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Abstract: Clinorotation was the first method designed to simulate microgravity on ground and it
remains the most common and accessible simulation procedure. However, different experimental set-
tings, namely angular velocity, sample orientation, and distance to the rotation center produce different
responses in seedlings. Here, we compare A. thaliana root responses to the two most commonly used
velocities, as examples of slow and fast clinorotation, and to vertical and horizontal clinorotation. We
investigate their impact on the three stages of gravitropism: statolith sedimentation, asymmetrical
auxin distribution, and differential elongation. We also investigate the statocyte ultrastructure by
electron microscopy. Horizontal slow clinorotation induces changes in the statocyte ultrastructure
related to a stress response and internalization of the PIN-FORMED 2 (PIN2) auxin transporter in the
lower endodermis, probably due to enhanced mechano-stimulation. Additionally, fast clinorotation,
as predicted, is only suitable within a very limited radius from the clinorotation center and triggers
directional root growth according to the direction of the centrifugal force. Our study provides a full
morphological picture of the stages of graviresponse in the root tip, and it is a valuable contribution
to the field of microgravity simulation by clarifying the limitations of 2D-clinostats and proposing a
proper use.

Keywords: microgravity simulation; gravitropism; gravity perception; plant; clinostat

1. Introduction

The force of gravity is a permanent environmental factor that exerts fundamental
influence on plant growth and development. In particular, the direction of the gravity
vector determines the orientation of the plant growth in a process called gravitropism. The
gravitropic response is commonly divided into three steps: gravity perception, transduction
of the signal, and the growth response [1,2], although some authors split the perception
phase into two steps, namely susception—the movement of the statoliths and their sedi-
mentation, and perception—the transfer of the physical act into a physiological signal [3].
Gravity perception takes place in specialized cells called statocytes. These cells have starch-
containing plastids, statoliths, which sediment in the direction of the gravity vector [4].
In the root, statocytes are located in the root cap, they are organized in tiers, and form a
tissue called columella, whereas in the shoot, they are found in the endodermis [5]. Gravity
perception in the root is preceded by the motion of statoliths in the root columella after
plant reorientation to sediment according to the direction of the gravity vector. Columella of
A. thaliana is a highly organized and dynamic structure. It consists of three to four layers of
statocytes, sometimes called tiers or stories S1, S2, S3. Statocytes differentiate from the root
cap meristem, formed by the columella root cap stem cells (CSC) which are located directly
underneath the quiescent center (QC) and above the first layer of statocytes (S1) [6]. CSC
activity ensures a constant regeneration of columella cells. The layers that follow (S1–S4)
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assume first a role in gravity perception, and then they become secretory cells that are
important for root tip protection [7–9]. The central cells of columella (central cells of the two
layers that follow the meristem) are the most important for gravitropic response [10–12].
However, statoliths in S3 and S4 tiers, in which statocytes assume secretory functions,
do not always sediment after turning the root [11]. It is not completely understood how
gravity signal is transduced after statoliths sedimentation on the endoplasmic reticulum
(ER) on the cell periphery. One of the most accepted hypothesis is that the physical contact
of the statoliths and the cortical ER opens Ca2+ channels which creates a Ca2+ signal in
the cytoplasm [12] that could lead to changes in auxin PIN-FORMED (PIN) transporters
polarity [13]. The latest studies confirm that LAZY proteins also play a function in the early
stages of gravitropic signal transduction [14–16]. It is well reported that auxin is involved in
the final stages. According to the Cholodny–Went theory, the differential gradient of this
phytohormone results in differential growth. The auxin gradient is formed by differential
localization of auxin PIN transporters in response to gravity [17]. The involvement of PIN3,
PIN7, and PIN2 in root gravitropic signaling was confirmed by numerous studies [18–20].
PIN3 and PIN7, located in the columella cells, change their distribution within minutes
after the gravitropic stimuli, next PIN2 transports auxin through epidermis towards the
root elongation zone [21,22]. The differential lateral distribution of auxin transport factors
in response to a gravitropic stimulus, leads to auxin accumulation at the lower side of the
root inhibiting cell expansion in the elongation zone and low auxin levels in the upper side
of the root stimulate cell elongation [23]. In effect, non-uniform growth in the elongation
zone enables the root to bend towards the new direction of the gravity vector.

Whereas many studies have been devoted to investigating the plant response to gravit-
ropic stimuli, less is known about the mechanisms triggered by the plant in the absence of
any gravity vector or when the magnitude of this vector is significantly lower than the Earth
gravity, 1 g. This knowledge is necessary for any enterprise of space exploration, since the
environment of outer space and of the nearby planets and satellites is characterized by a low
or near-zero gravity force (microgravity). The experiments performed on the orbit in the
International Space Station (ISS) provide the best conditions for real microgravity research,
but are limited by the high cost and complex logistics. This has motivated scientists to look
for more accessible ways to investigate the response of an organism to the low gravity levels.
There are a number of hardware devices (also called Ground Based Facilities, GBF) that
enable weightlessness simulation with the objective to prevent an organism from perceiv-
ing the gravity vector (reviewed in [24]). One of the first created simulators are clinostats
that were originally designed to be used with plants [25] but later were also applied with
different systems, as for example, in vitro cultures. In clinostats, weightlessness simulation
is achieved by averaging the gravity vector during each cycle of rotation. It was designed to
be used in plants due to the relatively long presentation time for the gravistimulus (the time
that the stimulus must persist to trigger a gravitropic response) in comparison to animal
models [26–28]. In A. thaliana, the presentation time is approximately 0.4–1 min [7,11,29]. In
the perfect clinorotation settings the sedimentation fall of the statoliths is converted into
quasi-circular paths by continuously rotating the whole plant and in effect the position of
the statoliths remain virtually stationary within the cells [30]. It should be noted that, to
perform an optimal simulation on a clinostat, the mechanism of graviperception of a given
organism has to be taken into account. Despite the common use of clinostats and the vast
research that was performed on these devices, no clear set of rules has been established as
for the optimal clinostat settings. Angular velocity varies between studies from 1–2 rpm
up to 60 rpm without a justification [31–35]. In addition, we can distinguish two types of
clinorotation depending on the orientation of the sample in relation to the clinorotation axis:
vertical clinorotation (VC), with the longitudinal growth axis of the plant perpendicular
to the rotation axis, or horizontal clinorotation (HC), with the longitudinal seedling axis
parallel to the rotation axis (see Figure 1) [36]. The possible impact of either of these two
types of clinorotations was compared by [36–38], concluding that vertical and horizontal
clinorotation result in different outcomes. Additionally, different effects of the centrifugal



