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Abstract: Selection for wheat (Triticum aestivum L.) grain quality is often costly and time-consuming
since it requires extensive phenotyping in the last phases of development of new lines and cultivars.
The development of high-throughput genotyping in the last decade enabled reliable and rapid
predictions of breeding values based only on marker information. Genomic selection (GS) is a method
that enables the prediction of breeding values of individuals by simultaneously incorporating all
available marker information into a model. The success of GS depends on the obtained prediction
accuracy, which is influenced by various molecular, genetic, and phenotypic factors, as well as the
factors of the selected statistical model. The objectives of this article are to review research on GS for
wheat quality done so far and to highlight the key factors affecting prediction accuracy, in order to
suggest the most applicable approach in GS for wheat quality traits.

Keywords: wheat quality; genomic selection; GEBV; prediction accuracy; training population;
validation population; heritability

1. Introduction

According to estimates of the International Maize and Wheat Improvement Center
(CIMMYT), the need for wheat (Triticum aestivum L.) and its products could increase by
at least 50% until 2050 [1] as a result of extensive human population growth and dietary
changes. Given the accelerated growth of the world’s population and the increased need
for food production, the greatest emphasis in wheat breeding is placed on increasing
grain yield. However, an increase in yield usually entails a decrease in protein content
or grain quality [2,3]. Therefore, in breeding programs strong emphasis should be placed
on improving grain quality [4]. In the context of wheat quality, the most important
traits are grain protein content (GPC) and gluten content (GC), as they directly affect
the technological properties of flour and dough [5–7]. The majority of these traits are
characterized mostly by low heritability due to strong environmental impact [8–10].

The extensive development of high-throughput genotyping in the last couple of
decades has led to the increasing use of molecular markers in plant breeding, which
enabled the development of prediction methods based only on marker information such
as genomic selection (GS) [11,12]. The first GS studies in wheat were published more
than a decade ago [13,14]. The results of these studies showed that models based on
genomic markers outperform models based only on pedigree relationships and that GS
could successfully enhance rates of genetic gain, which provided a strong foundation for

Plants 2021, 10, 745. https://doi.org/10.3390/plants10040745 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-3999-4519
https://orcid.org/0000-0002-9848-1601
https://orcid.org/0000-0003-1662-2923
https://orcid.org/0000-0001-5743-5345
https://doi.org/10.3390/plants10040745
https://doi.org/10.3390/plants10040745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10040745
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants10040745?type=check_update&version=1


Plants 2021, 10, 745 2 of 14

further research on GS in wheat. Later studies also showed that, if the traits of interest are
complex and influenced by many quantitative trait loci (QTLs) each controlling a small
proportion of phenotypic variation, GS will be more relevant than marker-assisted selection
(MAS) [15,16].

Currently, the majority of researchers of GS in wheat consider grain yield and disease
resistance as key traits for successful wheat production [17–21]. Such a strong focus on
grain yield is understandable from a point of view where grain yield is not improving fast
enough to fill the gap between production and projected demands in the near future [22].
Considering wheat’s role as the main ingredient in many different products fundamental to
the nutrition of humankind, equal emphasis should be given to the quality traits, especially
those related to the end-use quality of wheat products. An overview of GS research
studies for traits such as grain yield, Fusarium head blight, stripe and brown rust resistance,
plant height, days to heading, and preharvest sprouting (PHS) tolerance is given by
Rutkoski et al. [23]. Despite their importance in the context of nutrition, research on GS for
wheat quality traits is still scarce. In this context, the objectives of the present study are to
review research on GS for wheat quality conducted so far and to highlight the key factors
affecting GS accuracy in order to suggest the most applicable approach in GS for wheat
quality traits.

2. Genomic Selection and Prediction Models Used

Genomic selection is one of the newly developed methods that enables the prediction
of breeding values of individuals by simultaneously incorporating all available marker
information into a model [12]. Unlike other molecular breeding methods, GS does not
require the identification of markers associated with QTLs of traits of interest. GS attempts
to capture total additive genetic variance based on the sum of the effects of a large num-
ber of genetic markers, encompassing all QTLs that contribute to trait variability [24].
Therefore, the underlying genetic control in GS is not necessarily known. In GS, training
population (TP) is genotyped using one of the methods of high-throughput genotyping
and phenotyped for desired traits in a target set of environments. Obtained data are used
to train a model that will be applied to the breeding population (BP) of unphenotyped
individuals (selection candidates) to calculate their genomic-estimated breeding values
(GEBVs) using only the marker scores [12] (Figure 1). The most important advantage of GS
over phenotypic selection (PS) is the increase of genetic gain due to the shortening of the
selection cycle in breeding process by reducing the need for phenotyping [25,26].
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Figure 1. Flow diagram of a plant breeding program based on genomic selection.

