 mL of cell sample containing 10–50 mg/L carbohydrates, 10 µL of 90% phenol
solution were added and mixed, followed by the addition of 1.25 mL of concentrated
sulfuric acid (96%). After 30 min OD was measured at 485 nm using D-glucose as the
standard sugar. Lipids were measured by a modification of the sulfo-vanillin method [46]
after extraction of lipids with 2:1:0.2 chloroform:methanol and water. Briefly, 20 µL of
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extracted sample containing 200–500 mg/L of lipids were incubated in 80 ◦C to evaporate
chloroform and then 0.4 mL of 96% sulfuric acid w added and samples were placed in
boiling water for 10 min. Samples were then left at room temperature for 15 min to cool
and 1.0 mL of phosphoric-acid/vanillin solution was added (solution stock was prepared
by dissolving 0.12 g of vanillin in 20 mL DI water and finally in 80 mL of 85% phosphoric
acid). The samples were incubated at 37 ◦C for 15 min and OD was measured at 530 nm.
For the standard curve maize oil was used. Proteins were assayed according to Lowry
et al. [47] after the extraction with 0.5 N NaOH: in brief, 1.5 mL of samples were centrifuged,
the pelleted biomass was resuspended in 1.5 mL 0.5 N NaOH and then incubated on an
agitation heating plate at 100 ◦C for 20 min. An aliquot of 100 µL of extracted proteins was
then added to 100 µL 5% SDS, and supplemented with 1 mL of a solution consisting of 2%
Na2CO3 in 0.1 N NaOH. After 15 min, 100 µL of freshly prepared 1 N Folin and Ciocalteu
reagent was added and samples were left for 30 min in the dark. OD was measured at 750
nm using bovine serum albumin as the standard. Chlorophylls and total carotenoids were
extracted with 90% methanol. In short, 2 mL of samples were centrifuged and the pellet was
suspended in 2 mL of 90% methanol and incubated at 70 ◦C for 5 min. The concentrations
of chlorophylls and total carotenoids were measured according to the equations given by
Lichtenthaler [48]. All biomass composition analyses were performed after the samples
were washed several times with DI water. All spectrophotometric determinations were
carried out by a Cadas 50 (Dr. Lange GmBH, Saarbrücken, Germany) spectrophotometer
and analyses were carried out at least in triplicate for each replicate. The final data given are
the average of three analytical replicates from each of the three biological replicates (n = 3)
with standard deviation. Statistical analysis was based on analysis of variance ANOVA
(one-, two-, and three-way comparisons), conducted using SigmaPlot 12.0 software (Systat
Software, Inc., San Jose, CA, USA). All data were tested for Normality (Shapiro–Wilk test)
and for equal variance between treatments. Post-hoc statistical analysis was based on
Duncan’s pairwise multiple comparison procedure.

3.3.2. Chlorophyll Fluorescence Measurements and Analysis

Chlorophyll fluorescence measurements were taken after the adaptation of cells in the
dark (>20 min). The fluorescence transients of the OJIP test reflect the kinetics during the
reduction of the plastoquinone (PQ) pool [14]. The model of QA on which the chlorophyll
fluorescence analysis is based can be described briefly as follows: photons are absorbed by
the antennae pigments (absorption flux: ABS) which are excited. A part of the excitation
energy, the trapping flux (TR), is transferred to the reaction center (RC) while the remaining
part is dissipated either as fluorescence or as heat. The TR is converted in the RCs to redox
energy by reducing the electron acceptor QA to QA

−, which is then re-oxidized to QA
leading to electron transport (ET) and consequently to photochemistry [39]. The terms and
formulae for the various parameters of the OJIP test are shown in Table 5 and were based
on Strasser et al. [39] unless otherwise stated in the text.

Table 5. Parameters, formulae, and terms used in the OJIP test (adapted from [39]).

Parameters Formulae Terms

VJ (F2ms − F0)/(Fm − F0) Variable fluorescence at the J step
VI (F60ms − F0)/(Fm − F0) Variable fluorescence at the I step
M0 4*(F300µs − F0)/(Fm − F0) Approximated initial slope of the fluorescence transients
ϕPo TRo/ABS = 1 − (F0/Fm) = Fv/Fm Maximum quantum yield for primary photochemistry (at t = 0)
ϕDo = 1 − ΦPo-(F0/Fm) Quantum yield of energy dissipation (at t = 0)

PIABS (RC/ABS) [ϕPo/(1 ϕPo)] . [Ψo/(1 − Ψo)] Performance index
ABS/RC M0*(1/VJ)*(1/ϕPo) Absorption flux per RC

