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Abstract: High temperatures at the end of the season are frequent under Mediterranean conditions,
affecting final grain quality. This study determined the deposition patterns throughout grain filling
of dry matter, dietary fiber, phenolic compounds and antioxidant capacity for four barley genotypes
under two contrasting temperatures. Deposition pattern for dietary fiber followed that of grain
weight. Genotypic differences for duration were more significant than for rate. Anthocyanins
followed a second-degree polynomial pattern, reaching a maximum before grain maturation. Free
and bound phenols decreased as grain developed, suggesting that they are synthesized in early stages.
Rate of bound phenols deposition was more sensitive to genotypic changes. Overall, antioxidant
capacity decreased over time; the decay being less steep under stress for all genotypes. Heat stress
negatively affected grain weight. It did not alter the profile of β-glucans and arabinoxylans deposition
but positively changed the accumulation of some phenolic compounds, increasing the antioxidant
capacity differentially across genotypes. These results support the growing of food barley in high-
temperature stress-prone areas, as some bioactive compound and antioxidant capacity will increase,
regardless of the smaller grain size. Moreover, if a market develops for food-barley ingredients, early
harvesting of non-mature grain to maximize antioxidant capacity should be considered.

Keywords: Hordeum vulgare; grain filling; heat stress; β-glucans; arabinoxylans; phenolic compounds;
antioxidant capacity

1. Introduction

Barley (Hordeum vulgare L.) grain contains a variable amount of bioactive compounds
with known health-promoting properties, such as dietary fiber (β-glucans, arabinoxy-
lans, cellulose, lignin, and lignans), phenolic compounds, tocols, sterols and folates [1].
β-glucans are major non-starch polysaccharides present in cell walls. They are linked to
the maintenance of normal blood cholesterol levels [2] and the reduction of blood glucose
after meals [3], as well as improving the responsiveness of the immune system to infectious
diseases, inflammation and some types of cancer [4]. Arabinoxylans constitute a fraction
of dietary fiber, which have positive effects on the human digestive system [5]. Phenolic
compounds are a large class of secondary plant metabolites, which can be found free or
bound to compounds in the cell wall of the barley grain. Phenolic compounds, with their
strong antioxidant power, are associated with the reduction of cardiovascular disease,
inflammation and a diversity of cancers [6]. Interest in the health benefits of barley has led
to an increased focus on these bioactive compounds in mature grain [7,8].

The effective grain filling phase (between the end of the lag phase and physiological
maturity) is when dry matter and bioactive compounds accumulate, determining the final
weight and nutrient composition and the quality of the grain [9]. It is well documented that
the accumulation of dry matter during grain filling follows a sigmoid pattern [10]. This is
characterized by three phases: lag phase (fertilization and rapid cell division), the effective
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grain filling period (accumulation of reserve components) and the maturation drying phase
(loss of water content and reaching “physiological maturity”, i.e., maximum dry matter
accumulation) [11,12]. In contrast, less is known about the accumulation patterns of the
bioactive compounds during barley grain filling. Changes in non-starch polysaccharide
accumulation during cereal grain development have been observed. It has been reported
that β-glucans increase linearly, starting during endosperm development and continuing
until ripening in barley grain [13]. In wheat, which is often used as a model similar to
barley, the β-glucan concentration initially increases and then decreases slowly throughout
development to a low concentration at maturity [14]. Arabinoxylan was reported to
appear in barley during early cellularization, changing its structures during endosperm
development from a highly substituted form to a less substituted form [15]. Similar to
barley, the distribution pattern of arabinoxylans deposition in wheat shows a rapid increase
in concentration at the end of the cell division and expansion phase, until it reaches the
maturation phase where it remains constant [14]. Different patterns of variation in phenolic
compound content have also been observed during grain filling. For instance, in wheat,
total bound phenolics peak in the early stage of development [16], while the anthocyanin
concentration first increases sharply during the immature phase and then decreases from
25–33 days after anthesis and onward [17].