High-throughput genotyping generates a large amount of marker data, which are
then used in GS. When the number of predictor variables (markers) is much greater than
the number of observations (phenotypic values), the result is an infinite number of marker
effect estimates. In order to reduce the problem of highly dimensioned data, different
parametric and nonparametric models have been developed and used in GS (Figure 2).
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Figure 2. Classification of the most frequently used genomic selection prediction models.

The prediction models differ mainly in the assumptions of the distribution of the
marker effects, i.e., the assumptions of how the marker effects contribute to the overall
variance [12]. Detailed features of GS models and their (dis)advantages are already given
elsewhere [27–29], so they will be just briefly discussed here. Genomic best linear unbiased
predictor (GBLUP) uses a genomic-estimated relationship matrix, assigns equal variance
to all markers, and assumes that they are equally contributing to the trait of interest [29].
Ridge-regression best linear unbiased predictor (RRBLUP) assumes that all markers have
common variance but allows that markers have unequal effects. RRBLUP shrinks all marker
effects equally towards zero, regardless of the size of their effect, which can possibly lead to
overshrinking of large-effect loci [12,15,30]. On the other hand, Bayesian alphabet models
(BayesA, BayesB, BayesC, BayesCπ) assign different types of prior distribution to marker
effects, thus having a more realistic assumption of marker effects [12,13,21]. LASSO (Least
absolute shrinkage and selector operator) and Bayesian LASSO (BL) models use both vari-
able selection and shrinkage methods, with the difference that BL additionally applies prior
exponential distribution on marker variances [28]. Like RRBLUP, Bayesian ridge regression
(BRR) shrinks marker effects equally towards zero but additionally uses prior Gaussian
distribution for marker effects [31]. Elastic net (EN) uses two penalty methods—the LASSO
and ridge regression, which results in averaging markers that are highly correlated and
then using the averaged gene for the model [32]. Random forest (RF) and support vector
machines (SVM) are nonparametric models based on supervised learning methods, which
have been proved to be effective in detecting interactions between markers [27,33]. Repro-
ducing kernels Hilbert spaces regression (RKHS) is another nonparametric model that is
able to capture nonadditive effects [34].

3. Factors Affecting Prediction Accuracies of Genomic Selection in Wheat

The prediction accuracy of GS is commonly estimated using cross-validation, in which
a set of individuals that are both genotyped and phenotyped is divided into a training
set (training population) and validation set (validation population, VP), with marker
effects estimated in the training set used to predict GEBVs for the validation set [35]. The
accuracy is then measured as the correlation between GEBVs and true breeding values
(observed phenotypes) of individuals from the validation set. Prediction accuracy of GS is
influenced by various molecular, genetic, and phenotypic factors, as well as the features
of the selected statistical model. Genetic factors include the distribution and strength of
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linkage disequilibrium (LD) between markers and QTL, marker collinearity, population
size and structure, differences in allele frequency between TP and VP, etc. [17,30,36–38].
Phenotypic factors include factors related to traits themselves, such as heritability and
phenotypic variance of the TP [24,39,40]. Other factors that affect the accuracy of the
prediction are the number and type of molecular markers, the similarity of the TP and the
VP, TP size, and the features of the selected statistical model [28,39,41–45].

Three major factors that affect the GS accuracy are population structure, TP size, and
marker density, the effects of which are highly interrelated [46,47]. Population structure can
give rise to a false association between a marker and QTL, thus causing structure-generated
LD, which can lead to overestimated genomic heritability and biased GS prediction accura-
cies [37,48]. Meuwissen et al. [49] estimated the minimum number of markers required to
reach high prediction accuracy (approximately 0.9) when using unrelated individuals to
be equal to 10 times the product of the effective population size and the genome size in
Morgans (10 × Ne × L), while the minimum size of the population was estimated to be
2 × Ne × L. In the case of wheat (the L of which is approximately 30 Morgans) and assump-
tion of Ne = 50, that would amount to 15,000 markers and 3000 individuals in an unrelated
population. However, those estimations were obtained using simulations, while empirical
studies on wheat have reported acceptable accuracies for a much lower number of markers
and smaller populations, depending on the population structure [17,21,30]. As in other
species, studies on wheat also showed that larger TP reduces bias and decreases the marker
effect variance, thus resulting in higher prediction accuracy [31]. The interrelatedness of
marker density and population structure seems to play an important role in optimizing GS
in wheat. Namely, it has been shown that the higher the relatedness between TP and VP,
the smaller the response to increased marker density [48].