Plants 2021, 10, 734 3 of 20

force on plant growth in horizontal and vertical orientation were reported by [39], but there
is not a consensus or evidence-based guideline in the best practice to use clinorotation
in terms of speed, orientation of the Petri dishes containing samples and the maximum
duration of the treatment.

Here, we explore A. thaliana responses to fast and slow horizontal and vertical clinoro-
tation, by investigating the elements of each of the three gravitropism stages. We conclude
that the seedling growth is modulated differently in fast and slow clinorotation as well
as in vertical and horizontal. We have observed directional growth in fast clinorotation
and differences in the statolith distribution in different clinorotation conditions. Finally,
we observe increased stress response in columella cells and the meristem in horizontally
clinorotated seedlings, that does not seem to be related to the gravitropic perception, but
rather to enhanced mechano-stimulation. Our results confirm preliminary findings and a
mathematical model described previously [40].

2. Results
2.1. Angular Velocity and Sample Orientation Influence Root Growth Direction and Rate

First, we analyzed root growth direction and rate after 24 h of fast or slow, horizontal
or vertical clinorotation. In Figure 1, the sample orientation and acting forces in vertical or
horizontal clinorotation are explained.
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Figure 1. 2-D clinostat and sample orientation. Schematic representation of (a) Vertical clinorota-
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Figure 1. 2-D clinostat and sample orientation. Schematic representation of (a) Vertical clinorotation,
(b) Horizontal clinorotation, (c) Theoretical forces and direction in vertical clinorotation, and (d)
Theoretical forces and direction in horizontal clinorotation. Red dashed arrows—the direction of
clinorotation; black dashed arrows—the direction of the centrifugal force; gray arrows —direction of
the gravitational force.

Seedlings in the control group continued to grow vertically downwards with minor
fluctuations. The directional growth control group after reorientation grew downwards
according to the direction of the gravity vector (Figure 2a). In the slowly clinorotated sam-
ples roots turned slightly, but their direction did not reflect the direction of the centrifugal
force vector suggesting it has a negligible magnitude at 1 rpm in our experimental settings.
On the other hand, as shown in Figure 2a (and Figure S1), at 60 rpm, the centrifugal drift
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had a significant impact on the direction of the root growth. As a result, a clear directional
growth towards the outside of the Petri dish was observed in the seedlings that grew on
the laterals at high angular velocity in both orientations (Figure 2a) due to high acceleration
which increases with the distance from the clinorotation axis. The direction and the angle
of the roots corresponded to the direction of the centrifugal force vector (black arrows in
Figure 2a) and the angle of the root depended on the distance of the seedling from the
clinorotation axis (Figure 2a). The plot correlation between the distance of the seedling
to the center of rotation and the root tip angle is shown in Figure S1. It should be noted
that the roots did not grow straight downwards in any of the conditions, meaning the root
growth toward the gravity vector was inhibited by clinorotation. Nevertheless, in case of
the fast clinorotation, centrifugal drift seemed to be perceived by the seedlings placed at a
distance from the clinorotation axis (Figure S1).

The maximum centrifugal force for both configurations, vertical and horizontal, at
slow clinorotation (1 rpm) across the entire Petri Dish (4.5 cm radius) was negligible (up to
5.04 × 10−5 g at the border of the Petri dish). In turn, the theoretical value of centrifugal
acceleration in the fast clinorotation (60 rpm) is 0.18 g at 4.5 cm radius, which is above
the graviperception threshold values reported before [41–43]. These calculations are in
agreement with the growth pattern observed in the experiment.

We have observed that in the Horizontal Fast Clinorotation (HFC), the seedlings were
often displaced after 24 h (see Figure 2a; the position of the seeds before the clinorotation is
marked with short black lines along the line in the middle of the Petri dish). Sections of the
seedlings detached from the substrate. It should be noted, that in the experimental setting
when seedlings are grown on an agar surface on a Petri dish, in vertical clinorotation, the
gravity vector acts along the surface and so does the centrifugal force (both acting in the
same plane). On the other hand, in horizontal clinorotation, although the centrifugal force
acts along the agar surface, the Petri dish changes constantly the angle with respect to the
gravity vector, meaning that the gravity vector and the centrifugal force do not act in the
same plane, except at the time when the Petri dish is positioned vertically (see Figure 1).
This constant change causes the seedlings to partly detach from the agar. It is possible
that in horizontal clinorotation the “change of phase” has an additional impact on the
seedlings´ response. In this experimental setting, the gravity vector acts during half of the
clinorotation cycle by “pushing” the seedling against the agar surface (agar side down) and
during the other half of the cycle by “pulling” the seedling from the agar surface (top of the
Petri dish down). As mentioned before, in vertical clinorotation this issue is not present,
since both the gravity vector and the centrifugal force act along the agar surface.

To measure the influence of the speed and the orientation of the sample on the root
growth rate we measured the length of the roots before the clinorotation (point 0 marked
with arrows in the Figure 2a) and after 24 h (L, see Figure 2b). We have observed a
significantly higher root growth rate in the HFC sample (Figure 2c).