The Intergovernmental Panel on Climate Change (IPCC) has projected that the global
warming trend from 1986–2005 to 2081–2100 will show a temperature increase of 0.3 ◦C
to 1.7 ◦C [18]. Therefore, current concerns exist on the impact of global climate change
on the production of crops such as barley [19–21]. Future growing conditions will expose
plants to variable and extreme climate change factors, impacting global agriculture, so
future research in this area is essential [21] to take adequate adaptation measures. High
maximum temperature during the grain filling period is one of the most relevant abiotic
stresses under Mediterranean conditions. In fact, it is expected to be more frequent due
to climate change [22]. The clear effects of high temperature on the reduction of grain
weight are well documented in the literature [23]. However, high temperatures can also
induce various physiological, biochemical and molecular responses in plants. In a recent
study, we observed that the thermal stress during grain filling affects the final grain
weight and changes the relative composition of β-glucans, arabinoxylans and more than 50
phenolic compounds in the mature grain [24]. Therefore, understanding the dynamics of
the accumulation of these bioactive compounds under heat stress is another crucial aspect
for enhancing the nutritional value of the barley grain at harvest. Insights into the time
course and compositional changes of bioactive compounds during grain development
is an important aspect for improving the nutritional quality of barley. Hence, in the
present study, we compared the pattern of accumulation of dry matter and bioactive
compounds (β-glucans, arabinoxylans, total free and bound phenolic compounds and their
antioxidant capacity) in four barley genotypes exposed to continuous high temperature
under field conditions. Identifying the timeframe when the maximum content of these
bioactive compounds may occur could be useful for agronomic practices and also for
promoting further research into whether non-mature barley grain could be used as a
functional ingredient in the elaboration of healthy cereal-based food products. Therefore,
the main aims of this study were (i) to determine the deposition pattern and antioxidant
capacity throughout grain filling and (ii) to analyze the effect of high temperature on the
accumulation of these components. This research could provide further knowledge about
the deposition patterns of different bioactive compounds in barley under two contrasting
temperatures in field conditions since the few published works in barley have focused
on changes in deposition patterns of individual bioactive compounds under stress-free
conditions [13,15]. To the best of our knowledge, this is the first time that a study has
explored the deposition patterns of the main health-promoting components in food barley
genotypes growing in field conditions under two contrasting temperatures.
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2. Results
2.1. Grain Weight

As expected, the standard 3-parameter logistic growth was found to be the most
appropriate model for describing the grain filling process for grain weight (GW) in the 16
genotypes × year × environment combinations (Figure 1A). The overall R2 value for the
fitting of the 16 logistic curves to the GW data was ca. 99%. Table 1 shows the partitioning
of variability for maximum grain weight, growth rate and duration for the 16 standard
logistic curves in Figure 1A.

Table 1. Analyses of Variance for the Estimates of the Grain Weight (mg) Deposition Parameters: Maximum Weight, Growth
Rate and Duration.

Source df
Maximum Weight Growth Rate Duration

Sum of Squares F Ratio p-Value Sum of Squares F Ratio p-Value Sum of Squares F Ratio p-Value

Corrected total 15 582.0 0.000028960 87,893
Year 1 64.1 4.78 0.0651 0.000000004 0.00 0.9887 44,123 28.62 0.0011

Genotype: G 3 188.0 4.67 0.0427 0.000001001 1.74 0.2579 25,485 4.95 0.0376
Environment: E 1 191.3 14.26 0.0069 0.000006260 3.27 0.1207 3.000 0.00 0.9699

G × E 3 44.3 1.11 0.4061 0.000003110 0.54 0.6745 1286 0.25 0.8591
Residual 7 93.9 0.000011500 12,016

A bold number indicates statistical significance at α < 0.05.

A significant environmental effect was detected for maximum grain weight, which
was quantitatively more important than the genotypic effects and the other terms in the
model. In the control treatment, average maximum grain weight was highest for Hispanic
(54.0 ± 6.4 mg), followed by Annapurna (51.7 ± 1.2 mg), Hindukusch (44.2 ± 0.3 mg) and
Tamalpais (43.1 ± 1.6 mg) (Figure 1A). The maximum grain weight of the heat stressed
plants were lower than in the control plants (7–22% average decrease). Although not
significant, the reduction in maximum grain weight caused by high temperature seemed to
be more related to the rate (p = 0.1207) than the duration (p = 0.9669) of the grain filling
and a small, non-significant reduction in the grain filling rate was most often observed
under heat stress. Significant variations in the duration of grain weight among genotypes
were observed during grain filling (Table 1). On average, the duration of the period was
shorter for Annapurna compared with the other genotypes. A lack of statistical significance
for the genotype × environment interaction for any of the three parameters (growth rate,
duration and maximum) (Table 1) was surprising, as we could infer from Figure 1 that some
genotypes seemed to be more affected by high temperatures than others, i.e., Hispanic vs.
Hindukusch. This could be related to the model structure in which interactions involving
the year were pooled into the error term. This was a consequence of the absence of full
replications, resulting in poor detection power.
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Figure 1. (A) Dynamics of grain weight growth, (B) β-glucans and (C) arabinoxylan contents for
the two seasons (2017 and 2018) and four barley genotypes under control (blue points) and thermal
stress conditions (red triangles). Solid lines represent the 3-parameter logistic fit for control (blue)
and stressed conditions (red) for grain weight, β-glucans and arabinoxylan (Total R2 = 99.07%,
R2 = 98.30% and R2 = 94.54%, respectively).
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2.2. β-Glucan and Arabinoxylan Contents

β-glucan concentration steadily rose at the beginning of the grain filling period and
then accumulated substantially between the 600 to 800 growing degree-days after anthesis
(GDA; Figure 1B), reaching a maximum peak. Thereafter, the β-glucan content did not
change substantially. The maximum, rate growth and duration for β-glucans during grain
filling were estimated from fitting the logistic curve and analyzing the variance for the
estimates of β-glucans, as shown in Table 2.