4. Overview of Genomic Selection Research for Wheat Quality Improvement

The first GS study for wheat quality traits was published in 2011 [21]. The study
was conducted in a population composed of multiple wheat families and showed that GS
accuracy surpasses MAS accuracy for wheat quality traits by roughly 30% and that GS
was about 95% as accurate as PS. Authors also concluded that, regardless of the inferiority
when compared to PS, GS has the potential to increase genetic gain per unit of time and
costs when applied in a breeding program.

A study by Heffner et al. [30] based on two biparental wheat populations, examined
the potential of GS to predict nine wheat quality traits. The authors of the study have
found that the mean accuracy obtained by GS was 1.4 times greater than the one obtained
by MAS, but that both GS and MAS were inferior to PS. However, those findings were
expected due to the polygenic nature and medium to high heritability of all examined traits.
Liu et al. [50] reported that, when predicting wheat hybrid performance for seven quality
traits, GS extensively outperformed MAS, while giving similar results as PS in the case
of higher relatedness of TP and VP. It was only in the case of lower relatedness of TP and
VP that GS was preferred over PS, thus emphasizing the importance of additive effects in
wheat quality traits. According to Battenfield et al. [51], genetic gain was 1.4 to 2.7 times
higher when comparing GS to PS for processing and end-use quality traits since GS requires
only marker data and a much larger population can be genotyped than phenotyped for
wheat quality traits. Michel et al. [52] investigated the use of GS for predicting dough
rheological traits in early generations and proved its substantial benefit over MAS. These
findings imply that GS can capture more of the genetic variance of wheat quality traits
when compared to MAS since it considers both small effect loci in addition to major QTLs.
Nevertheless, all of the above-mentioned studies showed that the accuracy of GS for wheat
quality traits is under the influence of many factors, with underlined heritability of the
trait, genetic relationship between TP and VP, and size of the TP being the most important
driving forces of GS accuracy. A summary of the most relevant GS studies for wheat quality
traits, with an overview of factors affecting prediction accuracy covered, is given in Table 1.
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Table 1. Overview of references for genomic selection studies covering wheat quality traits.

Reference Quality Traits Examined 1 Population Type
and Size 2

Platform and
Number of
Markers 2

GS Prediction
Model 3

Factors Affecting Prediction Accuracy Examined 2 Comparison
to Other
Types of

Selection 2

Single-Trait (ST)
or Multitrait (MT)

AnalysisSelected Model TP Size TP/VP
Relatedness

Marker
Density

[30] TW, PHS, FY, KH, LA-SRC,
NaCO-SRC, Suc-SRC, H2O-SRC

2 biparental
populations

(209/174 DHs)

399 multiple
platforms/574

DArTs
RRBLUP, BayesCπ Yes Yes No Yes Yes (MAS and

PS) ST

[21]
TW, PHS, FY, FP, LA-SRC,

NaCO-SRC, Suc-SRC, H2O-SRC,
KH

374 lines 1158 DArTs RRBLUP, BayesA,
BayesB, BayesCπ

Yes Yes No Yes Yes (MAS and
PS) ST

[51]
TKW, TW, GPC, FY, FP, LV, KH,
SDS sedimentation, mixograph

and alveograph traits
5520 lines 3075 SNPs RRBLUP, GAUSS,

PLSR, EN, RF Yes Yes No No Yes ST

[53] TKW, TW, GPC, KH, SDS
sedimentation

8416/2403
landrace

accessions

~23,000/~33,000
DArT SNPs GBLUP No Yes Yes No No ST

[54] TW, FY, FP, LA-SRC, NaCO-SRC,
Suc-SRC, H2O-SRC, KH

273 elite lines and
cultivars 3919/13,198 SNPs RRBLUP, BRR,

RKHS, EN Yes Yes Yes Yes No ST

[50] TKW, TW, GPC, GC, SC, KH,
Zeleny sedimentation

135 inbred
lines,1604 hybrids 17,372 SNPs RRBLUP, W-BLUP,

BayesCπ
Yes Yes Yes Yes Yes (PS) ST

[55] GPC, PY 659 lines 9500 DArT SNPs RRBLUP No Yes Yes No No ST

[56]