We analyzed in more detail the root morphology using four values described before
by [44], namely, integral averaged angular declination (α in Figure 2b) of the root tip, vertical
growth index (VGI), horizontal growth index (HGI), and root straightness, later renamed
as gravitropic index (GI) [20,45–48]. VGI is defined as the ratio between the straight line
distance from the base of the root to the root tip and the root length. The closer VGI value is
to 1, the straighter the root grows. On the other hand, HGI is the distance in the horizontal
line between the base of the root and the root tip divided by the root length. The higher
the deviation from the straight line, the higher is the value of the HGI (closer to 1). Here,
we calculated horizontal and vertical growth indexes taking into account the distance from
point 0 (start of the clinorotation) to the root tip after 24 h (Figure 2b).

The GI is the shortest distance from the base of the root to the root tip divided by the
root length. Similar to the VGI, the closer the value is to one, the straighter is the root.

As expected, in the control the HGI was the lowest and VGI the highest and in the
directional growth control the trend was opposite (Figure 2e,f). As indicated by HGI, VGI,
and α values, roots of the seedlings exposed to vertical clinorotation deviated less from a
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straight line than in case of horizontal clinorotation (Figure 2d–g). Although the differences
between the values that correspond to the different clinorotation conditions were not
significant, the trend was repeated in all parameters, including the plot of correlation
between distance from the rotation axis and the angle of the root (Figure S1).
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Figure 2. Root growth and direction upon clinorotation conditions. (a) Photographs of seedlings
in the different experimental conditions (CONTROL, control; 90◦, directional growth control; VSC,
Vertical Slow Clinorotation; VFC, Vertical Fast Clinorotation; HSC, Horizontal Slow Clinorotation;
HFC, Horizontal Fast Clinorotation). White arrows represent gravity direction and black arrows
represent the direction and magnitude of centrifugal force (narrow arrow for low magnitude in slow
clinorotation and wide arrow for high magnitude in fast clinorotation). (b) Schematic representation
of root growth parameters quantified (c–g) Quantification of different root features: (c) the root
growth, expressed as the length of the root from time point 0 (arrows) and after 24 h; (d) root angle,
expressed as the absolute value of integral average angular declination; (e) VGI, Vertical Growth
Index; (f) HGI, Horizontal Growth Index; (g) GI, Gravitropic index. * p-value < 0.05 compared to the
control. # p-value < 0.05 compared to directional growth control, 90◦.
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2.2. Distribution of Statoliths in the Columella Is Influenced by Angular Velocity

We have investigated the distribution of statoliths in the columella in Differential
Interference Contrast (DIC) images of formaldehyde (FA) fixed seedlings (Figure 3 and
Figure S2).
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Figure 3. Statoliths position in Differential Interference Contrast (DIC) images. Detail of central
S1 and S2 statocytes in the root columella at the different times (1, 2, 3, and 24 h) and conditions
(Control; VSC, Vertical Slow Clinorotation; VFC, Vertical Fast Clinorotation; HSC, Horizontal Slow
Clinorotation; HFC, Horizontal Fast Clinorotation; 90◦, directional growth control). Blue arrows
highlight statolith differential position among conditions. Red arrows indicate statoliths position
changes due to the gravity vector in the directional growth control. Scale bar represents 5 µm2.

Taking into account the importance of each tier in the columella, we have focused
on central statocytes (in S1 and S2 tiers) to compare the position of statoliths inside the
statocytes in each condition. These are outlined in Figure 3.
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Statoliths containing starch grains could be seen within statocytes in the DIC images.
Although other organelles and internal cellular structures, such as the nucleus or ER,
could not be distinguished, the contour of the statocytes could be observed. In the central
statocytes of columella in the control roots, groups of statoliths could be seen located close
to the bottom of the cell (Figure 3, blue arrows in the control sample). In the directional
growth control, statoliths were clustered, close to one lateral cell wall of the statocyte, at 1,
2, and 3 hours after the turn (Figure 3, red arrows). After 24 h, the statoliths were located in
the lower part of the statocytes when the root has already changed its orientation and grew
downwards, according to the gravity vector. In the slow clinorotated samples, Vertical
Slow Clinorotation (VSC) and Horizontal Slow Clinorotation (HSC), groups of statoliths
were observed more dispersed throughout the statocytes in comparison to the controls and
samples exposed to Fast Clinorotation (FC) for 3 and 24 h (blue arrows in Figure 3 in VSC
and HSC samples). In the fast clinorotated samples, statoliths formed groups located in the
lower part of the cell (blue arrows in Figure 3 in Vertical Fast Clinorotation (VFC) and HFC
samples). This pattern was more evident in the VFC than in HFC, in which some statoliths
could be seen in the center or even in the upper part of the cell (Figure 3). Although the
fixation of the samples was performed immediately after clinostat was stopped (stationary
mode), the differences observed between the conditions confirm that the minimal time of
this procedure did not significantly influence the position of the statoliths.