Table 2. Analyses of Variance for the Estimates of β-glucan Content (mg/g) Deposition Parameters: Maximum Content,
Growth Rate and Duration.

Source df
Maximum Content Growth Rate Duration

Sum of Squares F Ratio p-Value Sum of Squares F Ratio p-Value Sum of Squares F Ratio p-Value

Corrected total 15 3112.0 0.00017606 94,632
Year 1 2.2 0.10 0.7571 0.00000210 0.22 0.6573 4340 1.22 0.3065

Genotype: G 3 2946.9 46.05 0.0001 0.00007037 2.39 0.1543 51,292 4.79 0.0403
Environment: E 1 11.8 0.55 0.4830 0.00000166 0.17 0.6933 5412 1.52 0.2578

G × E 3 2.4 0.04 0.9885 0.00003325 1.13 0.4003 8617 0.81 0.5297
Residual 7 148.7 0.00006867 24,971

A bold number indicates statistical significance at α < 0.05.

In this study, the only significant effect associated with the accumulation of β-glucans
was the genotype. Tamalpais and Annapurna, known as high β-glucan content genotypes,
had maximum β-glucan concentration values of 87.8 ± 0.4 mg/g and 77.6 ± 3.6 mg/g,
respectively, followed by Hindukusch (62.7 ± 2.3 mg/g) and Hispanic (51.3 ± 1.7 mg/g).
Genotypic variations were also found for the duration of β-Glucan accumulation. Again,
on average, Annapurna needed less thermal time to increase the content of β-glucans from
5% to 95% of the final value during grain filling. No significant environment or genotype
× environment interaction was detected (Table 2).

During grain filling, the arabinoxylan content also increased rapidly from shortly
after the end of anthesis (200 GDA) up to the maturation and desiccation phase (800 GDA)
(Figure 1C). Arabinoxylans were fit by a logistic curve with an overall R2 of 94.54%. Par-
titioning of the total variability of arabinoxylans is shown in Table 3, with the maximum
content, growth rate and duration for the 16 logistic curves shown in Figure 1C. Neither
the environment nor the main genotype main effects showed statistical differences for
any of the three parameters. The year—that is, the uncontrolled environmental differ-
ences associated with the growing season—was the only significant main effect and only
for duration.

Table 3. Analyses of Variance for the Estimates of Arabinoxylan Content (mg/g) Deposition Parameters: Maximum Content,
Growth Rate and Duration.

Source df
Maximum Content Growth Rate Duration

Sum of Squares F Ratio p-Value Sum of Squares F Ratio p-Value Sum of Squares F Ratio p-Value

Corrected total 15 674.1 0.00016401 523,370
Year 1 165.8 4.51 0.0714 0.00002439 2.25 0.1775 227,143 9.03 0.0198

Genotype: G 3 233.3 2.11 0.1870 0.00005678 1.75 0.2436 102,788 1.36 0.3304
Environment: E 1 16.0 0.43 0.5310 0.00000077 0.07 0.7973 7346 1.29 0.6057

G × E 3 1.3 0.01 0.9981 0.00000652 0.20 0.8925 9969 0.13 0.9379
Residual 7 257.6 0.00007566 176,124

A bold number indicates statistical significance at α < 0.05.

As shown in Tables 1–3, durations of grain weight and fiber deposition were, in
general, more affected by year than by genotype or by the imposed thermal stress. Figure
2 shows the average duration for these three variables across years and control vs. stress
conditions for the four genotypes. No differences in the duration of the three variables
were found in the first year (p = 0.1908, ANOVA table not shown). However, significant
differences were found among the three variables for the second season (p = 0.0001, ANOVA
table not shown). In 2018, a more favorable year in terms of meteorological conditions
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during grain filling, deposition of arabinoxylans took longer than for GW and β-glucans
under stress and control conditions and for the four genotypes.

Figure 2. Estimates and standard error for duration for grain weight (GW), β-glucan and arabinoxy-
lan contents across years (2017 and 2018) under control (blue) and stressed conditions (red) among
four genotypes.

2.3. Anthocyanin Contents

Although anthocyanins were recorded during the course of grain filling for all four
genotypes (Figure 3) in this study, the dynamics of anthocyanin deposition were only
studied in Hindukusch, the only purple genotype, as the other three non-colored genotypes
showed irrelevant extremely low values. The anthocyanin content in Hindukusch during
the course of grain filling were best described by a second-degree curve (Figure 3). The
synthesis of anthocyanins started relatively late in grain filling (at about 400 GDA), reaching
a maximum peak in maturity (800 GDA) and decreasing throughout grain desiccation.
The average maximum content during both growing seasons was 383 ± 49 µg Cy-3-glu/g
in the control and 226 ± 85 µg Cy-3-glu/g in the heat treatment. Thus, the reduction of
anthocyanin content between the maximum values reached at maturity until harvest time
was in the order of 40% (Figure 3).