TKW, TW, GPC, FY, FP, SC,
amylose content, FN, LV, LT,
MIXT, KH, starch damage,
viscosity, farinograph and

extensograph traits

2076 varieties and
synthetic

derivative lines
51,208 SNPs Multivariate model No No No No No ST + MT

[57] GPC, farinograph, extensograph,
and alveograph traits 128 DHs 6600 DArT SNPs RRBLUP No No No No No MT

[58] GPC, gluten index, alveograph
traits

170 varieties and
advanced lines,

154 DHs
9752/5153 SNPs

RRBLUP, GBLUP,
BayesA, BayesB, BL,
RKHS, MT-BayesA,
MT-Matrix, MT-SI

Yes No Yes Yes No ST + MT

[59] TKW, TW, GPC, FN, Zeleny
sedimentation

635 lines (159
full-sib families) 10,802 SNPs GBLUP, BL Yes Yes Yes Yes No ST

[60] TW, GPC, WGC, SV, alveograph
and mixograph traits 495 lines 6655 SNPs

BRR, Bayes
multivariate

Gaussian model
No Yes No No No ST + MT
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Table 1. Cont.

Reference Quality Traits Examined 1 Population Type
and Size 2

Platform and
Number of
Markers 2

GS Prediction
Model 3

Factors Affecting Prediction Accuracy Examined 2 Comparison
to Other
Types of

Selection 2

Single-Trait (ST)
or Multitrait (MT)

AnalysisSelected Model TP Size TP/VP
Relatedness

Marker
Density

[52] GPC, farinograph and
extensograph traits 840 lines 4598 DArT SNPs RRBLUP, W-BLUP Yes No No No Yes (MAS) ST + MT

[61]
TKW, GPC, mixograph,

farinograph, and extensograph
traits

57 cultivars and
lines 7588 SNPs RRBLUP, BayesA

BayesB, BL, BRR Yes No No No No ST + MT

[62] TKW, GPC, SDS sedimentation 282 DHs 7426 SNPs RRBLUP, BL, RF,
RKHS Yes Yes No No Yes (PS) ST

[63]
TKW, TW, GPC, FY, FP, FS, LV,

MIXT, KH, grain color,
alveograph traits

3485 lines 78,606 SNPs GBLUP, BayesB Yes No Yes Yes No ST

[64] TKW, GPC, FN, Zeleny
sedimentation 1152 lines 11,058 SNPs GBLUP, Bayesian

SNP-BLUP Yes Yes Yes No Yes (MAS) ST + MT

[65] FY, alveograph traits 635 lines (159
full-sib families) 10,802 SNPs GBLUP, BL Yes Yes Yes No No ST

[66] GPC, PY, extensograph and
farinograph traits 480 lines 7300 DArT SNPs GBLUP, W-BLUP Yes No No No No ST + MT

[67]
TKW, TW, GPC, FP, LV, KH, SDS
sedimentation, mixograph and

alveograph traits
~1400 lines 78,606 SNPs before

filtering * BMTME, MTR Yes No No No No MT

[68] GPC, Zeleny sedimentation 1325 lines 9290 SNPs RRBLUP, BL Yes No No No No ST

* Final number of markers used for analysis is not mentioned. 1 TKW—thousand-kernel weight, TW—test weight, GPC—grain protein content, FY—flour yield, FP—flour protein, FS—flour sedimentation,
WGC—wet gluten content, PY—protein yield, GC—gluten content, KH—kernel hardness, SC—starch content, FN—falling number, LV—loaf volume, LT—loaf texture, MIXT—mixing time, SV—sedimentation
volume, PHS—preharvest sprouting, LA-SRC—lactic acid solvent retention capacity, NaCO-SRC—sodium carbonate solvent retention capacity, H2O-SRC—water solvent retention capacity, Suc-SRC—sucrose
solvent retention capacity, SDS—sodium dodecyl sulfate. 2 DH—double haploid, SNP—single nucleotide polymorphism, TP—training population, VP—validation population, PS—phenotypic selection,
MAS—marker-assisted selection, ST—single-trait, MT—multitrait. 3 GS—genomic selection, RRBLUP—ridge regression best linear unbiased prediction, GBLUP—genomic best linear unbiased prediction,
BL—Bayesian least absolute shrinkage and selector operator (LASSO), BRR—Bayesian ridge regression, GAUSS—Gaussian kernel, PLSR—partial least squares regression, RKHS—reproducing kernel
Hilbert space, EN—elastic net, W-BLUP—weighted best linear unbiased prediction, BMTME—Bayesian multitrait multienvironment, MTR—multitrait ridge regression, MT-SI—multitrait selection index,
RF—random forest.
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4.1. Effect of Training Population Size