2.3. Statocytes’ Ultrastructure Is Affected by Horizontal Clinorotation and Displays Features of
Stress Response

We investigated in more detail the cell ultrastructure of central statocytes in S1 and S2
tiers, in different conditions, by electron microscopy. Statocytes show a polar distribution,
meaning that the nucleus is located in the upper part and the statoliths in the lower part of
the cell. We have observed this typical layout in all the conditions (Figure 4a). The round
nucleus, enclosed in a double nuclear membrane, did not present any abnormalities in
any condition. Near the nucleus, numerous mitochondria and lysosomes were located.
Mitochondria presented elongated (oblong) shape with compact cristae in cross sections,
although round mitochondria with more loosely organized cristae were also observed in
HSC (Figure 4b). In controls and in vertically clinorotated samples, the outline of lysosomes
showed round shape, whereas in HSC sample their shape was more oblong (Figure S3).
In fast clinorotated samples the size, and in HFC the number of lysosomes was reduced.
A complex ER system could be observed in all the conditions in the lower part of the
cell and also in a simpler form on the laterals and close to the nucleus. Multiple Golgi
bodies were present distributed around the cell, which confirmed high secretory activity.
Statoliths containing multiple starch grains and sometimes fibrous bundles [49] could be
observed in the central and lower part of the cell and in the sample turned 90◦, also in
the upper part in proximity to the nucleus. Statoliths were of regular round or oblong
shapes, although in the directional growth control (90◦) and HFC, irregular shapes were
observed (Figure 4a). Occasional vacuoles were observed in the controls and vertically
clinorotated samples. In horizontally clinorotated samples, the vacuoles were bigger and
numerous in the HSC sample. Cell walls in all conditions could be easily distinguished
between plasma membranes of adjoining cells and middle lamella was sometimes visible
(Figure 4c). The walls were mostly thin, although thicker regions could be also seen
(Figure 4a). Plasmodesmata connecting cells from different tiers (up/down) could be often
seen, suggesting close communication between these cells. Vesicles (endosomes) were
often observed between the cell membrane and the cell wall. In controls and vertically
clinorotated samples, the cell walls delimited mostly straight rectangular cells; nevertheless,
in horizontally clinorotated samples, the anticlinal and bottom cell walls had often irregular
wavy shape, especially pronounced in the HSC sample (Figure 4a,c; Figure S4) which could
suggest they underwent prolonged mechanical stress.
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S2 central columella tier in the different experimental conditions: Control (C), directional growth
control (90◦), Vertical Slow Clinorotation (VSC), Vertical Fast Clinorotation (VFC), Horizontal Slow
Clinorotation (HSC), and Horizontal Fast Clinorotation (HFC). (b) Detail of mitochondria structure.
(c) Detail of lateral cell wall structure. Scale bar represents 1 µm.

2.4. The Distribution of PIN2, an Auxin Transporter, Is Affected in the Horizontal but Not
Vertical Clinorotation

Auxin is one of the most important phytohormones, and it plays an essential role in
regulating root growth. In the meristem, auxin promotes proliferation (mitosis), whereas in
the elongation zone, it inhibits cell expansion [50,51]. It is transported from the shoot to the
root meristem through the central part of the root and an auxin maximum is formed around
the quiescent center. From there, auxin is transported, first by PIN3 and PIN7, and then by
PIN2 proteins, up to the elongation zone through epidermal cells by basipetal transport,
sometimes called the reflux loop [17,22,52]. This transport is responsible for asymmetrical
changes in auxin gradient that modulate cell expansion in the elongation zone, enabling
the root to bend in response to reorientation. We have investigated changes in auxin
transport in the PIN2-Green Fluorescence Protein (PIN2-GFP) reporter line (Figure 5), as
well as auxin levels and distribution, using DR5-β-glucuronidase (DR5-GUS) and DII-
Venus reporter lines exposed to different clinorotation conditions (Figure 6 and Figure S5,
respectively).
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intensity of the GFP signal was applied with the Lookup Table Royal Tool in the ImageJ software; 
Grey: cell wall staining with Renaissance SR2200. Experimental conditions: Control; VSC, Vertical 
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Horizontal Fast Clinorotation; 90°, directional growth control. At times 1, 2, 3, and 24 h of exposure 
to these conditions. White arrows highlight endodermis accumulation. Red arrow: PIN2 redistribu-
tion to new gravity vector. Scale bar represents 50 µm (b) PIN2-GFP seedlings grew for 5 days with 
0 (DMSO), 1 or 5 µM naphthylphthalamic acid (NPA). Scale bar represents 50 µm. (c) Relative flu-
orescence GFP intensity in the different meristem cell layers at the different times and experimental 
conditions. (d) GFP relative intensity at each meristem layer in seedlings grown for 5 days with 0 
(Dimethyl Sulfoxide, DMSO), 1 or 5 µM NPA. * p-value < 0.05 compared to control at the same time 
and layer (or 0 µm DMSO in the NPA-treated seedlings), # p-value < 0.05 compared to the same time 
and clinorotation speed but different orientation. 

Figure 5. PIN-FORMED2 (PIN2) distribution and levels in the root meristem. (a) Confocal microscope
images of PIN2-Green Fluorescence Protein (GFP) reporter line. Pseudocolor reflecting the intensity
of the GFP signal was applied with the Lookup Table Royal Tool in the ImageJ software; Grey:
cell wall staining with Renaissance SR2200. Experimental conditions: Control; VSC, Vertical Slow
Clinorotation; VFC, Vertical Fast Clinorotation; HSC, Horizontal Slow Clinorotation; HFC, Horizontal
Fast Clinorotation; 90◦, directional growth control. At times 1, 2, 3, and 24 h of exposure to these
conditions. White arrows highlight endodermis accumulation. Red arrow: PIN2 redistribution to new
gravity vector. Scale bar represents 50 µm (b) PIN2-GFP seedlings grew for 5 days with 0 (DMSO),
1 or 5 µM naphthylphthalamic acid (NPA). Scale bar represents 50 µm. (c) Relative fluorescence
GFP intensity in the different meristem cell layers at the different times and experimental conditions.
(d) GFP relative intensity at each meristem layer in seedlings grown for 5 days with 0 (Dimethyl
Sulfoxide, DMSO), 1 or 5 µM NPA. * p-value < 0.05 compared to control at the same time and layer
(or 0 µm DMSO in the NPA-treated seedlings), # p-value < 0.05 compared to the same time and
clinorotation speed but different orientation.
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Figure 6. Auxin distribution among clinorotation conditions. (a) Optical microscope images of 
DR5-β-glucuronidase (DR5-GUS) reporter line seedlings exposed to the different experimental 
conditions: Control; VSC, Vertical Slow Clinorotation; VFC, Vertical Fast Clinorotation; HSC, Hor-
izontal Slow Clinorotation; HFC, Horizontal Fast Clinorotation; 90°, directional growth control; 
after 1, 2, 3, or 24 h of exposure. Red arrows indicate auxin redistribution. Scale bar represents 50 
µm (b) DR5-GUS seedlings grew for 5 days with 0 (DMSO), 1 or 5 µM NPA. Scale bar represents 
50 µm. (c) DR5 relative staining quantification at the different times (1, 2, 3, and 24 h) and condi-
tions. (d) NPA-treated seedlings DR5-GUS relative staining quantification. Bars represent mean + 
SEM. *p-value < 0.05. 