The anthocyanin content of barley grain grown under plastic cover was significantly
lower than in the controls (Figure 3, Table 4). Furthermore, the significant environment
× thermal time interaction suggested that the rate of deposition of anthocyanins changes
under control and stress conditions (Table 4).
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Figure 3. Anthocyanin content during grain filling for two seasons (2017 and 2018) and for the
purple barley genotype (Hindukusch) under control conditions (blue circles) and thermal stress (red
triangles). Solid lines represent the best fit (second-degree polynomial curve, Total R2 = 86.45%) for
control (blue) and stressed (red) conditions, respectively.

Table 4. Analysis of variance for anthocyanin content (µg Cy-3-glu/g) according to a second-degree
curve for thermal time.

Source df Sum of Squares F Ratio p-Value

Corrected total 27 343,845
Thermal time: TT 2 187,749 32.24 0.0000

Year: Y 1 3215 1.10 0.3090
Environment: E 1 49,574 17.03 0.0008

Y × E 1 3111 1.07 0.3166
TT × Y 2 12,908 2.22 0.1413
TT × E 2 37,208 6.39 0.0091

TT × Y × E 2 3498 0.60 0.5603
Residual 16 46,581

A bold number indicates statistical significance at α < 0.05.

2.4. Free and Bound Phenol Contents

Free and bound phenols were determined for the four genotypes under normal and
stress conditions in the course of grain filling in the second year. Free phenols continuously
decreased throughout the grain filling period (Figure 4A) by around 30% between the
maximum content at the beginning of grain filling until harvest time. Their dynamics were
best fitted by a simple first-degree linear model, which was used for partitioning total
variability (Table 5). The bound phenol content was more variable, fluctuating from one
genotype to another. The bound phenols content decreased for Hispanic and Tamalpais
with time (Figure 4B). However, Hindukusch and Annapurna followed a different pattern.
Initially, the bound phenolic decrease occurred similarly to the other genotypes, but the
drop rate reduced after 700 GDA and remained relatively constant or increased significantly
in the case of Hindukusch. High temperature exposure did not alter these patterns of
accumulation of bound phenols in all genotypes.
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Figure 4. Dynamics of free (A), bound (B) phenolic compound content and (C) antioxidant capacity
during grain filling for four barley genotypes in 2018 under control (blue circles) and thermal stress
conditions (red triangles). Solid lines represent the best fit (first- and second-degree polynomial curve
for free and bound phenolic compounds and first-degree for antioxidant capacity. Total R2 = 81.19%
and R2 = 96.65%, R2 = 93.45%, respectively).

Table 5. Analyses of variance of total free and bound phenolic compound contents (mg Gallic acid equivalent (GAE)/g) and antioxidant
capacity (µmol Trolox/g) according to a first- or second-degree curve with thermal time.

Source
Free Phenols

(First-Degree Model)
Bound Phenols

(Second-Degree Model)
Antioxidant Capacity
(First-Degree-Model)

df Sum of Squares F Ratio p-Value df Sum of Squares F Ratio p-Value df Sum of Squares F Ratio p-Value

Corrected total 55 7.751 47 11.95 55 46,131
Thermal time:

TT 1 3.364 92.31 0.0000 2 0.75 22.78 0.0000 1 29,490 390.43 0.0001

Genotype: G 3 1.392 12.73 0.0000 3 6.44 129.70 0.0000 3 15,590 68.80 0.0001
Environment: E 1 0.409 11.22 0.0027 1 2.80 169.11 0.0000 1 3274 43.34 0.0001

G × E 3 0.793 7.25 0.0013 3 0.08 1.66 0.2030 3 1073 4.73 0.0064
TT × G 3 0.142 1.30 0.2981 6 1.42 14.26 0.0000 3 125 0.55 0.6495
TT × E 1 0.127 3.48 0.0743 2 0.01 0.33 0.7206 1 909 12.03 0.0013

TT × G × E 3 0.068 0.62 0.6088 6 0.06 0.61 0.7226 3 190 0.84 0.4801
Residual 40 1.458 24 0.40 40 3021

A bold number indicates statistical significance at α < 0.05.
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Both genotype and environment—that is, control vs. imposed heat stress, main effects
and their interaction—were significant for free phenols (Table 5). Overall, the genotype
seemed to be more important than the environment. Under heat stress, concentrations were
higher for the three non-colored genotypes (7–16% average increase during grain filling)
but not for Hindukusch, which had more free phenols in the control. The lack of significant
interactions with thermal time suggested a common dynamic of free phenol content across
genotypes, control vs. imposed stress. Bound phenol concentrations were significantly
affected by genotype and environment main effects, but no genotype × environment
interaction was detected. The significant genotype × thermal time interaction for bound
phenols suggested that the rate of deposition of these compounds changes with genotype,
as seen in Figure 4B. Hindukusch clearly behaves differently than the others.