As early as with the first studies of GS for wheat quality traits, it was demonstrated
that TP size (NTP) significantly impacts the GS accuracy. The average accuracy for nine
wheat quality traits was reported to be roughly 1.6-fold higher for NTP = 96 compared to
NTP = 24 when applied to a biparental population [30]. A similar pattern was observed in a
study by Heffner et al. [21] in which a population consisting of multiple wheat families was
used to predict some quality and agronomic traits. Increasing NTP from 96 to 288 resulted
in an overall increase in accuracy by approximately 30%. It is interesting to note that in
order to achieve approximately the same GS prediction accuracy, a TP that is three times
greater should be used in multifamily populations compared to biparental populations
(mean accuracies of 0.58 and 0.52 correspond to NTP = 96 and NTP = 288 in biparental
and multifamily population, respectively). The positive influence of an increased number
of lines in TP was observed for GPC and protein yield (PY) traits [55], where maximum
accuracy was reached at maximum TP size (NTP = 240) and amounted to 0.51 and 0.16 for
GPC and PY, respectively. When investigating the influence of using different proportions
of the entire population as TP (20–80%), Hu et al. [62] concluded that average prediction
accuracy benefited from larger TP size when predicting wheat quality traits such as SDS
(sodium dodecyl sulfate) sedimentation volume and thousand-kernel weight (TKW). In
agreement with previous studies, Kristensen et al. [59] reported that the highest accuracies
were recorded for all examined traits in the case of LOO (leave-one-out) type of cross-
validation (the largest possible TP scenario), while the k-fold cross-validation proved that
the use of smaller TP resulted in slightly lower GS prediction abilities. Similar results for
flour yield (FY) and alveograph traits were reported by Kristensen et al. [65].

Overall, the size of the TP depends on the genetic relatedness between TP and VP. The
more related the two populations are, the smaller the size of the TP will be needed to obtain
satisfying GS prediction accuracies for wheat quality traits [54]. Battenfield et al. [51] also
reported enhanced accuracy as a result of increasing TP size and random assignment of
full-sibs to TP and VP, therefore, creating a greater genetic relationship. Considering that
the phenotyping of wheat quality traits can be both costly and time-consuming, designing
a TP that at the same time maximizes genetic diversity and enhances GS accuracy, while
being small enough to achieve rapid phenotyping, is key for the successful implementation
of GS in a breeding program [53].

4.2. Relatedness of Training and Validation Population

As for the other wheat traits [69], it has also been observed in other studies of GS
for wheat quality traits that, in order to achieve high GS accuracy, TP and VP have to
be closely related. In research by Liu et al. [50] three scenarios with low, intermediate,
and high relatedness of TP and VP were created in order to predict seven quality traits of
wheat hybrids. As expected, results showed that GS accuracy enhances with an increase of
population relatedness, regardless of the prediction model used. However, for the scenario
of high relatedness, GS and PS resulted in similar prediction accuracies, suggesting that
for highly related populations, PS could be hardly outperformed by GS, whereas in lowly
related populations, GS will be a method of choice. Poor prediction accuracies were
observed for quality traits in durum wheat when the performance of one population
type (doubled-haploid) was predicted based on another population type (breeding panel
consisted of varieties and advanced lines) [58]. Kristensen et al. [59] used different types of
cross-validations to study the impact of genetic distance of TP and VP on GS prediction
accuracy. In LOO cross-validation, the GEBV of each individual is predicted based on
the rest of the population, thus representing a scenario where the size of TP and genetic
relatedness between TP and VP is as large as possible. Leave-family-out (LFO) cross-
validation represents a scenario where different levels of genetic relatedness of TP and
VP are present since the GEBV of individuals in each family is predicted based on the
remaining families in a given population. Comparing LOO and LFO (lower relatedness),
Kristensen et al. [59] concluded that genetic relatedness had a bigger impact on GS accuracy
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than the size of TP. The predictive abilities decreased the most in the case of GPC (0.5
and 0.2 for LOO and LFO, respectively) when increasing the genetic distance between
populations, while the smallest impact of increased genetic distance was recorded in the
case of Zeleny sedimentation (0.79 and 0.68 for LOO and LFO, respectively). Similar results
were reported for FY and alveograph traits, where the decrease of GS accuracy in a range
of 24% to 35% was observed when comparing LOO and LFO cross-validation methods [65],
and for Zeleny sedimentation, GPC, TKW, and test weight (TW) [64], suggesting that
genetic composition of TP is crucial for achieving accurate genomic predictions.