Figure 6. Auxin distribution among clinorotation conditions. (a) Optical microscope images of DR5-
β-glucuronidase (DR5-GUS) reporter line seedlings exposed to the different experimental conditions:
Control; VSC, Vertical Slow Clinorotation; VFC, Vertical Fast Clinorotation; HSC, Horizontal Slow
Clinorotation; HFC, Horizontal Fast Clinorotation; 90◦, directional growth control; after 1, 2, 3, or
24 h of exposure. Red arrows indicate auxin redistribution. Scale bar represents 50 µm (b) DR5-GUS
seedlings grew for 5 days with 0 (DMSO), 1 or 5 µM NPA. Scale bar represents 50 µm. (c) DR5 relative
staining quantification at the different times (1, 2, 3, and 24 h) and conditions. (d) NPA-treated
seedlings DR5-GUS relative staining quantification. Bars represent mean + SEM. * p-value < 0.05.

In the directional growth control (90◦) we observed asymmetric changes in PIN2-GFP
distribution, characteristic for gravitropic response, with accumulation on the lower side.
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This distribution was especially conspicuous 2 h after the reorientation (Figure 5a, red
arrow), whereas in the control sample the distribution was symmetric at all times. In the
clinorotated samples the asymmetric distribution was not observed, although in the hori-
zontal clinorotation we have observed PIN2 internalization in the lower endodermis, that
was confirmed by fluorescent signal quantification in the different meristematic layers: epi-
dermis, cortex, and endodermis (Figure 5a,c). To investigate if this distribution is related to
auxin transport inhibition, we have grown PIN2-GFP seedlings on medium complemented
with naphthylphthalamic acid (NPA), an auxin transport inhibitor that inhibits gravitropic
response [23], at different concentrations (Figure 5b). Indeed, the PIN2 accumulation in the
lower endodermis was observed in NPA treated seedlings, suggesting that the observed
distribution is a result of auxin transport inhibition (Figure 5b,d). The samples horizontally
clinorotated for 24 h showed PIN2 intracellular accumulation, similar to that in the sample
treated with 1 µM NPA (Figure 5). The typical polar distribution of PIN2 in the meristematic
epidermis and cortex was not affected in NPA-treated plants, in agreement with previous
reports [53].

Next, we investigated auxin distribution and levels during clinorotation in DR5 and
DII-Venus reporter lines (Figure 6 and Figure S5). DR5 is a synthetic auxin response element
that is highly responsive to auxin level changes. We have used a fusion of DR5 and a
minimal 35S Cauliflower mosaic virus (CaMV) promoter with GUS reporter gene in DR5-
GUS reporter line [54]. DR5 (TGTCTC) binds to auxin response factors and responds rapidly
to active auxin concentration between 10−8 and 10−5 M and remains at high levels up
to 10−4 M [55]. This makes it a suitable tool for tracking the accumulation of auxin in
combination with the GUS reporter gene.

DII-Venus is a more modern auxin sensor, which combines VENUS fast maturing
form of yellow fluorescent protein and Aux/ Indole-3-acetic acid (IAA) auxin-interaction
domain (domain II; DII) expressed under a constitutive promoter [56]. It enables tracking
of Aux/IAA-dependent degradation of VENUS fluorescent protein. This provides a tool
to monitor dynamic changes of auxin levels that does not depend on a complex auxin
response pathway, as is the case of DR5. DII-Venus is constitutively expressed in nuclei and
it is degraded upon contact with auxin, resulting in loss of fluorescent signal and directly
reflecting auxin levels in the cell [56].

The typical auxin distribution in the root meristem with an auxin maximum around
the region of quiescent center and diminishing levels towards the elongation zone, was
observed in all conditions. In the directional growth control (90◦) we have observed
asymmetric auxin distribution at the meristem laterals after 1–3 h after the reorientation
(Figure 6, red arrows). No obvious changes in the auxin distribution pattern was observed
in any of the clinorotation conditions.

We have also grown DII-Venus and DR5-GUS seedlings on a medium supplemented
with NPA at different concentrations, to investigate whether the distribution of PIN2-GFP
corresponding to auxin transport inhibition is reflected in auxin accumulation in these
reporter lines in any of the different clinorotation conditions. The seedlings treated with
NPA showed gradual accumulation of GUS signal in the central and lateral parts of the
root tip in DR5-GUS line and gradual decrease in DII-Venus signal that depended on
NPA concentration (Figure 6b, d, and Figure S5b). Nevertheless, a similar pattern was not
observed in any of the clinorotated samples (Figure 6a and Figure S5a).

We quantified DR5 relative staining to investigate the changes in auxin levels in
different conditions. The only statistically significant difference was a minor reduction in
auxin levels after 2 h of HSC in comparison to control (Figure 6c). On the other hand, a
clear increase in GUS signal was observed in NPA-treated seedlings.

3. Discussion

The clinostat is an important tool for investigating the graviresponse of plants and, in
particular, the impact of microgravity, thus being a useful complement to space experiments.
It was designed to be applied in plants for their slow gravitropic response [26–28] but
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nowadays is also used in experiments with animals and in vitro cell cultures [57–62]. Since
the first use of clinostat in plant studies [25,27,28] gravitropism was extensively studied
and today is much better understood. The response of the plant to reorientation is a
dynamic sequence of processes that leads to a non-uniform growth in the elongation zone
in approximately 3 h, according to the direction of the gravity vector [23,63]. The three
phases of gravitropism can be distinguished: gravity perception in the columella, signal
transduction that results in auxin distribution gradient, and non-uniform elongation that
leads to the root bending. Each phase takes a certain time, but the gravity perception,
which is the key step to take into account for an optimal microgravity simulation, takes
approximately 6 minutes (370 s after reorientation) [12].

Although clinostats are widely used, little bibliography is available on comparison
of fast and slow [64], or vertical and horizontal clinorotation [36–38,65]. In this respect,
it is worth mentioning that we have previously developed a mathematical model which
enabled calculation of the clinostat setting for an optimal microgravity simulation. Given
the size of the experimental container, optimal angular velocity can be calculated as a
function of the time of clinorotation, and vice versa [40].

