Next Article in Journal
Optimal Nitrogen Supply Ameliorates the Performance of Wheat Seedlings under Osmotic Stress in Genotype-Specific Manner
Next Article in Special Issue
Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot
Previous Article in Journal
Elevated Atmospheric CO2 Concentration Improved C4 Xero-Halophyte Kochia prostrata Physiological Performance under Saline Conditions
Previous Article in Special Issue
Morphology Characterization, Molecular Phylogeny, and Pathogenicity of Diaporthe passifloricola on Citrus reticulata cv. Nanfengmiju in Jiangxi Province, China
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Genetic Diversity and Pathogenicity of Botryosphaeriaceae Species Associated with Symptomatic Citrus Plants in Europe

by
Jadson Diogo Pereira Bezerra
1,2,
Pedro Wilhelm Crous
2,
Dalia Aiello
3,
Maria Lodovica Gullino
4,
Giancarlo Polizzi
3 and
Vladimiro Guarnaccia
2,4,5,*
1
Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, Goiânia 74605-050, Brazil
2
Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
3
Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
4
Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
5
Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
*
Author to whom correspondence should be addressed.
Plants 2021, 10(3), 492; https://doi.org/10.3390/plants10030492
Submission received: 11 February 2021 / Revised: 22 February 2021 / Accepted: 2 March 2021 / Published: 5 March 2021
(This article belongs to the Special Issue Citrus Fungal and Oomycete Diseases)

Abstract

:
This study represents the first survey studying the occurrence, genetic diversity, and pathogenicity of Botryosphaeriaceae species associated with symptomatic citrus species in citrus-production areas in five European countries. Based on morphological features and phylogenetic analyses of internal transcribed spacer (ITS) of nuclear ribosomal DNA (nrDNA), translation elongation factor 1-alpha (TEF1) and β-tubulin (TUB2) genes, nine species were identified as belonging to the genera Diplodia, Dothiorella, Lasiodiplodia, and Neofusicoccum. Isolates of Neofusicoccum parvum and Diplodia pseudoseriata were the most frequently detected, while Dothiorella viticola had the widest distribution, occurring in four of the five countries sampled. Representative isolates of the nine Botryosphaeriaceae species used in the pathogenicity tests caused similar symptoms to those observed in nature. Isolates assayed were all re-isolated, thereby fulfilling Koch’s postulates. Isolates of Diplodia pseudoseriata and Diplodia olivarum are recorded for the first time on citrus and all species found in our study, except N. parvum, are reported for the first time on citrus in Europe.

1. Introduction

Citrus production represents one of the most important fruit industries worldwide in terms of total yield. Greece, Italy, Portugal, and Spain are the most important European producers of citrus fruit [1]. In 2019, nearly 11 million tons of citrus was produced in Europe on approximately 515,000 ha [2]. Most canker diseases of citrus, as well as further fruit-tree crops, are caused by a broad range of fungal species that infect the wood mainly through winter pruning wounds and a subsequent colonization of vascular tissues [3]. Several abiotic and biotic factors are considered responsible for rots and gumming on the trunk and main branches in citrus. Frost damage, sunscald, or water distribution can promote the infection of numerous ascomycetes and basidiomycetes [4]. Several fungal infections involving twigs, branches and trunks of citrus caused by Colletotrichum and Diaporthe species were reported in different continents [5,6,7,8,9]. Guarnaccia and Crous [10] reported serious cankers developing in woody tissues of lemon trees caused by Diaporthe spp., often with a gummose exudate, causing serious blight and dieback. Canker diseases of citrus are also caused by other fungal genera such as Fusarium and Neocosmospora [11], Peroneutypa [12,13], and Phaeoacremonium [14]. Recently, significant attention has been dedicated to revising species and genera of Botryosphaeriaceae, which encompass species with a cosmopolitan distribution that are able to cause diseases of numerous plant species worldwide [15,16].
Botryosphaeriaceae (Botryosphaeriales) include several species reported as endophytes, latent, and woody plant pathogens on a broad range of host [15,16,17]. This family has undergone significant revision after the adoption of molecular tools to resolve its taxonomy [15,16,18,19,20,21,22,23]. Recently, the taxonomy of Botryosphaeriaceae (and other families in Botryosphaeriales) has been reviewed by Phillips et al. [23] based on morphology of the sexual morphs, phylogenetic relationships on internal transcribed spacer (ITS) and 28S large subunit (LSU) of nuclear ribosomal DNA (nrDNA) sequences and evolutionary divergence times. The authors highlighted the main findings made by Yang et al. [16] who included new families, genera, and species in Botryosphaeriales based on morphology and multi-marker phylogenetic analyses of a large collection of isolates. Currently, six families are accepted in Botryosphaeriales and 22 genera have been included in Botryosphaeriaceae [23,24,25].
The most common symptoms observed in association with species of Botryosphaeriaceae are twig, branch and trunk cankers, die-back, collar rot, root cankers, gummosis, decline and, in severe cases, plant death [15,17]. Plant infections mainly occur through natural openings or wounds, but these fungal species could also survive in latency. This ability could lead to their spread worldwide through asymptomatic plant material, seedlings and fruit, frequently circumventing the adopted quarantine measures [22]. Moreover, stress and non-optimal plant growth conditions consistently induce the expression of diseases associated with Botryosphaeriaceae species. Thus, global warming could increase plant stress and induce favourable conditions for the development of Botryosphaeriaceae diseases [17,26,27]. Species within the Botryosphaeriaceae represent a serious threat to different crops including major fruit, berry fruit and nut crops cultivated in sub-tropical, tropical, or temperate areas [22,28,29,30].
Several species of Diplodia (Di.), Dothiorella (Do.), Lasiodiplodia, Neofusicoccum, and Neoscytalidium (Ne.) have been previously reported to affect Citrus species [13,31,32,33]. For example, Ne. dimidiatum has been reported causing citrus branch canker in California [13] and Italy [32]; Do. viticola, L. citricola, L. theobromae, and Ne. dimidiatum have been described in association with branch and trunk dieback of citrus trees in Iran [14,34] and Dothiorella spp. have been detected as causal agents of citrus gummosis in Tunisia [35]. Moreover, Di. seriata, Di. mutila, Do. viticola, L. mediterranea and L. mitidjana, have been recovered from symptomatic citrus trees in Algeria [33].
Considering the important economic value of Citrus spp., a large survey of Botryosphaeriaceae affecting plants cultivated in the major citrus production areas of Europe was considered imperative. Identification in light of modern taxonomic concepts via morphological characterization and multi-marker DNA sequence data was necessary to adopt efficient control strategies against the pathogens that could affect these crops. Thus, several surveys have been conducted in Greece, Italy, Portugal, Spain, and Malta during 2015 and 2016. In particular, the aims of this study were to (1) conduct extensive surveys for sampling symptomatic plant materials; (2) obtain a broad collection of Botryosphaeriaceae isolates; (3) subject those isolates to DNA multi-marker sequence analyses combined with morphological characterization, and (4) evaluate the pathogenicity of the isolated species to citrus plants.

2. Results

2.1. Field Sampling and Fungal Isolation

In this study, the sampling focused on symptomatic plants of Citrus limon, C. reticulata, C. sinensis, C. sinensis × Poncirus trifoliata, and Microcitrus australasica. Samples were collected in 19 orchards (Table 1). Citrus trees showed various external disease symptoms, including partial or complete yellowing, wilting leaves and twigs, and dieback of branch tips, but also defoliation and branch decline. Canker and cracking of the bark associated with gummose exudate occurred on trunks and branches. Internal observation of infected branches revealed black to brown wood discoloration in cross-sections, wedge-shaped necrosis or irregular wood discoloration. Twigs were wilted and occasionally presenting sporocarps (Figure 1). Symptoms were detected in all the orchards and regions investigated. A total of 63 fungal isolates were collected and were found to be characterized by dark green to grey, fast-growing mycelium on MEA. Moreover, the isolates produced pycnidia on pine needles within 40 days, containing pigmented or hyaline conidia. According to these characteristics, the fungal isolates were classified as Botryosphaeriaceae spp. based on comparison with the previous generic descriptions [15]. Among the collected isolates, 18 were obtained from trunk cankers, 10 were associated with branch infections, and 35 from twig dieback (Table 2).