In the control treatment, the maximum content of free phenols in immature grain was
observed in Tamalpais (2.8 ± 0.1 mg GAE/g), while the highest levels of bound phenols
were seen in Hindukusch (4.2 ± 0.1 mg GAE/g). These two genotypes maintained their
higher contents compared to the other genotypes once the grain was ripe, but the free
phenol content decreased by approximately 30% for Tamalpais and the bound phenol
content decreased by approximately 3% for Hindukusch at the end of the grain filling.

2.5. Antioxidant Capacity

Antioxidant capacity sharply decreased as dry matter increased during grain filling
(Figure 4C). The antioxidant capacity ranged from 152 ± 7 to 188 ± 9 µmol Trolox/g in the
first measurements and from 70 ± 1 to 115 ± 3 µmol Trolox/g at the end of the experiment,
a decrease of around 40% during grain growth. The antioxidant capacity was modelled by
a simple first-degree model, which explained 95.36% of the total variability. Partitioning of
the total variability for antioxidant capacity based on this linear trend is shown in Table
5. Genotype, environment and its interaction were highly significant. Tamalpais and
Hindukusch had the highest antioxidant capacity values both in early immature grain
(188 ± 9 and 181 ± 5 µmol Trolox/g) and mature grain (115 ± 3 and 111 ± 2 µmol
Trolox/g). This was expected as these two genotypes had the highest content of free and
bound phenols. The antioxidant capacity was higher for genotypes grown under heat stress
(13%), except for Hindukusch. The highest increase in the antioxidant capacity due to heat
stress was observed in Annapurna and Hispanic (on average 26% and 13%, respectively),
the two genotypes that also had a greater increase in free (16% and 18%, respectively) and
bound phenols (16% and 12%, respectively) due to the imposition of thermal stress. The
thermal time × environment interaction was also significant, suggesting that the decay
observed in the control plots was steeper than for the induced-stressed ones (Figure 4C).

3. Discussion

Barley (Hordeum vulgare L.) grains are rich in bioactive compounds with health-
promoting properties, which are genetically and environmentally regulated. The four
different barley genotypes selected for this study widely differed in an array of bioactive
compounds, potentially susceptible to heat stress from 15 days after heading to physiologi-
cal maturity.

As discussed in previous studies [24,25], the use of polyethylene film chambers to
increase the maximum temperature under field conditions resulted in reduced incident
radiation (up to 15% at noon on very sunny days). The relationship between direct
and diffuse incoming radiation was changed, favoring the latter. Then, the reduction in
incoming radiation was compensated by increasing the radiation use efficiency, and the
source-balance hardly changed during grain filling [25]. Therefore, the main effect on grain
weight was due to the increase in maximum temperatures.

The duration of grain filling was not affected by heat stress when measured on growing
degree-days, as shown by others [26]. The differences in final grain weight between the
controls and heat conditions might be due to the differences in the rate of the grain filling
period since a positive correlation was found between growth rate and the effect of high
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temperatures on the maximum weight. In fact, some authors have suggested the selection
of genotypes with higher filling rates as the best strategy for increasing grain weight [26].
Then, the weight reduction by thermal stress exposure was probably more related to a
direct effect on the grain growth capacity, as proposed by MacLeod and Duffus [27]. High
temperatures may induce inactivation of sucrose synthase, reducing the starch synthesis,
reflected in the reduction of grain weight.

Barley is an important source of dietary fiber (β-glucans and arabinoxylans). No
apparent dilution effect of these carbohydrates was detected with grain growth. The
accumulation of β-glucans (expressed in mg/g of dry matter) through grain filling also
followed a sigmoid pattern, very close to that of grain weight, suggesting that β-glucans
were synthesized all through grain filling at the same rate as dry matter. The arabinoxy-
lan content also followed a sigmoid pattern, although the fit to the 3-parameter logistic
model was not as good as that for grain weight and β-glucans. According to De Arcange-
lis et al. [13], β-glucans increased linearly from endosperm development to maturation,
whereas, seemingly contrary to our findings, Wilson et al. [15] reported that arabinoxylans
accumulated significantly during early cellularization and changed their structures during
grain development. They observed that the xylan backbone is heavily substituted with
arabinose residues during early grain development. The apparent contradiction between
early synthesis and our continuous deposition could be related to the analytical method
used to quantify arabinoxylans. The standard D-xylose enzymatic procedure may not
be fully adequate to quantify arabinoxylan levels during the early stages of grain fill-
ing, where the polysaccharide is in a highly substituted form with arabinose side chains.
Future studies would be necessary to determine whether greater quantification of arabi-
noxylan can be obtained by including a pre-treatment with debranching enzymes such as
arabinofuranosidase in the early stages of grain filling.