The present study confirms that all clinorotation conditions are enough to avoid the
root growth according to gravity vector. Nevertheless, in fast clinorotation, centrifugal force
led to conspicuous directional growth, as will be discussed further. In the slow clinorotated
samples, non-directional, random root growth was observed, similar to the growth ob-
served in plants grown in real microgravity conditions [66,67]. A study in the International
Space Station showed that the orientation of roots in microgravity was not random, but
was the result of automorphogenesis and autotropism, successively. First, the embryonic
root curved strongly away from cotyledons, and then it grew straight [42]. As shown in
the DIC images of root columella, under slow clinorotation, statoliths appeared dispersed
in statocytes similar to what was observed in plants grown in real microgravity [36,68–72].

Clear directional growth was triggered at high angular velocities by centrifugal force
in the seedlings placed furthest away from the clinorotation axis. The value of this force is
proportional to the distance from the clinorotation axis, meaning that the plants positioned
further from the center of the Petri dish perceived the centrifugal force and responded to
it. Thus, fast clinorotation would only be appropriate in a very limited radius from the
center of rotation, or for short times of microgravity simulation. Previously, researchers
applied the criterion of centrifugal force limit to determine the usable space for effective
microgravity simulation during clinorotation [31,38,73,74]. These limits ranged between
0.00009 g – 0.2 g and were determined by investigating the minimal centrifugal force that
caused directional growth in oats clinorotated horizontally (0.0001 g) [41], in lentils in a
centrifuge in the GRAVI-1 space experiment (0.000014 g) [42], or the partial- g effect on
rhizoids of Chara globularis in parabolic flights (0.05 g) [43]. In our experimental setting,
at 1 rpm, the centrifugal force is below most of the reported perception thresholds (at the
edge of the Petri dish; 4.5 cm from the clinorotation center, 0.00005 g) which was confirmed
by our morphological study. On the other hand, at 60 rpm the centrifugal force (at the edge
of the Petri Dish; 4.5 cm from the clinorotation center, 0.18 g) exceeds the graviperception
thresholds at a short distance from the clinorotation axis and triggers directional growth,
as shown in the morphological study.

Taking into account that the directional growth was not observed in slow clinorotation
our morphological study suggests that slow clinorotation is more suitable for microgravity
simulation in A. thaliana seedlings. This is in agreement with previous reports indicat-
ing that angular velocity values between 0.33 and 2 rpm result in effective clinorotation
(microgravity simulation) [30,38,75], and with our preliminary results [40].

We can distinguish vertical or horizontal clinorotation depending on the orientation
of the sample in relation to rotation axis [36]. Previous studies have shown that the type
of the clinorotation (vertical or horizontal) influences the plant response in a different
way. John and Hasenstein [38], have demonstrated that horizontal clinorotation (1–5 rpm)
is less effective in nullifying gravitropic signals than vertical clinorotation. Seedlings
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were turned 90◦ before clinorotation for up to 15 min and then clinorotated vertically
or horizontally. Seedlings that were horizontally clinorotated showed more pronounced
directional growth than the vertically clinorotated ones. Lorenzi and Perbal [36], compared
cell ultrastructure and concluded that VSC has similar effect on the position of the nucleus
as real microgravity.

Moreover, a number of studies pointed out that horizontal clinorotation is associated
with higher stress response [49,65,69,73], although this aspect was later extrapolated as a
general effect of clinorotation. This observation is in agreement with our results, as we
observed altered ultrastructure of statocytes (Figure 4) and PIN2 intracellular accumulation
(Figure 5) in horizontally clinorotated samples. The ultrastructural changes we report,
especially pronounced in HSC, such as increased vacuolar compartment, changes in outline
shape and ultrastructure of mitochondria, and irregular cell wall shape, were postulated
to be linked to the response to abiotic stress in A. thaliana and Pisum sativum [76,77].
Additionally, seedlings of P. sativum exposed for 3 days to horizontal clinorotation showed
increased levels of stress indicators, such as heat shock proteins HSP70 and HSP90 [65].
Increased lipid breakdown was observed in rapeseed (Brassica napus) seedlings after HSC (1
rpm) for 5 days. Columella degradation, as well as ultrastructural alterations, in agreement
with our result of irregular cell wall shape and increased lytic compartment, were reported
for horizontally clinorotated Lepidium sativum seedlings for 20 h [73]. In addition, in two-
axis clinostat experiments, where the sample is clinorotated in both horizontal and vertical
orientations, columella degradation, as well as increased lytic compartment and irregular
cell wall shape, were observed in white clover (Trifolium repens) clinorotated for 72 h [49,69].
These alterations were not observed in real microgravity [49,69], which suggests that they
could be an artifact of the simulation and not due a microgravity effect. This stress response
was not observed in vertical clinorotation in our study.

PIN2 is expressed in root epidermis and cortex under normal conditions, a pattern
that was observed in control and vertically clinorotated seedlings. Samples exposed
to horizontal clinorotation for prolonged periods of time (3 h and more) additionally
presented intracellular localization in the endodermis. PIN2 localization in the endodermis
was previously described in seedlings with disrupted symplastic signaling to and from the
endodermis [78] and in mutants deficient in Calcium-Dependent Protein Kinase-Related
Kinase 5 (CRK5) protein, a plasma membrane-associated kinase which phosphorylates
the hydrophilic loop of PIN2 [79]. Nevertheless, the endodermal localization of PIN2 in
both cases was associated with diminished levels of PIN2 in epidermis and endodermis,
which was observed in NPA-treated seedlings, but not in horizontally clinorotated samples.
Intracellular localization of PIN2-GFP in lytic vacuoles in the epidermis was previously
described in seedlings treated with concanamycin A (an inhibitor of vacuolar proton
ATPases which reduces protein degradation) and after incubation in the dark for 6 h [80].
Nevertheless, we only observed the intracellular PIN2 localization in the endodermis.
Endodermis-deficient sgr (shoot gravitropism) mutants were deficient in shoot gravitropism
but presented normal root gravitropism, suggesting that this layer is not crucial for root
gravitropism [5,81]. The mechanism and function of the intracellular PIN2 localization in
the endodermis under prolonged horizontal clinorotation are not clear but might be related
to the intensification of mechanical stimuli.