Prediction accuracies for GPC and PY traits showed a strong bias when predict-
ing within the breeding cycle (lower relatedness) compared to predicting between-cycle
(higher relatedness). According to Michel et al. [55], the highest bias for GPC was 86%,
whereas PY was overestimated in a range from 17% all the way up to 712%. A study by
Juliana et al. [63] has provided evidence that for traits with lower heritability the influence
of using lowly related populations will be even more pronounced. Therefore, in order to
achieve reliable predictions, the use of a diverse TP is recommended.

4.3. Effect of Marker Density

Studies of GS for wheat quality traits investigating the effect of marker density (i.e.,
number of markers, NM) all led to the same conclusion that the accuracy of the prediction
enhances with increasing marker density until it reaches a plateau, after which a further
increase in marker density has no effect on accuracy [30]. Since required marker density
is primarily determined by the extent of LD in the examined population, it is assumed
that lower marker density will be sufficient for closely related populations (e.g., biparental
population) than for distant populations to achieve satisfying GS prediction accuracy.
In a study conducted using two biparental wheat populations [30], average GS predic-
tion reached a plateau at NM = 256, after which a slight drop in accuracy was observed
(NM = 384), while in a multifamily approach [21] increasing NM from 192 to 1158 in-
creased GS accuracy by approximately 10%, after which response reached a plateau.
Huang et al. [54] reported no significant differences in GS accuracy when using the com-
plete set of markers (NM = 13,198) and a subset of 3919 markers, implying that lower
NM is already sufficient for predicting quality traits in wheat elite lines and varieties.
Juliana et al. [63] confirmed those findings using subsets of a marker data set that contained
less than 70%, 50%, and 10% missing data, which corresponded to a scenario of high cover-
age (NM = 16,072), moderate coverage (NM = 9285), and low marker coverage (NM = 2253).
They concluded that marker density had a minimal impact on GS accuracy, suggesting that
when a genomic resolution is reached in a high LD species (i.e., wheat), marker density no
longer represents a limiting factor.

The interdependence of marker density and relatedness of TP and VP in the context
of GS was illustrated in a study by Liu et al. [50] in which three scenarios representing low,
intermediate, and high relatedness were used. In the case of lowly related TP and VP, the
plateau was reached after ~3000 markers, whereas in the case of intermediate and highly
related TP and VP, the plateau was reached at ~2000 and ~500 markers, respectively.

4.4. Effect of Heritability of the Trait

Numerous studies up to date showed that GS accuracy is strongly influenced by
heritability, i.e., the fraction of the phenotypic variance of the trait due to genetic variance.
Although there is no unambiguous categorization, the majority of studies on wheat catego-
rize heritability values as low (<0.4), moderate (0.4–0.7), and high (>0.7) [21,30]. Generally,
traits with high heritability show high GS accuracy and vice versa. The predictive ability of
GS for wheat quality traits parallels their heritability which is often showed to be moderate
to high. An overview of heritability and GS prediction accuracy ranges reported for some
wheat quality traits is given in Table 2.
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Table 2. Overview of heritability and GS prediction accuracy reported in studies covering wheat quality traits.