2.2. Phylogenetic Analyses

A combined multi-marker (ITS, TEF1, and TUB2) phylogenetic tree was inferred for each genus (Diplodia, Dothiorella, Lasiodiplodia, and Neofusicoccum) obtained in this study (Figure 2, Figure 3, Figure 4 and Figure 5). The best nucleotide models for the Bayesian Inference analysis of each dataset were as follows: SYM (symmetrical model) + I (proportion of invariable sites) + G (gamma distribution) (Diplodia, Dothiorella, Lasiodiplodia, and Neofusicoccum) for ITS; GTR (generalized time-reversible model) + G (Diplodia, Dothiorella and Neofusicoccum) and HKY (Hasegawa–Kishino–Yano) + I + G (Lasiodiplodia) for TEF1 and GTR + G (Diplodia, Lasiodiplodia and Neofusicoccum) and GTR + I + G (Dothiorella) for TUB2. The Diplodia phylogenetic analysis revealed the isolates as belonging to Di. pseudoseriata (15 isolates, BPP = 1 and ML-BS = 100), Di. seriata (9 isolates, BPP = 1 and ML-BS = 95), Di. olivarum (2 isolates, Bayesian posterior probabilities (BPP) = 1 and maximum likelihood bootstrapped (ML-BS) = 99), and Di. mutila (1 isolate, BPP = 0.99 and ML-BS = 87) (Figure 2). The Dothiorella phylogeny (Figure 3) grouped the isolates together within Do. viticola (9 isolates, BPP = 1 and ML-BS = 99). The Lasiodiplodia phylogenetic analysis placed five isolates as L. theobromae (BPP = 1 and ML-BS = 98) (Figure 4). The Neofusicoccum phylogeny (Figure 5) grouped sequences from our isolates as belonging to N. luteum (2 isolates, BPP = 1 and ML-BS = 94), N. parvum (16 isolates) and N. mediterraneum (4 isolates, BPP = 1 and ML-BS = 98).

2.3. Occurrence of Botryosphaeriaceae among Countries and Citrus Species

Among countries, Do. viticola was found in Greece, Italy, Portugal, and Spain; N. parvum in Italy and Malta, and Di. pseudoseriata in Portugal and Spain. In addition, Di. mutila and Di. seriata were exclusively isolated in Greece and Spain, respectively; L. theobromae and Di. olivarum were only found in Malta, and N. luteum and N. mediterraneum were exclusively found in Portugal. Based on the citrus species, N. parvum (25.4%) and Di. pseudoseriata (23.8%) were the most frequently detected Botryosphaeriaceae spp. on C. sinensis × P. trifoliata, C. limon, C. reticulata, C. sinensis, and/or M. australasica; Di. seriata (on C. reticulata and C. sinensis); and Do. viticola (on C. aurantium and C. sinensis) had an equal percentage of frequency (14.3%); Di. mutila (exclusively found on C. sinensis), N. luteum and N. mediterraneum (only found on C. limon) and Di. olivarum and L. theobromae (exclusively found on C. sinensis) had low frequency values varying from 1.6% to 7.9%.

2.4. Pathogenicity Tests

All isolates caused lesions on wood of inoculated plants 60 d after inoculation (Figure 6) and the fungi were successfully re-isolated. No lesions were observed on control plants. The frequency of re-isolation was between 90% and 95%. The identities of the respective inoculated and re-isolated species were confirmed using culture and molecular analysis as described above, fulfilling Koch’s postulates. Lesions and internal discolouration were observed in correspondence to the inoculation points (Figure 7). The inoculated species that showed high aggressiveness on C. sinensis, C. limon, and C. reticulata were Di. seriata, Di. olivarum, L. theobromae, N. mediterraneum, N. luteum, and N. parvum (with mean lesion length (MLL) ranged from 5.25 to 6.96 cm). Weak symptoms were caused by Di. pseudoseriata, Di. mutila, and Do. viticola on the same species (with MLL ranged from 0.17 to 0.58 cm).
For each tested host species, the pairwise comparison, obtained from the Kruskal–Wallis test, showed significant differences (p < 0.05) between the species Di. seriata, Di. olivarum, L. theobromae, N. mediterraneum, N. luteum, and N. parvum and the remaining pathogens Di. pseudoseriata, Di. mutila and Do. viticola (Supplementary Tables S1–S3). No significant differences were observed within the group composed by Di. seriata, Di. olivarum, L. theobromae, N. mediterraneum, N. luteum, and N. parvum. Moreover, N. parvum revealed to be highly aggressive on M. australasica and C. sinensis x P. trifoliata with similar level of aggressiveness (Figure 8). The tested strain developed a MLL = 7.83 cm on M. australasica and a MLL = 7.45 cm on C. sinensis × P. trifoliata.

3. Discussion

Several Botryosphaeriaceae spp. have been detected in association with citrus cankers worldwide. Diplodia seriata, Di. mutila, Do. iberica, Do. viticola, L. parva, N. australe, N. luteum, N. mediterraneum, N. parvum, and Ne. dimidiatum have been recovered from necrotic tissues of branch canker and rootstock citrus samples in California [13,31,36]. Recently, Di. citricarpa was described for a fungus on twigs of Citrus sp. in Iran [16] and L. mitidjana was introduced for a fungus causing branch canker and dieback of C. sinensis in Algeria [33]. Botryosphaeriaceae spp. causing disease on citrus are known in European countries, where N. parvum and Ne. dimidiatum were reported on C. reticulata in Greece and on C. sinensis in Italy, respectively [32,37].
This study represents the first large survey aimed at studying the occurrence, genetic diversity, and pathogenicity of Botryosphaeriaceae species associated with symptomatic citrus species of citrus-producing areas in Greece, Italy, Portugal, Malta, and Spain [10,38]. Results obtained during our study have added new information about the pathogenicity of Botryosphaeriaceae spp. in citrus-producing areas of these European countries. Symptomatic plants were observed during fieldwork in all the citrus orchards and regions investigated and all isolates used in the pathogenicity test caused lesions on wood of inoculated citrus plants. Phylogenetic multi-marker analyses recognized botryosphaeriaceous isolates in four Diplodia species, with Di. pseudoseriata (15 isolates) being the most common; followed by three Neofusicoccum species, with N. parvum (16 isolates) as dominant species, Do. viticola (9 isolates), and L. theobromae (5 isolates). All species found in this study, except Di. pseudoseriata and Di. olivarum, which are reported for the first time on Citrus spp., have been found in citrus-producing areas of California (USA) [13,31,36].
Diplodia and Neofusicoccum species were dominant in this study. Different species of Neofusicoccum and Diplodia were the most frequently detected pathogens causing gummosis on citrus in California [36] and Di. citricarpa was a new species isolated from Citrus sp. in Iran [16]. Species of Diplodia, Dothiorella, Lasiodiplodia, and Neofusicoccum detected in our study are widely reported as pathogens of other host plants in Algeria and Tunisia [39,40], Australia [41], Brazil [42], China [43,44], Chile [45], Italy, Portugal [39,46,47,48], South Africa [49], and the USA [13,31,36]. The results obtained in our study provide valuable information related to the richness, occurrence, and pathogenicity of Botryosphaeriaceae species in association with citrus species. This study is also the first major survey for Botryosphaeriaceae species associated with symptomatic citrus species in citrus-producing areas of five European countries, providing essential information for future monitoring. Moreover, while previous reports of canker diseases of citrus were based exclusively on morphological observations, the current study aimed to investigate the fungi affecting the major citrus production areas in Europe by large-scale sampling, morphology, and DNA phylogeny. The information achieved with this study about Botryosphaeriaceae population and citrus canker etiology provide fundamental knowledge to start further studies aimed to improve the disease management.

4. Materials and Methods

4.1. Field Sampling and Fungal Isolation

During 2015 and 2016 more than 90 sites in the most important citrus-producing areas of Europe were investigated. The surveys were conducted in Andalusia, Valencia, and the Balearic Islands (Spain); Apulia, Calabria, Sicily, and Aeolian Islands (Italy); Algarve (Portugal); Arta, Crete, Missolonghi, and Nafplio (Greece); Malta and Gozo (Malta) [10,38]. Twig, branch and trunk portions showing cankers and dieback were collected. Investigated species of Citrus and allied genera of the Rutaceae family such as Microcitrus included: C. limon, C. reticulata, C. sinensis, M. australasica, and C. sinensis × P. trifoliata.
Wood fragments (5 × 5 mm) were collected from the margin between necrotic and healthy tissues. Then, each fragment was disinfected by immersion in 70% ethanol for 5 s, 4% sodium hypochlorite for 90 s, sterilised distilled water for 60 s and then dried on sterile filter paper. The fragments were placed into Petri dishes containing malt extract agar (MEA) [50] supplemented with penicillin (100 μg/mL) and streptomycin (100 μg/mL) (MEA-PS) and incubated at 25 °C until characteristic Botryosphaeriaceae colonies were observed. A second procedure was used with plant material incubated in moist chambers at 20 ± 3 °C for up to 10 d and inspected daily for fungal sporulation. The conidia obtained through both procedures were collected and crushed in a drop of sterile water and then spread over the surface of MEA-PS plates. After 24 h, germinating spores were individually transferred onto MEA plates. The isolates used in this study are maintained in the working collection of Pedro Crous (CPC), housed at the Westerdijk Fungal Biodiversity Institute (CBS), Utrecht, The Netherlands.
The occurrence of botryosphaeriaceous fungi among countries and citrus species was evaluated as the number of isolates from each fungal species against the total number of isolates and expressed as a percentage.