Although reports of increased stress response to horizontal clinorotation are substan-
tial, it is not well understood what is the nature of the stress. A suggestive and feasible
possibility is that this stress would be related to the thigmotropic reaction. In vertical
clinorotation, the gravity vector and centrifugal force act on the same plane, along the
agar surface; therefore, thigmotropic stimuli are constant. On the other hand, in horizontal
clinorotation, the position of the Petri dish with respect to the gravity vector changes
constantly, meaning that the Petri dish is tilted at different angles (from 1◦ to 360◦) during
the clinorotation cycle. In fact, it is well established that seedlings grown on a tilted agar
surface present altered growth patterns; waving, coiling, and skewing [82–84]. A plausible
explanation for this phenomenon is that, since the root is not able to penetrate agar sur-
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face, it is perceived as an obstacle and activates the obstacle avoidance mechanism [85].
This mechanism is regulated by the columella [85,86]. While thigmotropic reaction is
activated, gravitropism is attenuated [85]. Although the mechanism of obstacle avoidance
is not well understood, it was recently reported that auxin and Ca2+ are involved in this
process [86,87], factors that are also key players in gravitropism. Obstacle avoidance is
fulfilled by two acts of root bending, with the first bend appearing just 20 minutes after
the contact with an obstacle [87]. This suggests that thigmotropic growth response is
faster than the gravitropic response, in which asymmetrical growth appears approximately
3 h after reorientation [23,63]. It is possible that, during the HSC, the repetitive cycles
when the Petri dish is tilted (agar down—more friction, top of the Petri dish down—no
friction) could be enough for the root to detect agar surface as an obstacle and trigger the
thigmotropic response. In effect, this response would be triggered in each clinorotation
cycle and could lead to the accumulation of mechanical stimuli and stress response. This
hypothesis is supported by the fact that in HFC, where the clinorotation cycles are shorter,
severe ultrastructural changes in statocytes were not observed, which could suggest that
the duration of the mechanical stimuli was under the limit of the thigmotropic perception.

Revisiting the case of the Random Position Machine (RPM), this device is particularly
interesting as a combination of HFC and VFC, usually involving fast angular speed and
sudden changes in direction caused by the operation in real random mode [88]. Actually,
centrifugal forces and the experimental design requirement of aligning seedling growth
with the rotating axis become irrelevant in this simulator, due to forces averaging in the
three dimensions. However, it would be conceivable that the overall stress response in
the statocytes could be even higher than the one reported here. Our comparisons of RPM
experiments with real microgravity and low g levels (< 0.1 g) produced by centrifugation in
orbit [89,90] suggest that the seedlings may respond in the RPM, not only to microgravity
alterations, but also to a certain misbalance in the different tropism signals (gravity, light,
touch, water, etc.) that is also observed in partial gravity conditions recreated in orbit.
Otherwise, clinostat and RPM produced comparable results with A. thaliana seedlings in a
parallel study on the effects of simulated microgravity on root meristematic cells [32].

To sum up, different clinostat settings can produce different forces in combination
with the gravity force. One of the drawbacks of clinostats and other ground based facilities
used for microgravity simulation is the fact that most studies only deal with the gravitropic
response, when other tropisms, such as thigmotropism, may apply and should be taken
into account. Considering that the mechanisms regulating these responses are still not
well-understood any simulator may introduce artefacts. Further investigation of the plant
physiological response to different simulation conditions and its comparison to the response
to real microgravity will help us to discern the effect of microgravity from other aspects of
the mechanical simulators and help us to improve the simulation quality.

4. Materials and Methods
4.1. Material, Growth Conditions, and Quantification

The 2D-clinostat was granted to our laboratory by the Zero-Gravity Instrument Project
(ZGIP, United Nations Office for Outer Space Affairs (UNOOSA)). An adaptor, designed
and constructed ad hoc with a 3D-printer, was used for horizontal clinorotation (Figure S6).
The two orientations in the use of the clinostat are shown in Figure 1. Horizontal clinorota-
tion with the seedlings parallel to the rotation axis (as shown Figure 1b) was previously
applied in multiple studies [31,32,34,35,91].

Seeds were surface sterilized with 70% ethanol with 0.01% Triton X-100 followed by
95% ethanol for 3 minutes and air-dried. In total, 7 seeds were positioned in the middle of
the 9 cm Petri dish. Seedlings were grown on Murashige and Skoog (MS) medium (M0221,
Duchefa) with 0.5 g/L 2-(N-morpholino)ethanesulfonic acid (MES) (M8250 Sigma–Aldrich),
1% sucrose (107651, Merck), and 0.8% plant agar (P1001, Duchefa) for 5 days at 23 ◦C under
long day regime (16 h/8 h) vertically for 5 days to obtain straight root growth according
to the gravity vector. After 5 days, seedlings were clinorotated for 24 h on a clinostat
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horizontally (H) or vertically (V) at two speeds; at 1 rpm (slow clinorotation, SC) and at 60
rpm (FC). Parallel to the experiment we performed two controls, one kept in the vertical
position (1 g control) and another one turned 90 degrees and kept in vertical position
(directional growth control). Samples were grown in darkness under the four conditions.
A total of three runs were performed for horizontal and vertical clinorotation (position of
the plants in respect to the rotation axis is presented in Figure 1) for each experiment. In
total around 21 seedlings of each sample were analyzed in each experimental procedure.
Pictures were taken before and after 1, 2, 3, 24 h of exposure to each condition. Root
length and growth during 24 h of clinorotation and in controls (Figure 2a) were measured
with ImageJ software. Vertical and horizontal growth indexes and the integral averaged
angular declination (α) were calculated from time 0 as described in [44] (Figure 2b). GI was
determined from the base of the root to the tip as in [44].