In this study, genotypic differences were more important than environmental effects
on the β-glucan and arabinoxylan contents. Although we expected more significant
differences associated with environmental factors, as reported by Swanston et al. [28],
our results suggest that the content of β-glucans in barley was determined mainly by the
genotype. This is in line with Molina-Cano et al., who also considered that the genetic effects
were more important than the environmental conditions in the final β-glucan content [29].
Despite the few studies that have examined the variation in arabinoxylan levels due to
heat stress, it has been shown that the heat effect increased the total arabinoxylan content
in wheat [30]. However, we have previously observed that the final arabinoxylan content
in barley was actually caused by an indirect concentration effect of the same amount of
arabinoxylans in lighter grains and not by an apparent direct response to the heat stress
imposed [24].

In general, no statistical differences were found for the duration of dry weight,
β-glucan and arabinoxylan deposition during grain filling, suggesting that the maximum
content for dietary fiber roughly coincides with maximum dry weight, that is, at or near
physiological maturity. However, in 2018, a more favorable year in term of meteorological
conditions during grain filling, the deposition of arabinoxylans took longer than for GW
and β-glucans under stress and control conditions and for the four genotypes, suggesting
that the thermal time of analyzable arabinoxylan accumulation could be more sensitive to
uncontrolled environmental changes.

The anthocyanin content followed a second-degree pattern during the course of grain
filling. Anthocyanins were synthesized relatively late in grain filling, reaching a peak
at maturity and then decreasing through grain desiccation. This is in line with other
findings for wheat [17] and rice [31]. This could be due to differences in the development
rate between the endosperm and external layers [32]. The reduction after the maximum
anthocyanin content occurred in the phase of desiccation, that is, when the grain filling
period was almost completed and thus was not caused by a biomass dilution effect. On
the contrary, Bustos et al. [33] suggested that the reduction of the anthocyanin content was
conditioned by the availability of assimilates in the final phase of grain filling.
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The anthocyanin content decreased in the stressed treatment. Imposing high tempera-
tures by covering the field plots with a polyethylene film also reduced the incident radiation
and this decrease could be likely the cause for the reduction in the anthocyanin content.
The genes that control anthocyanin biosynthesis are positively regulated by light [34], so
the incidence of solar radiation had a direct effect on the accumulation of anthocyanins.
Bustos et al. [33] also observed a decrease in the anthocyanin content in wheat grains from
shading the ears. Anthocyanins acted as a specific light protector and their high content
favored the absorption and tolerance to ultraviolet radiation, as well as increasing their
antioxidant capacity [35]. Therefore, blocking UV radiation by conventional polyethylene
film [36] affected the rate of anthocyanin deposition in the barley grains.

The free phenolic compounds decreased toward grain maturation for all four geno-
types in both stress and control conditions, as also reported in wheat during grain develop-
ment [37]. The bound phenol concentrations did not follow this linear trend, rather they
followed a second-degree curve as the grain developed. The bound phenols in Hindukusch,
the purple grain genotype, increased sharply toward the end of grain filling. Ma et al. [16]
reported that the highest bound phenol biosynthesis occurs later in the development of
purple wheat than in the non-colored genotypes. In a previous study, we observed that the
main phenols detected in the bound phenolic fraction in the mature grain were phenolic
acids [24]. These compounds were also detected to a lesser extent in the free phenolic
fraction. Furthermore, among these genotypes, Hindukusch had the highest bound phe-
nolic acid content [24]. Therefore, the bound phenol accumulation could be attributed to
conversion between fractions (from free to bound) during grain filling.

The higher levels of phenolic compounds in the early stages of grain filling may
be a consequence of an early activity of phenylalanine ammonia lyase (PAL) [38], the
enzyme that catalyzes the conversion of phenylalanine to trans-cinnamic acid during
phenolic compounds biosynthesis [35]. The reduction in phenolic compounds during
grain filling was mainly due to a dilution effect, as starch was deposited in the growing
endosperm [17]. Several studies have speculated that sucrose increased PAL activity and
induced the production of phenolic compounds during the development of different plant
species [39–41]. The carbohydrate availability could have been compromised primarily
during starch synthesis in later grain filling stages [9], affecting the phenolic compound
biosynthesis during the final grain development. Other authors suggested that the re-
duction in phenolic contents during grain maturation was more closely related to other
physiological processes, such as a decrease in photosynthesis or oxidative metabolism
during the grain dehydration process [37].

Genotypic effects were more important than environmental conditions for free and
bound phenolic contents. However, free and bound phenolic contents changed dif-
ferentially between genotypes with the severity of heat stress. Our results show that
the bound phenols were more stable under high temperature stress while the free phe-
nols showed greater variability to thermal stress, corroborating the results observed by
Silvestro et al. [42]. These authors showed that free phenols increased more under harsh
climatic conditions than bound phenols. However, this was not observed for the colored
genotype under stress. This showed less free phenol content than under the control con-
ditions. The reduction of anthocyanins associated with the polyethylene film covering
could explain why the concentrations of free phenols did not increase in this genotype.
Heat stress also had a significant impact on the bound phenol content in all genotypes.
An increased rate of bound phenol accumulation was sustained throughout the period
of high temperatures in all genotypes. Such high temperatures have proven favorable to
phenolic synthesis in wheat varieties [43]. Plants synthesized more phenolic compounds
under temperature stress, which ultimately protected these plant cells from heat-induced
oxidative damage [35]. Therefore, the increased accumulation of these compounds was
accompanied by enhanced tolerance of the plants to high temperatures. Previous research
suggested that high temperature influenced the metabolic pathway of phenolic compounds
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by augmenting the PAL activity, thus increasing the content of some phenolic compounds,
which protected plants against heat stress [38,44].