4.2. DNA Extraction, Polymerase Chain Reaction (PCR) Amplification and Sequencing

Colonies grown on MEA for 7 days were used to perform total DNA extraction using the Wizard®® Genomic DNA Purification Kit (Promega, Madison, WI, USA) standard protocol. The primer pair ITS4/ITS5 [51] was used to amplify the ITS. The primer sets EF1-728F/EF2 [52,53] and Bt2a/Bt2b [54] were used to amplify partial fragments of the TEF1 and TUB2 genes, respectively. Amplification by PCR was conducted as described by Yang et al. [16]. The PCR products were sequenced in both directions using the BigDye®® Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems Life Technologies, Carlsbad, CA, USA), after which amplicons were purified through Sephadex G-50 Fine columns (GE Healthcare, Freiburg, Germany) in MultiScreen HV plates (Millipore, Billerica, MA, USA). Purified sequence reactions were analyzed on an Applied Biosystems 3730xl DNA Analyzer (Life Technologies, Carlsbad, CA, USA). The DNA sequences generated were analyzed and consensus sequences were computed using SeqMan Pro (DNASTAR, Madison, WI, USA). Sequences obtained in this study were deposited in GenBank https://academic.oup.com/nar/article/49/D1/D92/5983623 (accessed on 30 January 2021) (Table 2).

4.3. Phylogenetic Analyses

The phylogenetic analyses included DNA sequences generated in this study along with DNA sequences retrieved from GenBank (Table 2) and represent 124 Botryosphaeriaceae species (Diplodia = 23; Dothiorella = 31; Lasiodiplodia = 31; Neofusicoccum = 39) following recent studies [16,23,25]. Alignments were first made using MAFFT v. 7 [55] and manually checked and edited using MEGA v.7 [56]. Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were conducted using RAxML-HPC BlackBox v.8.2.8 [57] and MrBayes v.3.2.7a on XSEDE, respectively, at the CIPRES Science Gateway. The best nucleotide models for the BI analysis were calculated using MrModelTest v.2.3 [58] while GTR + I + G was used for ML analysis. Clade stability of the ML phylogeny was assessed with 1000 bootstrap replicates. The BI analysis lasted for one million generations, a burning value of 25% and chains were sampled every 1000 generations. Values of ML bootstrap (ML-BS) and BI posterior probability (BPP) equal or greater than 70% and 0.95, respectively, were considered significant. Individual gene phylogenies were visually inspected and compared for topological incongruences before combining into a multi-marker sequence alignment. The combined alignments used to perform the phylogenetic inferences were deposited in TreeBASE (study ID S27709).

4.4. Pathogenicity Tests

Pathogenicity tests with nine Botryosphaeriaceae species isolated from the European citrus samples were performed to satisfy Koch’s postulates.
One isolate of Di. pseudoseriata (CPC 28084), Di. seriata (CPC 28091), Di. olivarum (CPC 27855), Di. mutila (CPC 26977), Do. viticola (CPC 27125), L. theobromae (CPC 27881), N. mediterraneum (CPC 27931), N. luteum (CPC 27961), and N. parvum (CPC 28175) were respectively inoculated onto potted 2-y-old healthy plants of lemon (C. limon), mandarin (C. reticulata) and sweet orange (C. sinensis). The strain of N. parvum was also inoculated onto potted 2-y-old healthy plants of Australasian lime (M. australasica) and Carrizo citrange (C. sinensis × P. trifoliata).
Three plants for each isolate were inoculated, each having five wounds on twigs made using a sterile blade. Mycelial plugs (5 mm diam.), taken from the margin of actively growing colonies on MEA, were placed on the wound sites on each plant. An equivalent number of plants and inoculation sites were inoculated with sterile MEA plugs and served as controls. The inoculation sites were covered with Parafilm®® (American National Can, Chicago, IL, USA). The inoculated plants were incubated with a 16 h photoperiod in a growth chamber at 100% relative humidity and 25 ± 1 °C. After 2 months external symptoms were assessed. Twigs were cut and the bark peeled off to check for any internal discolouration and the total, upward and downward lesion length was taken to evaluate the MLL. Small sections (0.5 cm) of symptomatic tissue from the edge of twig lesions were placed on MEA to re-isolate the fungal species and were identified based on TEF1 sequencing to fulfil Koch’s postulates. The experiment was conducted twice and each trial was considered a replicate. Because no normal distribution was observed in the lesion dimension data, the Kruskal–Wallis non-parametric test (at P = 0.05) was performed to determine significant differences among isolates. The data analysis was conducted using SPSS software 26 (IBM Corporate).

Supplementary Materials

The following are available online at https://www.mdpi.com/2223-7747/10/3/492/s1, Tables S1–S3. Kruskal-Wallis test results with multiple comparisons for disease severity between different Botryosphaeriaceae spp. on artificially inoculated twigs of C. sinensis (Table S1), C. limon (Table S2) and C. reticulata (Table S3).

Author Contributions

Conceptualization, V.G., G.P. and P.W.C.; methodology, J.D.P.B., D.A. and V.G.; software, J.D.P.B., V.G. and D.A.; validation, G.P., J.D.P.B. and V.G.; formal analysis, J.D.P.B., D.A. and V.G.; investigation, V.G. and D.A.; resources, P.W.C.; data curation, J.D.P.B. and V.G.; writing—original draft preparation, J.D.P.B. and V.G.; writing—review and editing, G.P., M.L.G. and P.W.C.; supervision, G.P., M.L.G. and P.W.C.; project administration, P.W.C.; funding acquisition, P.W.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Acknowledgments