For NPA treatment, seedlings were grown on medium complemented with 0 (0.01%
(v/v) Dimethyl sulfoxide (DMSO)), 1 or 5 µM NPA in DMSO for 5 days.

4.2. Optical and Electron Microscopy

For microscopical analysis, samples were fixed immediately after the clinorotation,
taking care of minimizing the time elapsed between the arrest of the clinostat and the
interaction of the fixative with samples. First, the fixative was directly added to the Petri
dish just after the release from the clinostat, for an immediate arrest of the vital activity.
Then, seedlings were transferred to centrifuge tubes filled with fixative solution. For GUS
staining, DR5-GUS seedlings [54] (seeds kindly supplied by Dr. E. Carnero-Diaz, Sorbonne
University, Paris, France) were fixed in 90% acetone at −20 ◦C for 12 days. Seedlings were
washed 3 times with 0.1 M sodium phosphate buffer pH 7.2 and GUS signal was revealed
by enzymatic reaction with 1 mM X-GlcA (X1405, Duchefa), 1 mM potassium ferricyanide
(P4066, Sigma–Aldrich), 0.25 mM trihydrate ferricyanide (455989, Sigma–Aldrich) in 0.05
M sodium phosphate buffer pH 7.2, at 37 ◦C overnight. Samples were washed 3 times in
0.05 M sodium phosphate buffer pH 7.2, mounted in 85% glycerol and observed under a
Leica DM2500 microscope. Staining intensity was quantified with ImageJ in the meristem
area in grey scale in the saturation channel (HSB Stack) [40].

For electron microscopy the A. thaliana seedlings were fixed in 2.5% glutaraldehyde
(GA) and 1.5% formaldehyde (FA) and processed as previously described in [92]. Samples
were embedded in LR White resin (London Resin, Berkshire, UK).

4.3. Confocal Microscopy

For confocal microscopy, Wild Type (WT) (Col0) and DII-Venus [56] (Nottingham
Arabidopsis Stock Centre (NASC) ID: N799175) seedlings were fixed in 3% formaldehyde in
Phosphate-buffered saline (PBS), as described in paragraph 4.2., for 1 h at room temperature
(RT). Next samples were washed three times in PBS and digested for 1 h in 0.1% pectinase
(17389, Sigma–Aldrich, St. Louis, MO, USA), 0.5% macerozyme (16419, Serva, Heidelberg,
Germany), 0.4% mannitol (105983, Merck), 10% glycerol, and 0.02% Triton X-100 in PBS at
37 ◦C. Next, seedlings were washed 3 times with 10 % glycerol and 0.02 % Triton X-100
in PBS. PIN2-GFP seedlings [22,93] were processed as above but substituting PBS for
Microtubule Stabilizing Buffer (MTSB) [94]. Seedlings were mounted onto poly-L-lysine
coated multi-well microscope slides and dehydrated with a drop of 90% acetone in each
well. For cell wall staining, samples were first permeabilized with 1% NP-40 (I8896, Sigma–
Aldrich, St. Louis, MO, USA) and 0.5% Deoxycholic acid (DOC) (D2510, Sigma-Aldrich,
St. Louis, MO, USA) in PBS and then stained for 2 h with 2% SCRI Renaissance Stain
2200 [95,96] (Renaissance Chemicals, North Duffield, UK) with 4% DMSO (81802, Sigma–
Aldrich, St. Louis, MO, USA) protected from light. Finally, samples were washed twice
with PBS and mounted in 1,4-Diazabicyclo[2.2.2]octane (DABCO) (D2522, Sigma–Aldrich).

Images were obtained with a confocal microscope Leica TCS SP5 with Acousto Optical
Beam Splitter (AOBS) using 63 X or 40 X oil immersion optics. Yellow Fluorescence Protein
(YFP) (DII-Venus) and GFP (PIN2-GFP) were excited at 496 nm and SRCI Renaissance
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Stain 2200 at 405 nm with Argon and UV lasers, respectively. Pseudocolor reflecting the
intensity of the GFP and YFP signal was applied with the Lookup Table Royal Tool in
the ImageJ software. Relative fluorescence intensity in the different meristem layers was
quantified using ImageJ, selecting the area with the SCRI Renaissance Stain 2200 channel
and quantifying the intensity in grey scale in the GFP channel. Differential Interference
Contrast (DIC) images of columella were taken using Leica TCS SP5 microscope to observe
the localization of the statoliths within statocytes.

4.4. Statistics

In order to analyze statistical differences, SPSS software was used. Data from 3 inde-
pendent experiments (7 seedlings for each condition in each experiment, in total 21 seedlings
per condition) were analyzed. Normality was tested with Kolmogorov–Smirnov test, and
homocedasticity with Levene test. Statistical differences were tested with ANOVA (root
growth), ANOVA with Welch correction (HGI and PIN2-GFP fluorescence in meristematic
layers) or U-test Mann–Whitney Wilcoxon (VGI, GI, root angle, and DR5-GUS staining)
upon normality and homocedasticity test results.

5. Conclusions

Our results confirm that the plant responds differently to vertical and horizontal
clinorotation and that the latter is related to the stress response, which is especially ev-
idenced in horizontal slow clinorotation. This stress response is not present in vertical
clinorotation. In fast clinorotation directional growth is triggered by centrifugal force
which is proportional to the distance from the clinorotation axis. Taking into account that
the stress response is not observed in the slow vertical clinorotation and that the growth
pattern and the statolith distribution in this condition are similar to the ones observed in
real microgravity experiments, we conclude that VSC is the least susceptible to artefacts
related to microgravity simulation.
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angle of the root, Figure S2: DIC images of columella, Figure S3: Detail of lysosomes in statocytes,
Figure S4: Columella structure. Figure S5: Auxin distribution with DII-Venus reporter seedlings,
Figure S6: Clinostat used in this study.
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