The antioxidant properties constantly decreased during grain development, as re-
ported in rice [31] and wheat [37]. Antioxidant molecules had less activity in the final
stage of grain maturation due to the decrease in some physiological processes, such as
photosynthesis or oxidative metabolism during the grain dehydration process, as proposed
by Özkaya et al. [37]. Reactive oxygen species were generated during these physiological
processes. Thus, if these processes were decreased during the grain dehydration (final
stage of grain filling), the antioxidant molecules levels generated by the grain decreased
consequently. Hence, the antioxidant capacity progressively decreases as the grain matures.
Free and bound phenols make a significant contribution to the total antioxidant capacity, as
described in the literature [7,45]. The increase in the antioxidant capacity due to heat stress
was related to the increase in phenolic compounds. This could have occurred to protect the
plant cells from heat-induced oxidative damage, as mentioned above.

4. Materials and Methods
4.1. Field Site Description, Treatments and Experimental Conditions

The field experiments were carried out under irrigated and well-fertilized conditions
during the 2016–2017 and 2017–2018 growing seasons at Semillas Batlle SA, Bell-Lloc
d’Urgell (41◦37′ N, 0◦47′ E), Northeast Spain. Four food barley genotypes were grown
under two temperature conditions after heading. The genotypes were Annapurna, Hin-
dukusch, Hispanic and Tamalpais, parents in our food barley breeding program, and
they differed in number of rows, presence/absence of hulls, type of starch, grain quality
and color (their grain characteristics appear in Table S1). The temperature treatments
were: a control and a high temperature treatment starting 15 days after heading (decimal
code [46], DC55) and continuing to physiological maturity (DC 90). The main plot size was
4 m × 1.5 m (six rows separated 20 cm) from which two subplots of the same size were
established in order to apply the control and high temperature treatments from mid-April
to late June. The seeding rate was 350 seeds/m2. All plots (control & heat stress) were
flood-irrigated twice, once before heading and a second time in the first part of grain
filling (@ 60 mm each time), to assure that they did not suffered of any water stress. Biotic
interferences were avoided through controlling weeds, insects and diseases following usual
practices. The heat treatment was imposed by covering half of the plot with transparent
polyethylene film (125 µm) mounted on wooden structures 1.5 m above the soil level, as
described in Elía et al. [25] but leaving the bottom 30 cm of the four sides of each structure
open and the top punctured in order to facilitate free gas exchange. To monitor the air
temperature, regularly distributed temperature sensors connected to data loggers were
placed inside and outside the structures at the height of the spikes. The structures increased
the maximum temperature by up to 8 ◦C, while the polyethylene film reduced solar radi-
ation by up to 15%. The average daily temperatures in the spring growing period were
higher (15 ◦C vs. 13 ◦C), precipitation lower (100 L/m2 vs. 175 L/m2) and solar radiation
more intense (+10% vs. −10% long-term average) in 2017 than 2018 [47]. For more details
see Martínez et al. [24].

4.2. Grain Weight and Milling

Individual spikes were marked at anthesis to monitor grain growth. At seven-day
intervals during grain development, from seven days after anthesis until harvest maturity,
ten spikes were collected from each subplot. The spikes (a total of seven samples per
subplot) were lyophilized using a HALDRUP LT-15 laboratory thresher (HALDRUP GmbH,
Ilshofen, Germany). Once the grains were threshed, thousand grain weight (GW) was
determined with a Marvin system (GTA Sensorik GmbH, Neubrandenburg, Germany)
according to the standard MSZ 6367/4-86 (1986) method. The grains were then milled
using a Foss Cyclotec 1093™ (FOSS, Barcelona, Spain) mill equipped with a 0.5 mm screen.
Finally, the flour was immediately stored at −20 ◦C in the dark until analysis.
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4.3. Determination of β-Glucans and Arabinoxylans

Total β-glucan and arabinoxylan contents were measured, respectively, by the mixed-
linkage β-glucan assay (K-BGLU) [48] and D-xylose assay (K-XYLOSE) [49] kits from
Megazyme (Wicklow, Ireland), according to the manufacturer’s instructions.

4.4. Determination of Anthocyanins

Analysis of anthocyanins was carried out according to Abdel-Aal and Hucl [50]. The
absorbance was read at 535 nm using a Multiscan GO spectrophotometer (Thermo Scientific,
Vantaa, Finland). The anthocyanins were quantified with a standard calibration curve
obtained for the Cyanidin-3-glucoside and expressed as µg Cy-3-glu/g.