The authors thank G. Gilardi (AGROINNOVA—University of Torino) and A. Azzaro for technical support.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. FAOSTAT. Food and Agriculture Organization of the United Nations. 2019. Available online: http://www.fao.org/faostat/en/#home (accessed on 26 February 2020).
  2. Eurostat. Citrus Fruit Statistics; Eurostat: Luxembourg, 2020. [Google Scholar]
  3. Crous, P.W.; Wingfield, M.J. Fungi infecting woody plants: Emerging frontiers. Persoonia 2018, 40, i–iii. [Google Scholar] [CrossRef] [Green Version]
  4. Fawcett, H.S. Citrus Diseases and Their Control; McGraw-Hill: New York, NY, USA, 1936. [Google Scholar]
  5. Huang, F.; Chen, G.Q.; Hou, X.; Fu, Y.S.; Cai, L.; Hyde, K.D.; Li, H.Y. Colletotrichum species associated with cultivated citrus in China. Fungal Divers. 2013, 61, 61–74. [Google Scholar] [CrossRef]
  6. Huang, F.; Hou, X.; Dewdney, M.M.; Fu, Y.S.; Chen, G.Q.; Hyde, K.D.; Li, H. Diaporthe species occurring on citrus in China. Fungal Divers. 2013, 61, 237–250. [Google Scholar] [CrossRef]
  7. Mahadevakumar, S.; Yadav, V.; Tejaswini, G.S.; Sandeep, S.N.; Janardhana, G.R. First report of Phomopsis citri associated with dieback of Citrus lemon in India. Plant Dis. 2014, 98, 1281. [Google Scholar] [CrossRef]
  8. Guarnaccia, V.; Crous, P.W. Species of Diaporthe on Camellia and Citrus in the Azores Islands. Phytopathol. Mediterr. 2018, 57, 307–319. [Google Scholar]
  9. Mayorquin, J.S.; Nouri, M.T.; Peacock, B.B.; Trouillas, F.P.; Douhan, G.W.; Kallsen, C.; Eskalen, A. Identification, Pathogenicity, and Spore Trapping of Colletotrichum karstii Associated with Twig and Shoot Dieback in California. Plant Dis. 2019, 103, 1464–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  10. Guarnaccia, V.; Crous, P.W. Emerging citrus diseases in Europe caused by species of Diaporthe. IMA Fungus 2017, 8, 317–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  11. Sandoval-Denis, M.; Guarnaccia, V.; Polizzi, G.; Crous, P.W. Symptomatic Citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia 2018, 40, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Timmer, L.W.; Garnsey, S.M.; Graham, J.H. Compendium of Citrus Diseases, 2nd ed.; American Phytopathological Society: Saint Paul, MN, USA, 2000. [Google Scholar]
  13. Mayorquin, J.S.; Wang, D.H.; Twizeyimana, M.; Eskalen, A. Identification, distribution, and pathogenicity of Diatrypaceae and Botryosphaeriaceae associated with Citrus branch canker in the southern California desert. Plant Dis. 2016, 100, 2402–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Espargham, N.; Mohammadi, H.; Gramaje, D.A. Survey of Trunk Disease Pathogens within Citrus Trees in Iran. Plants 2020, 9, 754. [Google Scholar] [CrossRef]
  15. Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013, 76, 51–167. [Google Scholar] [CrossRef] [Green Version]
  16. Yang, T.; Groenewald, J.Z.; Cheewangkoon, R.; Jami, F.; Abdollahzadeh, J.; Lombard, L.; Crous, P.W. Families, genera, and species of Botryosphaeriales. Fungal Biol. 2017, 121, 322–346. [Google Scholar] [CrossRef] [PubMed]
  17. Slippers, B.; Wingfield, M.J. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biol. Rev. 2007, 21, 90–106. [Google Scholar] [CrossRef]
  18. Crous, P.W.; Slippers, B.; Wingfield, M.J.; Rheeder, J.; Marasas, W.F.O.; Philips, A.J.L.; Alves, A.; Burgess, T.; Barber, P.; Groenewald, J.Z. Phylogenetic lineages in the Botryosphaeriaceae. Stud. Mycol. 2006, 55, 235–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  19. Crous, P.W.; Giraldo, A.; Hawksworth, D.L.; Robert, V.; Kirk, P.M.; Guarro, J.; Robbertse, B.; Schoch, C.L.; Damm, U.; Trakunyingcharoen, T.; et al. The genera of fungi: Fixing the application of type species of generic names. IMA Fungus 2014, 5, 141–160. [Google Scholar] [CrossRef] [PubMed]
  20. Crous, P.W.; Muller, M.M.; Sanchez, R.M.; Giordano, L.; Bianchinotti, M.V.; Anderson, F.E.; Groenewald, J.Z. Resolving Tiarosporella spp. allied to Botryosphaeriaceae and Phacidiaceae. Phytotaxa 2015, 202, 73–93. [Google Scholar] [CrossRef]
  21. Schoch, C.L.; Shoemaker, R.A.; Seifert, K.A.; Hambleton, S.; Spatafora, J.W.; Crous, P.W. A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 2006, 98, 1041–1052. [Google Scholar] [CrossRef]
  22. Slippers, B.; Boissin, E.; Phillips, A.J.L.; Groenewald, J.Z.; Lombard, L.; Wingfield, M.J.; Postma, A.; Burgess, T.; Crous, P.W. Phylogenetic lineages in the Botryosphaeriales: A systematic and evolutionary framework. Stud. Mycol. 2013, 76, 31–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Phillips, A.J.L.; Hyde, K.D.; Alves, A.; Liu, J. Families in Botryosphaeriales: A phylogenetic, morphological and evolutionary perspective. Fungal Divers. 2019, 94, 1–22. [Google Scholar] [CrossRef]
  24. Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.T.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.L.; Aptroot, A.; Leontyev, D.V.; Saxena, R.K.; et al. Outline of Fungi and fungus-like taxa. Mycosphere 2020, 11, 1060–1456. [Google Scholar] [CrossRef]
  25. Zhang, W.; Groenewald, J.Z.; Lombard, L.; Schumacher, R.K.; Phillips, A.J.L.; Crous, P.W. Evaluating species in Botryosphaeriales. Persoonia 2021, 46, 63–115. [Google Scholar]
  26. Mehl, J.W.M.; Slippers, B.; Roux, J.; Wingfield, M.J. Cankers and other diseases caused by the Botryosphaeriaceae. In Infectious Forest Diseases; Gonthier, P., Nicolotti, G., Eds.; CAB International: Boston, MA, USA, 2013; pp. 298–317. [Google Scholar]
  27. Pour, F.N.; Ferreira, V.; Félix, C.; Serôdio, J.; Alves, A.; Duarte, A.S.; Esteves, A.C. Effect of temperature on the phytotoxicity and cytotoxicity of Botryosphaeriaceae fungi. Fungal Biol. 2020, 124, 571–578. [Google Scholar] [CrossRef]
  28. Guarnaccia, V.; Martino, I.; Tabone, G.; Brondino, L.; Gullino, M.L. Fungal pathogens associated with stem blight and dieback of blueberry in northern Italy. Phytopathol. Mediterr. 2020, 59, 229–245. [Google Scholar]
  29. Marsberg, A.; Kemler, M.; Jami, F.; Nagel, J.H.; Postma-Smidt, A.; Naidoo, S.; Wingfield, M.J.; Crous, P.W.; Spatafora, J.W.; Hesse, C.N.; et al. Botryosphaeria dothidea: A latent pathogen of global importance to woody plant health. Mol. Plant Pathol. 2017, 18, 477–488. [Google Scholar] [CrossRef] [PubMed]
  30. Aiello, D.; Gusella, G.; Fiorenza, A.; Guarnaccia, V.; Polizzi, G. Identification of Neofusicoccum parvum causing canker and twig blight on Ficus carica in Italy. Phytopathol. Mediterr. 2020, 59, 213–218. [Google Scholar]
  31. Adesemoye, A.O.; Eskalen, A. First Report of Spencermartinsia viticola, Neofusicoccum australe, and N. parvum causing branch canker of citrus in California. Plant Dis. 2011, 95, 770. [Google Scholar] [CrossRef] [PubMed]
  32. Polizzi, G.; Aiello, D.; Vitale, A.; Giuffrida, F.; Groenewald, J.; Crous, P.W. First report of shoot blight, canker, and gummosis caused by Neoscytalidium dimidiatum on citrus in Italy. Plant Dis. 2009, 93, 1215. [Google Scholar] [CrossRef]