Photochemical and non-photochemical quenching: Photochemical and non-photoc
hemical quenching measurements and analysis were routinely performed using an AquaPen
110-C fluorometer (PSI Instruments, Czech Republic). The NPQ protocol begins by mea-
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suring the minimal level of fluorescence Fo in dark-adapted cells. After recording Fo, a
short saturating flash reduces the PQ pool and Fm is recorded. A short dark relaxation
period is followed, and then actinic light is supplied for tens to hundreds of seconds to
provoke the Kautsky effect and fluorescence signals (Ft) are recorded. Then, a sequence of
additional saturating flashes is applied on top of the actinic light to measure the NPQ and
the effective quantum yield measuring Fm’ in light adapted state. NPQ was calculated as
(Fm − Fm’)/Fm’ [49]. qp reflects the level of open PSII centers and it gives higher values
when the photochemistry potential is high. In contrast, NPQ increases as the fluorescence
is quenched due to processes other than photochemistry [50,51].

QA
− re-oxidation kinetics: The QA

− re-oxidation kinetics were recorded using the
Fluorometer FL 6000F (PSI Instruments, Czech Republic) after a single turnover flash,
with actinic flash duration of 50 µs and intensity of 2500 µmol photons/(m2 s). The total
duration of the test was 50 s. The kinetic data were recorded with six points per decay.
The QA

− re-oxidation process consists of three phases (fast, medium, slow). In order to
calculate their half-times of decay, the kinetics were fitted to the following exponential
function [52]:

F(t) = Fr + A1*e−K1*t + A2*e−K2*t + A3*e−K3*t

where F(t) is the fluorescence at time t, K1, K2, and K3 are the decay rate constants, A1, A2,
and A3 are the amplitudes of the fluorescence associated relaxation phases (fast, medium,
and slow, respectively), and Fr is the remaining fluorescence at the end of the decay.
DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) was also used (50 µM) as an electron
transport inhibitor.

Determination of the inactive PSII reaction centers and QB non-reducing RCs: The
oxygen evolving complex (OEC) generates oxygen after a series of oxidations of four
intermediate states (S0→S4). The PSII RCs of dark-adapted cells are in the S0 and S1 states
(S0/S1; slash indicates a mixture of Sx/Sy). In the S-states test, the five S-states are advanced
stepwise by short actinic light flashes, i.e., first flash advances S1/S2, second flash S2/S3,
third flash S3/S4 →S0 and the fourth flash S4 → S0/S1 [53,54]. S-states were advanced by
50 µs long flashes at 200 ms periods. S-states tests were employed for the determination of
the contribution of inactive PSII RCs, because the fluorescence decay after the fourth flash
(S4 → S0/S1) is controlled by inactive RCs. Inactive PSII were calculated according to [55]:

Inactive PSII RCs (%) = 100*∆F4/[(F3d/F0) − 1]

where F3d is the first fluorescence signal recorded after the third flash, ∆F4 = (F4th
99ms/F0)

− 1, and F4th
99ms is the fluorescence 99 ms after the fourth flash. S-states were recorded on

the Fluorometer FL 6000F. For the determination of reducing site heterogeneity, a double
pulse OJIP was performed in order to determine the contribution of QB non-reducing
centers. More specifically two fluorescence transients were induced by two subsequent
light pulses (each of 1 s duration). The QB non-reducing centers were determined as:

NQB = [(Fv/Fm)first pulse − (Fv/Fm)second pulse]/(Fv/Fm)first pulse

This section is not mandatory but can be added to the manuscript if the discussion is
unusually long or complex.

4. Conclusions

The results of the present study revealed that A. protothecoides growth under mixotrophic
conditions is not as favored as it is for several other microalgae. A. protothecoides displayed
better growth rates under heterotrophy (dark conditions) probably due to some kind of pho-
toinhibition, as NPQ analyses suggested. White and red were the best light wavelengths,
in which A. protothecoides had the highest growth rates under mixotrophic conditions. The
availability of nitrogen had the strongest effect on the biochemical composition; indeed,
under nitrogen replete conditions there was a trend for protein accumulation, whereas
under deplete conditions biomass tend to accumulate carbohydrates. Pigment content was
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affected mainly by the trophic conditions, because in the presence of glycerol (mixotrophy)
pigment content was significantly decreased compared to the photoautotrophic. The light
wavelength did not have any clear effect on the biomass production and the microalgal
metabolites synthesis in A. protothecoides. The overall results suggest that trophic conditions
and, in particular, the availability of nitrogen (peptone concentration), had a stronger effect
on the growth, the production of metabolites, and the photosynthetic machinery than the
different light wavelengths. Chlorophyll fluorescence studies suggest that the photosystem
II performance and the heterogeneity of the PSII reaction centers were affected by the
trophic conditions and the high peptone concentrations. The present study highlights
several points that need more research, so that the overall process is better understood
and optimized.
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