4.5. Determination of Free and Bound Phenolic Compounds

Free and bound phenolic compounds were determined the second year, using the
extraction method reported by Martínez et al. [8]. Both fractions were then analyzed
using the spectrophotometric Folin−Ciocalteu method adapted to a microplate format
by Bobo-García et al. [51]. The absorbance was read at 760 nm using a Multiscan GO
spectrophotometer (Thermo Scientific, Vantaa, Finland). The phenolic compounds were
quantified with a standard calibration curve obtained for the Gallic acid equivalent (GAE)
and expressed as mg GAE/g.

4.6. Determination of Antioxidant Capacity

Antioxidant capacity (AC) was also measured in the second year with the oxygen
radical absorbance capacity (ORAC) assay, according to Huang et al. [52]. Trolox (6-
hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) was used as the control. Antioxi-
dant capacity was expressed as µmols Trolox equivalent/g.

4.7. Statistical Analysis

All bioactive compound contents were referred to grain weight, either as a mg/g, µg/g
and µmols/g depending on their final concentration. In order to characterize the deposition
profile of the different bioactive compounds, the Specialized Modelling procedure in JMP14
Pro (SAS institute Inc., Cary, NC, USA) was used to fit the average of two blocks for each
genotype × year × environment combinations simultaneously, using growing degree-days
after anthesis (GDA), determined using maximum and minimum daily temperature with a
based temperature of 0 ◦C, as thermal time. Nonlinear standard 3-parameter logistic curve
and alternative polynomial linear models were compared. The best model was identified
using the minimum value of the Akaike information criterion. JMP14 directly provides the
estimates and standard errors for the 3-parameters of the logistic sigmoid for each curve:
growth rate, inflection point and maximum value. As the 3-parameter logistic curve is
symmetrical around its inflection point, we approximated duration and its standard error
by multiplying the inflection point and its standard error by 1.9. In other words, we defined
duration as the thermal time needed to increase the content from 5% to 95% of the final
value. In order to study the dynamics of the contents of the different bioactive compounds
during the course of grain filling, whenever the logistic model was selected, we compared
the estimates for the three parameters determined for each of the curves directly by means
of simple analysis of variance. As the use of standard errors as weights did not alter
the results, simpler unweighted ANOVA models were preferred. The number of curves
did not allow for a full three-factor factorial expansion. Therefore, two- and three-way
interactions, with the exception of the fixed genotype × environments (i.e., stressed vs.
control conditions) interaction, were pooled into a single error term. Deposition patterns
for bioactive compounds following a linear polynomial model were directly studied by
incorporating first- or higher-order thermal time terms into a standard covariance linear
model.
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5. Conclusions

Barley cultivated in a heat-stressed area, specifically under Mediterranean conditions,
is a valuable source of dietary fiber, phenolic compounds and antioxidant capacity for cereal-
based healthy food products. In general, the contents of the bioactive compounds were
determined more by the genotype than by the environment. Induced late high-temperature
stress reduced final grain weight, did not affect the β-glucans or arabinoxylan contents
and increased the phenolic compounds, as well as their antioxidant capacity, especially
for Annapurna and Hispanic. However, future research would be necessary to determine
whether the structure of some of these bioactive compounds is affected during grain
accumulation in high-temperature stress-prone areas, as it can influence the quality of the
barley-based products. The concentration of bioactive compounds changed differentially
throughout grain filling, depending on the development time when they were synthesized.
The deposition patterns for dietary fiber followed that of grain weight. Annapurna needed
less thermal time to increase the grain weight and β-glucans content from 5% to 95% of the
final value during grain filling. Anthocyanins reached a maximum before the end of grain
filling. The rate of anthocyanins deposition changed under control and stress conditions,
likely due to the plastic covering used to increase the temperature that reduced the solar
radiation, decreasing the anthocyanin content in the colored genotype. Free and bound
phenols constantly decreased as the grains developed, suggesting that they are synthesized
in early stages. However, it was observed that the rate of deposition of bound phenols
was more sensitive to genotypic changes; Hindukusch, the purple genotype, behaved
differently than the other genotypes. Overall, the antioxidant capacity decreased over time,
but the decay observed in the control plots was steeper than for the stress-induced ones.
These results support food barley cultivation in high-temperature stress-prone areas, as
some bioactive compound and antioxidant capacity will increase, regardless of the smaller
size grains. Furthermore, if a market develops for food barley ingredients, early harvesting
of non-mature grains should be considered to maximize antioxidant capacity.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-7
747/10/3/598/s1, Table S1: Grain characteristics and average final content of grain weight (GW),
β-glucans, arabinoxylans, total phenolic compounds and antioxidant capacity (AC) of four barley
genotypes during two consecutive seasons of the control samples without heat stress.
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