  33. Berraf-Tebbal, A.; Mahamedi, A.E.; Aigoun-Mouhous, W.; Špetík, M.; Čechová, J.; Pokluda, R.; Baránek, M.; Eichmeier, A.; Alves, A. Lasiodiplodia mitidjana sp. nov. and other Botryosphaeriaceae species causing branch canker and dieback of Citrus sinensis in Algeria. PLoS ONE 2020, 15, e0232448. [Google Scholar] [CrossRef]
  34. Abdollahzadeh, J.; Javadi, A.; Goltapeh, E.M.; Zare, R.; Phillips, A.J. Phylogeny and morphology of four new species of Lasiodiplodia from Iran. Persoonia 2010, 25, 1–10. [Google Scholar] [CrossRef] [Green Version]
  35. Hamrouni, N.; Nouri, M.; Trouillas, F.; Said, A.; Sadfi-Zouaoui, N.; Hajlaoui, M. Dothiorella gummosis caused by Dothiorella viticola, first record from citrus in Tunisia. New Dis. Rep. 2018, 38, 10. [Google Scholar] [CrossRef] [Green Version]
  36. Adesemoye, A.O.; Mayorquin, J.S.; Wang, D.H.; Twizeyimana, M.; Lynch, S.C.; Eskalen, A. Identification of species of Botryosphaeriaceae causing bot gummosis in citrus in California. Plant Dis. 2014, 98, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Vakalounakis, D.J.; Ntougias, S.; Kavroulakis, N.; Protopapadakis, E. Neofusicoccum parvum and Diaporthe foeniculina associated with twig and shoot blight and branch canker of citrus in Greece. J. Phytopathol. 2019, 167, 527–537. [Google Scholar] [CrossRef]
  38. Guarnaccia, V.; Groenewald, J.Z.; Li, H.; Glienke, C.; Carstens, E.; Hattingh, V.; Crous, P.W. First report of Phyllosticta citricarpa and description of two new species, P. paracapitalensis and P. paracitricarpa, from citrus in Europe. Stud. Mycol. 2017, 87, 161–185. [Google Scholar] [CrossRef]
  39. Linaldeddu, B.T.; Deidda, A.; Scanu, B.; Franceschini, A.; Serra, S.; Berraf-Tebbal, A.; Boutiti, M.Z.; Jamâa, M.L.B.; Phillips, A.J.L. Diversity of Botryosphaeriaceae species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of Lasiodiplodia exigua and Lasiodiplodia mediterranea sp. nov. Fungal Divers. 2015, 71, 201–214. [Google Scholar] [CrossRef]
  40. Mahamedi, A.E.; Phillips, A.J.L.; Lopes, A.; Djellid, Y.; Arkam, M.; Eichmeier, A.; Zitouni, A.; Alves, A.; Berraf-Tebbal, A. Diversity, distribution and host association of Botryosphaeriaceae species causing oak decline across different forest ecosystems in Algeria. Eur. J. Plant Pathol. 2020, 158, 745–765. [Google Scholar] [CrossRef]
  41. Burgess, T.I.; Tan, Y.P.; Garnas, J.; Edwards, J.; Scarlett, K.A.; Shuttleworth, L.A.; Daniel, R.; Dann, E.K.; Parkinson, L.E.; Dinh, Q. Current status of the Botryosphaeriaceae in Australia. Australas. Plant Pathol. 2018, 48, 35–44. [Google Scholar] [CrossRef]
  42. Machado, A.R.; Custódio, F.A.; Cabral, P.G.C.; Capucho, A.S.; Pereira, O.L. Botryosphaeriaceae species causing dieback on Annonaceae in Brazil. Plant Pathol. 2019, 68, 1394–1406. [Google Scholar] [CrossRef]
  43. Xu, C.; Zhang, H.; Zhou, Z.; Hu, T.; Wang, S.; Wang, Y.; Cao, K. Identification and distribution of Botryosphaeriaceae species associated with blueberry stem blight in China. Eur. J. Plant Pathol. 2015, 143, 737–752. [Google Scholar] [CrossRef]
  44. Li, G.; Slippers, B.; Wingfield, M.J.; Chen, S. Variation in Botryosphaeriaceae from Eucalyptus plantations in YunNan Province in southwestern China across a climatic gradient. IMA Fungus 2020, 11, 22. [Google Scholar] [CrossRef]
  45. Valencia, A.L.; Pilar, M.; Gil, B.A.; Latorre, I.; Rosales, M. Characterization and Pathogenicity of Botryosphaeriaceae Species Obtained from Avocado Trees with Branch Canker and Dieback and from Avocado Fruit with Stem End Rot in Chile. Plant Dis. 2019, 103, 996–1005. [Google Scholar] [CrossRef]
  46. Gusella, G.; Aiello, D.; Polizzi, G. First report of leaf and twig blight of Indian hawthorn (Rhaphiolepis indica) caused by Neofusicoccum parvum in Italy. J. Plant Pathol. 2020, 102, 275. [Google Scholar] [CrossRef] [Green Version]
  47. Alves, A.; Linaldeddu, B.T.; Deidda, A.; Scanu, B.; Phillips, A.J.L. The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal. Fungal Divers. 2014, 67, 143–156. [Google Scholar] [CrossRef]
  48. Dissanayake, A.J.; Camporesi, E.; Hyde, K.D.; Yan, J.Y.; Li, X.H. Saprobic Botryosphaeriaceae, including Dothiorella italica sp nov., associated with urban and forest trees in Italy. Mycosphere 2017, 8, 1157–1176. [Google Scholar] [CrossRef]
  49. Jami, F.; Slippers, B.; Wingfield, M.J.; Loots, M.T.; Gryzenhout, M. Temporal and spatial variation of Botryosphaeriaceae associated with Acacia karroo in South Africa. Fungal Ecol. 2015, 15, 51–62. [Google Scholar] [CrossRef] [Green Version]
  50. Crous, P.W.; Verkley, G.J.M.; Groenewald, J.Z.; Samson, R.A. (Eds.) Fungal Biodiversity; CBS Laboratory Manual Series 1; Centraalbureau Voor Schimmelcultures: Utrecht, The Netherlands, 2009; pp. 1–269. [Google Scholar]
  51. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, A.M., Gelfard, D.H., Snindky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
  52. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
  53. O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
  55. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  57. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
  58. Nylander, J. MrModeltest v. 2 Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
Figure 1. Symptoms on citrus tissues with associated Botryosphaeriacae species. (A) Branch decline in commercial lemon orchard. (B) Trunk canker and bark cracking of C. sinensis. (C,D) Trunk and branch canker with gummosis of C. sinensis plants. (E,F) External cracking with gummosis and internal wood discoloration of the same affected branch of C. reticulata plant. (G,H) Internal wood discoloration and branch blight of C. limon. (I) Twig dieback of young C. sinensis × P. trifoliata and M. australasica (J) plants.
Figure 1. Symptoms on citrus tissues with associated Botryosphaeriacae species. (A) Branch decline in commercial lemon orchard. (B) Trunk canker and bark cracking of C. sinensis. (C,D) Trunk and branch canker with gummosis of C. sinensis plants. (E,F) External cracking with gummosis and internal wood discoloration of the same affected branch of C. reticulata plant. (G,H) Internal wood discoloration and branch blight of C. limon. (I) Twig dieback of young C. sinensis × P. trifoliata and M. australasica (J) plants.
Plants 10 00492 g001
Figure 2. Bayesian inference analysis of Diplodia species using ITS rDNA, TEF1 and TUB2 sequences. Isolates obtained in this study are in bold and blue. Bayesian posterior probability (BPP) and maximum likelihood-bootstrap (ML-BS) values equal or greater than 0.95 and 70%, respectively, are shown near nodes. Thickened branches represent clades with ML-BS = 100% and a BPP = 1.0. The tree was rooted to L. theobormae (CBS 111530, CBS 164.96 and CBS 124.13).