Reference Quality Traits Examined 1 Heritability Type Heritability
Strength

Heritability
Range

GS Prediction
Accuracy Range 3

[21] PHS, GPC, TW, Suc-SRC,
LA-SRC, KH, FY broad-sense high 0.71–0.93 0.45–0.76

[30] TW, PHS, FY, KH, LA-SRC,
NaCO-SRC, Suc-SRC, H2O-SRC broad-sense moderate—high 0.67–0.95 0.27–0.74

[51]

TKW, TW, GPC, FY, FP, SDS
sedimentation, KH, LV,

mixograph and alveograph
traits

narrow-sense moderate 0.41–0.68 0.42–0.71

[54] TW, FY, FP, KH, LA-SRC,
NaCO-SRC, Suc-SRC, H2O-SRC

alternative
calculation for

unbalanced data 2
high 0.75–0.95 0.31–0.67

[50] TKW, TW, GPC, GC, SC, KH,
Zeleny sedimentation broad-sense moderate—high 0.63–0.96 0.35–0.96 4

[57]
GPC, farinograph,

extensograph, and alveograph
traits

alternative
calculation for

unbalanced data 2
moderate—high 0.69–0.83 0.16–0.61 4

[59] TKW, TW, GPC, FN, Zeleny
sedimentation narrow-sense moderate—high 0.56–0.81 0.2–0.79

[60] TW, GPC, WGC, SV, alveograph
and mixograph traits broad-sense moderate 0.36–0.64 0.24–0.43 4

[52] GPC, farinograph and
extensograph traits narrow-sense moderate 0.4–0.66 0.3–0.53

[61]
TKW, GPC, mixograph,

farinograph, and extensograph
traits

broad-sense high 0.78–0.93 0.25–0.42

[65] FY, alveograph traits narrow-sense moderate—high 0.38–0.72 0.3–0.79

[68] GPC, SC, Zeleny sedimentation narrow-sense low—moderate 0.35–0.62 0.1–0.3
1 TKW—thousand-kernel weight, TW—test weight, GPC—grain protein content, FY—flour yield, FP—flour protein, WGC—wet gluten
content, GC—gluten content, KH—kernel hardness, SC—starch content, FN—falling number, LV—loaf volume, SV—sedimentation volume,
PHS—preharvest sprouting, LA-SRC—lactic acid solvent retention capacity, NaCO-SRC—sodium carbonate solvent retention capacity,
H2O-SRC—water solvent retention capacity, Suc-SRC—sucrose solvent retention capacity, SDS—sodium dodecyl sulfate. 2 According to
Piepho and Möhring [70]. 3 Accuracy across all used models or scenarios. 4 Accuracy of single-trait genomic selection model.

Studies on wheat quality traits showed that heritability was the main factor that
affected the accuracy of GS [61]. Interestingly, not all highly heritable traits showed high
GS accuracy. While for most of the highly heritable traits (TW, sucrose solvent retention
capacity (Suc-SRC), water solvent retention capacity (H2O-SRC), and lactic-acid solvent
retention capacity (LA-SRC)), mean GS accuracy across the four models used was 0.6 and
higher, for FY and KH, accuracies were 0.45 and 0.38, respectively, despite their heritability
values being > 0.9 [54]. Low heritability traits would require larger TP in order to attain
the same prediction accuracy as in the case of traits with moderate to high heritability [56].
According to the reported heritabilities (Table 2), it is highly unlikely that the heritability
will present a limiting factor in GS for wheat quality traits.

4.5. Effect of Model Used

A broad range of models can be used to predict the phenotypic performance of wheat,
but the performance of each model is interrelated with the genetic architecture of the
examined trait and relatedness of TP and VP. As it is presented in Table 1, the majority of
GS studies for wheat quality traits used GBLUP and RRBLUP models, the performance of
which was usually compared to one of the Bayesian models.
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Little or no difference in prediction accuracy was detected between RRBLUP and
Bayesian models in a study by Heffner et al. [21], which suggested that all examined
quality traits were controlled by many QTLs of small effect. RRBLUP was comparable by
Bayesian models for highly polygenic quality traits in biparental populations while being
surpassed in the case of populations with a high genetic variance of examined traits [30].
RRBLUP and BayesCπ showed no significant differences when predicting hybrid perfor-
mance [50]. BL gave similar or slightly higher prediction accuracies than GBLUP for GPC,
TW, TKW, falling number (FN), FY, and alveograph traits, while the biggest difference was
recorded in the case of Zeleny sedimentation [59,65]. Those findings may be due to the bet-
ter performance of Bayesian models in case of lower relatedness of TP and VP, and in case
of traits controlled by few major QTLs, since they shrink small effects stronger while shrink-
ing large effects much weaker. Zeleny sedimentation has been proved to be controlled by
few QTLs of large effect, hence obtaining higher GS accuracies when Bayesian models were
used [59]. Similar results were observed when comparing RRBLUP and BL models for GPC
and Zeleny sedimentation [68]. Hu et al. [62] compared two nonparametric (RKHS and
RF) and two parametric models (RRBLUP and BL) when predicting SDS sedimentation
volume, GPC, and TKW, and concluded that their performance was strongly influenced
by prediction scenario (predicting within the same year and across years where years
represented different drought conditions). Namely, nonparametric models outperformed
parametric in the cross-year prediction which represented a more realistic setting, while in
the same-year prediction average performances of RF, RKHS, and RRBLUP were similar,
with RF showing significant variations among growing seasons. Only a study by Batten-
field et al. [51] showed that when GS accuracy was obtained by cross-validation, Gaussian
kernel (GAUSS) was the best model for predicting all quality traits within a population con-
sisting of multiple families, thus outperforming EN, partial least square regression (PLSR),
and RRBLUP.