Figure 2. Bayesian inference analysis of Diplodia species using ITS rDNA, TEF1 and TUB2 sequences. Isolates obtained in this study are in bold and blue. Bayesian posterior probability (BPP) and maximum likelihood-bootstrap (ML-BS) values equal or greater than 0.95 and 70%, respectively, are shown near nodes. Thickened branches represent clades with ML-BS = 100% and a BPP = 1.0. The tree was rooted to L. theobormae (CBS 111530, CBS 164.96 and CBS 124.13).
Plants 10 00492 g002
Figure 3. Bayesian inference analysis of Dothiorella species using ITS rDNA, TEF1, and TUB2 sequences. Isolates obtained in this study are in bold and blue. Bayesian posterior probability (BPP) and ML bootstrap (ML-BS) values equal or greater than 0.95 and 70%, respectively, are shown near nodes. Thickened branches represent clades with ML-BS = 100% and a BPP = 1.0. The tree was rooted to N. luteum (CBS 110299 and CBS 110497).
Figure 3. Bayesian inference analysis of Dothiorella species using ITS rDNA, TEF1, and TUB2 sequences. Isolates obtained in this study are in bold and blue. Bayesian posterior probability (BPP) and ML bootstrap (ML-BS) values equal or greater than 0.95 and 70%, respectively, are shown near nodes. Thickened branches represent clades with ML-BS = 100% and a BPP = 1.0. The tree was rooted to N. luteum (CBS 110299 and CBS 110497).
Plants 10 00492 g003
Figure 4. Bayesian inference analysis of Lasiodiplodia species using ITS rDNA, TEF1, and TUB2 sequences. Isolates obtained in this study are in bold and blue. Bayesian posterior probability (BPP) and ML bootstrap (ML-BS) values equal or greater than 0.95 and 70%, respectively, are shown near nodes. Thickened branches represent clades with ML-BS = 100% and a BPP = 1.0. The tree was rooted to Do. viticola (CBS 117009).
Figure 4. Bayesian inference analysis of Lasiodiplodia species using ITS rDNA, TEF1, and TUB2 sequences. Isolates obtained in this study are in bold and blue. Bayesian posterior probability (BPP) and ML bootstrap (ML-BS) values equal or greater than 0.95 and 70%, respectively, are shown near nodes. Thickened branches represent clades with ML-BS = 100% and a BPP = 1.0. The tree was rooted to Do. viticola (CBS 117009).
Plants 10 00492 g004
Figure 5. Bayesian inference analysis of species Neofusicoccum using ITS rDNA, TEF1, and TUB2 sequences. Isolates obtained in this study are in bold and blue. Bayesian posterior probability (BPP) and ML bootstrap (ML-BS) values equal or greater than 0.95 and 70%, respectively, are shown near nodes. Thickened branches represent clades with ML-BS = 100% and a BPP = 1.0. The tree was rooted to B. dothidea (CBS 115476).
Figure 5. Bayesian inference analysis of species Neofusicoccum using ITS rDNA, TEF1, and TUB2 sequences. Isolates obtained in this study are in bold and blue. Bayesian posterior probability (BPP) and ML bootstrap (ML-BS) values equal or greater than 0.95 and 70%, respectively, are shown near nodes. Thickened branches represent clades with ML-BS = 100% and a BPP = 1.0. The tree was rooted to B. dothidea (CBS 115476).
Plants 10 00492 g005
Figure 6. Pathogenicity tests of selected Botryosphaeriacae isolates on citrus plants 60 d after inoculation. (A,B) Shoot blight of C. reticulata and C. sinensis plants inoculated with N. mediterraneum. (C) Internal lesion with abundant gummosis of C. sinensis plant caused by N. parvum. (D,E) Internal discoloration of C. sinensis and C. reticulata twigs inoculated with L. theobromae.
Figure 6. Pathogenicity tests of selected Botryosphaeriacae isolates on citrus plants 60 d after inoculation. (A,B) Shoot blight of C. reticulata and C. sinensis plants inoculated with N. mediterraneum. (C) Internal lesion with abundant gummosis of C. sinensis plant caused by N. parvum. (D,E) Internal discoloration of C. sinensis and C. reticulata twigs inoculated with L. theobromae.
Plants 10 00492 g006
Figure 7. Box plot showing the results of the pathogenicity tests. Boxes represent the interquartile range, while the horizontal line within each box indicates the average value. The Kruskal–Wallis test was carried out to compare the mean lesion lengths (cm) from inoculation with nine Botryosphaeriaceae representative isolates on C. sinensis (A), C. limon (B) and C. reticulata (C). p < 0.05 was taken to indicate a significant difference. °: Outliers. *: Extreme values.
Figure 7. Box plot showing the results of the pathogenicity tests. Boxes represent the interquartile range, while the horizontal line within each box indicates the average value. The Kruskal–Wallis test was carried out to compare the mean lesion lengths (cm) from inoculation with nine Botryosphaeriaceae representative isolates on C. sinensis (A), C. limon (B) and C. reticulata (C). p < 0.05 was taken to indicate a significant difference. °: Outliers. *: Extreme values.
Plants 10 00492 g007
Figure 8. The Kruskal–Wallis test was carried out to compare the mean lesion lengths (cm) from inoculation with one N. parvum representative isolate on C. sinensis × P. trifoliata and M. australasica. Significant difference was accepted for p < 0.05.
Figure 8. The Kruskal–Wallis test was carried out to compare the mean lesion lengths (cm) from inoculation with one N. parvum representative isolate on C. sinensis × P. trifoliata and M. australasica. Significant difference was accepted for p < 0.05.
Plants 10 00492 g008
Table 1. Geographical sites investigated and sampled.
Table 1. Geographical sites investigated and sampled.
SiteLocalityGPS Coordinates
1Algemesi (Spain)39°11′48.8″ N, 0°28′15.0″ W
2Alginet (Spain)39°15′36.3″ N, 0°27′28.9″ W
3Alhaurin El Grande (Spain)36°38′43.4″ N, 4°40′37.5″ W
4Alzira (Spain)39°09′25.1″ N, 0°29′26.6″ W
5Castellò (Spain)39°54′14.1″ N, 0°05′10.3″ W
6Estellencs (Spain)39°39′12.6″ N, 2°28′54.8″ E
7Faro (Portugal)37°03′45.5″ N, 7°55′02.8″ W
8Gozo (Malta)36°02′15.1″ N, 14°15′36.4″ E
9Gozo (Malta)36°03′18.5″ N, 14°15′35.7″ E
10Malaga (Spain)36°45′42.3″ N, 4°25′37.4″ W
11Mascali (Italy)37°46′05.7″ N, 15°11′40.7″ E
12Massafra (Italy)40°32′41.1″ N, 17°08′38.8″ E
13Mastro (Greece)38°25′49.0″ N, 21°16′49.9″ E
14Mesquita (Portugal)37°12′16.3″ N, 8°17′52.1″ W
15Moncada (Spain)39°35′18.8″ N, 0°23′40.5″ W
16Nafplio (Greece)37°34′56.3″ N, 22°41′48.5″ E
17Rocca Imperiale (Italy)40°06′30.2″ N, 16°37′04.6″ E
18Scordia (Italy)37°16′53.5″ N, 14°52′08.9″ E
19Silves (Portugal)37°09′50.7″ N, 8°23′21.7″ W
Table 2. GenBank accession numbers of sequences of Diplodia, Dothiorella, Lasiodiplodia, and Neofusicoccum species used in the phylogenetic analyses. Isolates and sequences obtained in this study are given in bold.
Table 2. GenBank accession numbers of sequences of Diplodia, Dothiorella, Lasiodiplodia, and Neofusicoccum species used in the phylogenetic analyses. Isolates and sequences obtained in this study are given in bold.
SpeciesStrains 1Host/SubstrateCountryGenBank Numbers 2
ITSTEF1TUB2
Botryosphaeria dothideaCBS 115476 = CMW 8000, ex-epitypePrunus sp.SwitzerlandAY236949AY236898AY236927
Diplodia africanaCBS 120835 = CPC 5908, ex-typePrunus persica, stem cankerSouth AfricaEF445343EF445382KF766129
Di. agrifoliaCBS 132777 = UCR732, ex-typeQuercus agrifolia, cankered branchUSA: CaliforniaJN693507JQ517317JQ411459
Di. allocellulaCBS 130408 = CMW 36468, ex-typeAcacia karroo, healthy branchesSouth AfricaJQ239397JQ239384JQ239378
Di. bulgaricaCBS 124254 = CAP332, ex-typeMalus sylvestrisBulgariaGQ923853GQ923821
Di. citricarpaCBS 124715 = CJA 131 = IRAN 1578C, ex-typeCitrus sp., twigsIranKF890207KF890189KX464784
Di. corticolaCBS 112549 = CAP 134, ex-typeQuercus suberPortugalAY259100 AY573227 DQ458853
Di. crataegicolaMFLU 15-13112, ex-typeCrataegus sp.ItalyKT290244KT290248KT290246
Di. cupressiCBS 168.87, ex-typeCupressus sempervirens, cankerIsraelDQ458893 DQ458878 DQ458861
Di. eriobotryicolaCBS 140851 = BN-21, ex-typeEriobotrya japonicaSpainKT240355KT240193MG015806
Di. estuarinaCMW 41231Avicennia marinaSouth AfricaKP860831KP860676KP860754
Di. fraxiniCBS 136010 = CAD001, ex-typeFraxinus angustifoliaPortugalKF307700KF318747MG015807
Di. gallaeCBS 211.25Quercus sp., fruitKX464090KX464564KX464795
Di. gallaeCBS 212.25Quercus sp., gallKX464091KX464565KX464796
Di. gallaeCBS 213.25Quercus sp., gallKX464092KX464566KX464797
Di. malorumCBS 124130 = CAP271, ex-typeMalus sylvestrisPortugalGQ923865GQ923833
Di. mutilaCPC 26977Citrus sinensis, twigGreeceMW413831MW419149MW419212
Di. mutilaCBS 112553 = CAP 062Vitis viniferaPortugalAY259093 AY573219DQ458850
Di. mutilaCBS 121862 = PD 03708098, ex-type of Di. pyriPyrus sp.The NetherlandsKX464093KX464567KX464799
Di. neojuniperiCPC 22753 = B0031, ex-typeJuniperus chinensisThailandKM006431KM006462
Di. olivarumCPC 27855Citrus sinensis,branchMaltaMW413832MW419150MW419213
Di. olivarumCPC 27856Citrus sinensis,branchMaltaMW413833MW419151MW419214
Di. olivarumCBS 121886Olea europaeaItalyEU392301 EU392278
Di. olivarumCBS 121887 = CAP 254, ex-typeOlea europaea, rotting drupesItalyEU392302EU392279 HQ660079
Di. pseudoseriataCBS 124906, ex-typeBlepharocalyx salicifoliusUruguayEU080927EU863181MG015820
Di. pseudoseriataCPC 27963Citrus sinensis, twigPortugalMW413834MW419152MW419215
Di. pseudoseriataCPC 27964Citrus sinensis, twigPortugalMW413835MW419153MW419216
Di. pseudoseriataCPC 27965Citrus sinensis, twigPortugalMW413836MW419154MW419217
Di. pseudoseriataCPC 27966Citrus sinensis, twigPortugalMW413837MW419155MW419218
Di. pseudoseriataCPC 27967Citrus sinensis, twigPortugalMW413838MW419156MW419219
Di. pseudoseriataCPC 28084Citrus reticulata, twigSpainMW413839MW419157MW419220
Di. pseudoseriataCPC 28086Citrus reticulata, twigSpainMW413840MW419158MW419221
Di. pseudoseriataCPC 28087Citrus reticulata, twigSpainMW413841MW419159MW419222
Di. pseudoseriataCPC 28092Citrus limon, twigSpainMW413842MW419160MW419223
Di. pseudoseriataCPC 28093Citrus limon, twigSpainMW413843MW419161MW419224
Di. pseudoseriataCPC 28094Citrus limon, twigSpainMW413844MW419162MW419225
Di. pseudoseriataCPC 28095Citrus limon, twigSpainMW413845MW419163MW419226
Di. pseudoseriataCPC 28099Citrus reticulata, twigSpainMW413846MW419164MW419227
Di. pseudoseriataCPC 28100Citrus reticulata, twigSpainMW413847MW419165MW419228
Di. pseudoseriataCPC 28102Citrus reticulata, twigSpainMW413848MW419166MW419229
Di. pseudoseriataBL132Fraxinus angustifoliaItalyKF307720KF318767MG015810
Di. pseudoseriataCBS 140350, ex-type of Di. insularisPistacia lentiscusItalyKX833072KX833073MG015809
Di. pseudoseriataCBS 124931 = CMW22627, ex-type of Di. alatafructaPterocarpus angolensis, bark woundSouth AfricaFJ888460FJ888444MG015799
Di. quercivoraCBS 133852 = BL8, ex-typeQuercus canariensisTunisiaJX894205JX894229MG015821
Di. rosulataCBS 116470, ex-typePrunus africanaEthiopiaEU430265EU430267EU673132
Di. sapineaCBS 393.84, ex-epitypePinus nigra, conesNetherlandsDQ458895 DQ458880DQ458863
Di. sapineaCBS 124462 = CAP273, ex-type of Di. intermediaMalus sylvestrisPortugalGQ923858GQ923826
Di. sapineaCBS 141915 = NB7, ex-type of Di. rosacearumEriobotrya japonicaItalyKT956270KU378605MG015823
Di. scrobiculataCBS 118110 = CMW 189 = BOT 1195, ex-typePinus banksianaUSA: WisconsinAY253292 AY624253AY624258
Di. seriataCBS 112555 = HAP 052 = CAP 063, ex-epitypeVitis vinifera, dead stemsPortugalAY259094 AY573220DQ458856
Di. seriataCPC 28088Citrus reticulata,twigSpainMW413849MW419167MW419230
Di. seriataCPC 28089Citrus reticulata,twigSpainMW413850MW419168MW419231
Di. seriataCPC 28090Citrus reticulata,twigSpainMW413851MW419169MW419232
Di. seriataCPC 28091Citrus reticulata,twigSpainMW413852MW419170MW419233
Di. seriataCPC 28096Citrus sinensis,twigSpainMW413853MW419171MW419234
Di. seriataCPC 28097Citrus sinensis,twigSpainMW413854MW419172MW419235
Di. seriataCPC 28098Citrus sinensis,twigSpainMW413855MW419173MW419236
Di. seriataCPC 28101Citrus reticulata,twigSpainMW413856MW419174MW419237
Di. seriataCPC 28103Citrus reticulata,twigSpainMW413857MW419175MW419238
Di. seriataCBS 119049Vitis sp.ItalyDQ458889DQ458874DQ458857
Di. subglobosaCBS 124133 = JL453, ex-typeLonicera nigraSpainGQ923856GQ923824
Di. tsugaeCBS 418.64 = IMI 197143, ex-isotypeTsuga heterophyllaCanadaDQ458888 DQ458873 DQ458855
Dothiorella alpinaCGMCC 3-18001, ex-typePlatycladus orientalisChinaKX499645KX499651
Do. americanaCBS 128309, ex-typeWedge-shape canker of grapevine cv. Vignoles (complex hybrid of North America Vitis species and Vitis vinifera)USA: MissouriHQ288218 HQ288262 HQ288297
Do. brevicollisCBS 130411 = CMW 36463, ex-typeAcacia karroo, healthy branchesSouth AfricaJQ239403JQ239390 JQ239371
Do. capri-amissiCBS 121763 = CMW 25403 = CAMS 1158, ex-paratypeAcacia eriolobaSouth AfricaEU101323EU101368KX464850
Do. capri-amissiCBS 121878 = CMW 25404 = CAMS 1159, ex-typeAcacia eriolobaSouth AfricaEU101324EU101369KX464851
Do. casuarinaeCBS 120688 = CMW 4855, ex-typeCasuarina sp.Australia: Australian Capital TerritoryDQ846773DQ875331DQ875340
Do. casuarinaeCBS 120689 = CMW 4856, ex-paratypeCasuarina sp.Australia: Australian Capital TerritoryDQ846772 DQ875332DQ875339
Do. casuarinaeCBS 120690 = CMW 4857, ex-paratypeCasuarina sp.Australia: Australian Capital TerritoryDQ846774 DQ875333DQ875341
Do. citricolaCBS 124728 = ICMP 16827Citrus sinensisNew ZealandEU673322EU673289KX464852
Do. citricolaCBS 124729 = ICMP 16828, ex-typeCitrus sinensis, twigsNew ZealandEU673323 EU673290KX464853
Do. dulcispinaeCBS 121764 = CMW 25406 = CAMS 1159, ex-paratype of Dothiorella oblongaAcacia melliferaNamibiaEU101299EU101344KX464854
Do. dulcispinaeCBS 130413 = CMW 36460, ex-typeAcacia karroo, dieback branchesSouth AfricaJQ239400JQ239387JQ239373
Do. ibericaCBS 113188 = DA-1Quercus suber, branch cankerSpainAY573198 EU673278 EU673097
Do. ibericaCBS 113189 = DE-14Quercus ilex, branch cankerSpainAY573199AY573230KX464855
Do. ibericaCBS 115041 = CAP 145, ex-typeQuercus ilex, dead twigsSpainAY573202 AY573222EU673096
Do. iranicaCBS 124722 = CJA 153 = IRAN 1587COlea sp., twigsIranKC898231KC898214KX464856
Do. longicollisCBS 122066 = CMW 26164Terminalia sp.Australia: Western AustraliaEU144052 EU144067KX464857
Do. longicollisCBS 122067 = CMW 26165Lysiphyllum cunninghamiiAustralia: Western AustraliaEU144053EU144068KX464858
Do. longicollisCBS 122068 = CMW 26166, ex-typeLysiphyllum cunninghamiiAustralia: Western AustraliaEU144054 EU144069KF766130