Bayesian models usually require longer computation time compared to GBLUP or
RRBLUP [12,58,62] but show no clear superiority over the other models across wheat
quality traits [61,68], i.e., the accuracy of GS for wheat quality traits was generally not
under the large influence of prediction model applied. Therefore, RRBLUP showed to be
a model of choice in the majority of GS studies for wheat quality traits [54,58] due to its
robustness and shorter computational time [55].

5. Multitrait Genomic Selection

Wheat quality traits can often be hard to improve, since they usually require a large
amount of flour and/or labor to be invested, thus limiting the size of the TP that can be
phenotyped which leads to insufficient GS accuracy. Incorporating additional phenotypic
information in the multitrait approach for GS could help to overcome the problem of
potentially low GS accuracy obtained for wheat quality traits. Multitrait GS data obtained
utilizing rapid quality tests are used for predicting parameters of more laborious wheat
quality tests. Rapid tests such as near-infrared (NIR) and nuclear magnetic resonance
(NMR) methods are less labor-intensive and require a small amount of flour. It has been
proved that incorporating NIR and NMR data into the multitrait approach increases the
accuracy of GS for some wheat quality traits (accuracy ranged between 0 and 0.47, and
between 0 and 0.69 in a single-trait approach and multitrait approach, respectively) [56].
Incorporating easily obtained gluten peak indices into multitrait GS analysis improved
average prediction accuracy by roughly 20% in comparison to single-trait GS for dough
rheology traits [57]. Including metabolomics data in GS resulted in increased accuracies
for some wheat quality traits (GPC, GC, FN, FY, Zeleny sedimentation, KH) compared
to GS based on DArT markers only [71]. According to Haile et al. [58], the multitrait
approach resulted in higher prediction accuracy only in the case of yield, whereas for
quality traits, all single-trait models applied gave better prediction accuracy compared to
the multitrait approach. Lado et al. [60] showed that no multitrait model used performed
better than a single-trait model, but that using highly correlated traits in multitrait GS
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for wheat quality allows reduction of TP up to 30% without significantly affecting the
predictive ability of the model. Further research studies showed that using different
GS indices in simultaneous selection for yield and wheat quality traits still does not
outperform single-trait prediction for GPC, PY, and the dough rheological traits, but
suggested that simultaneous improvement of yield and wheat quality should target protein
quality, rather than GPC [66]. A significant gain of multitrait approach is expected only for
low heritable traits that are incorporated with high heritable traits, between which high
genetic correlation exists [64]. Data for traits incorporating together in a multitrait analysis
must be already available or easy to obtain on a large number of samples in a short period
of time [67].

6. Conclusions

Due to the complex nature of inheritance for the majority of wheat quality traits, GS
seems to be the method of choice because it simultaneously accounts for small and medium
effect loci as well as for major QTLs. Numerous studies in the last decade proved that GS has
sufficient accuracy for implementation in the breeding programs targeting wheat quality.
Genomic selection can be helpful in predicting the performance of lines in early generations
and preselecting high-performing lines, boosting trait stability, and efficiently selecting
superior genotypes for wheat quality traits. There is some evidence that GS could also be
used to address one of the biggest problems in wheat breeding—how to simultaneously
select for grain yield and quality traits since the existence of a strong negative correlation
between those traits is well known and documented. Nevertheless, before implementing
GS in the breeding for wheat quality traits, some limitations considering trait heritability,
genetic relationship between TP and VP, and size of the TP must be taken into account.
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