Do. mangifericolaCBS 124727 = IRAN 1584C = CJA 261, ex-typeMangifera indica, twigsIranKC898221KX464614
Do. monetiWAC 13154 = MUCC 505, ex-typeAcacia rostellifera, healthy stemAustralia: Western AustraliaEF591920EF591971EF591954
Do. neclivoremDAR 80992, ex-typeVitis vinifera cv. Chardonnay, berriesAustralia: New South WalesKJ573643 KJ573640KJ577551
Do. oblongaCBS 121765 = CMW 25407 = CAMS 1162, ex-typeAcacia melliferaSouth AfricaEU101300 EU101345KX464862
Do. oblongaCBS 121766 = CMW 25408 = CAMS 1163, ex-paratypeAcacia melliferaSouth AfricaEU101301EU101346KX464863
Do. omnivoraCBS 124717 = CJA 214 = IRAN 1570CJuglans regia, twigsIranKC898233KC898216KX464865
Do. omnivoraCBS 392.80FranceKX464133KX464626KX464897
Do. omnivoraCBS 124716 = CJA 241 = IRAN 1573CJuglans regia, twigsIranKC898232KC898215KX464864
Do. omnivoraCBS 242.51ItalyEU673317EU673284EU673105
Do. omnivoraCBS 188.87Juglans regiaFranceEU673316EU673283EU673119
Do. parvaCBS 124720 = CJA 27 = IRAN 1579C, ex-typeCorylus sp., twigsIranKC898234KC898217KX464866
Do. parvaCBS 124721 = CJA 35Corylus sp., twigsIranKX464123KX464615KX464867
Do. parvaCBS 125580Corylus avellana, branchesAustriaKX464124KX464616KX464868
Do. plurivoraCBS 124724 = CJA 254 = IRAN 1557C, ex-typeCitrus sp., twigsIranKC898225 KC898208KX464874
Do. pretoriensisCBS 130404 = CMW 36480, ex-typeAcacia karroo, branches with diebackSouth AfricaJQ239405JQ239392 JQ239376
Do. prunicolaCBS 124723 = CAP 187 = IRAN 1541C, ex-typePrunus dulcis, necrotic twigsPortugalEU673313 EU673280 EU673100
Do. rosulataCBS 121760 = CMW 25389 = CAMS 1444, ex-typeAcacia karrooNamibiaKF766227EU101335KX464877
Do. rosulataCBS 121761 = CMW 25392 = CAMS 1147, ex-paratypeAcacia melliferaSouth AfricaEU101293EU101338KX464878
Do. rosulataCBS 121762 = CMW 25395 = CAMS 1150Acacia melliferaSouth AfricaEU101319EU101364KX464879
Do. rosulataCBS 500.72Medicago sativa, stubbleSouth AfricaEU673318 EU673285 EU673118
Do. santaliWAC 13155 = MUCC 509, ex-typeSantalum acuminatum, healthy stemAustralia: Western AustraliaEF591924EF591975EF591958
Do. sarmentorumIMI 63581b, ex-type of Bot. sarmentorumUlmus sp.UK: EnglandAY573212AY573235EU673102
Do. sempervirentisIRAN 1581C = CBS 124719Cupressus sempervirensIranKC898237KC898220KX464885
Do. sempervirentisIRAN 1583C = CBS 124718 = CJA 264, ex-typeCupressus sempervirens, twigsIranKC898236KC898219KX464884
Do. striataCBS 124730 = ICMP 16819Citrus sinensis, twigsNew ZealandEU673320EU673287 EU673142
Do. striataCBS 124731 = ICMP 16824, ex-typeCitrus sinensis, twigsNew ZealandEU673321EU673288 EU673143
Do. thailandicaCBS 133991 = CPC 21557 = MFLUCC 11-0438, ex-type of Auerswaldia dothiorellaDead bamboo culmThailandJX646796 JX646861JX646844
Do. thripsitaCBS 125445 = BRIP 51876a, ex-typeAcacia harpophylla, dead branches, petioles & leavesAustralia: QueenslandKJ573642KJ573639KJ577550
Do. uruguayensisCBS 124908 = CMW 26763 = UY672, ex-typeHexachlamis edulisUruguayEU080923 EU863180KX464886
Do. vidmaderaCBS 621.74Pyrus communis, leafSwitzerlandKX464129KX464621KX464887
Do. vidmaderaCBS 725.79Pyrus malus, dead wood and budsSwitzerlandKX464130KX464622KX464888
Do. vinea-gemmaeDAR 81012, ex-typeVitis vinifera cv. Chardonnay, dormant budsAustralia: New South WalesKJ573644 KJ573641KJ577552
Do. viticolaCBS 117009, ex-typeVitis vinifera cv. Garnatxa negra, pruned canesSpainAY905554 AY905559 EU673104
Do. viticolaDAR 80529, ex-type of D. westralisVitis vinifera cv. Cabernet Sauvignon, discarded canesAustralia: Western AustraliaHM009376HM800511HM800519
Do. viticolaCPC 26174Citrus sinensis, twigItalyMW413858MW419176MW419239
Do. viticolaCPC 26917Citrus sinensis, branchGreeceMW413859MW419177MW419240
Do. viticolaCPC 27081Citrus sinensis, twigItalyMW413860MW419178MW419241
Do. viticolaCPC 27106Citrus aurantium, twigSpainMW413861MW419179MW419242
Do. viticolaCPC 27123Citrus sinensis, branchItalyMW413862MW419180MW419243
Do. viticolaCPC 27125Citrus sinensis, branchItalyMW413863MW419181MW419244
Do. viticolaCPC 27703Citrus sinensis, branchSpainMW413864MW419182MW419245
Do. viticolaCPC 27707Citrus sinensis, branchGreeceMW413865MW419183MW419246
Do. viticolaCPC 27968Citrus sinensis, twigPortugalMW413866MW419184MW419247
Do. yunnanaCGMCC 3-17999, ex-typeCamellia sp.ChinaKX499643KX499649
Do. yunnanaCGMCC 3-18000Camellia sp.ChinaKX499644KX499650
Dothiorella sp.CBS 121783 = CMW 25432 = CAMS 1187Acacia mearnsiiSouth AfricaEU101333EU101378KX464859
Dothiorella sp.CBS 121784 = CMW 25430 = CAMS 1185Acacia mearnsiiSouth AfricaEU101331EU101376KX464860
Dothiorella sp.CBS 121785 = CMW 25433 = CAMS 1188Acacia mearnsiiSouth AfricaEU101334EU101379KX464861
‘Lasiodiplodia americana’CERC 1961 = CFCC 50065, ex-typePistacia vera cv. Kerman, twigsUSA: ArizonaKP217059KP217067KP217075
L. avicenniaeCMW 41467 = CBS 139670, ex-typeAvicennia marinaSouth AfricaKP860835KP860680KP860758
L. brasilienseCMM 4015 = URM 7118, ex-typeMangifera indica, stemsBrazilJX464063JX464049
L. bruguieraeCMW 41470 = CBS 139669, ex-typeBruguiera gymnorrhizaSouth AfricaNR_147358KP860678KP860756
L. citricolaCBS 124707 = IRAN 1522C = CJA 72, ex-typeCitrus sp., twigsIranGU945354 GU945340KP872405
L. crassisporaCBS 118741 = WAC 12533 = CMW 14691, ex-typeSantalum albumAustralia: Western AustraliaDQ103550EU673303EU673133
L. crassisporaCBS 121770 = CMW 25414 = CAMS 1169, ex-type of L. pyriformisAcacia melliferaNamibiaEU101307EU101352
L. endophyticaMFLUCC 18-1121 = KUMCC 17-0233, ex-typeMagnolia candolii, fresh leavesChinaMK501838MK584572MK550606
L. egyptiacaeCBS 130992 = BOT-10, ex-typeMangifera indica, leafEgyptJN814397 JN814424
L. euphorbicolaCMM 3609, ex-type of L. euphorbicolaJatropha curcas, collar and root rotBrazilKF234543KF226689KF254926
L. gilanensisCBS 124704 = IRAN 1523C, ex-typeCitrus sp., fallen twigsIranGU945351GU945342KP872411
L. gilanensisCBS 128311 = UCD 2193MO, ex-type of L. missourianaWedge-shape canker of grapevine cv. Catawba (complex hybrid of North America Vitis species and Vitis vinifera)USA: MissouriHQ288225HQ288267
L. gonubiensisCBS 115812 = CMW 14077, ex-typeSyzygium cordatum, twigs and leavesSouth AfricaAY639595 DQ103566 DQ458860
L. gravistriataCMM 4564, ex-typeAnacardium humileBrazilKT250949KT250950
L. hormozganensisCBS 124709 = IRAN 1500C, ex-typeOlea sp., twigsIranGU945355GU945343KP872413
L. iraniensisCBS 124710 = IRAN 1520C, ex-typeSalvadora persica, twigsIranGU945346GU945334KP872415
L. iraniensisCMM 3610, ex-type of L. jatrophicolaJatropha curcas, collar and root rotBrazilKF234544KF226690KF254927
L. laeliocattleyaeCBS 167.28, ex-type of Diplodia laeliocattleyaeLaeliocattleyaItalyKU507487KU507454
L. lignicolaMFLUCC 11-0435 = CBS 134112, ex-typeOn dead woodThailandJX646797KU887003JX646845
L. lignicolaCBS 342.78, ex-type of L. sterculiaeSterculia oblongaGermanyKX464140KX464634KX464908
L. macrosporaCMM 3833, ex-typeJatropha curcas, collar and root rotBrazilKF234557KF226718KF254941
‘L. magnoliae’MFLUCC 18-0948 = KUMCC 17-0198, ex-typeMagnolia candolii, dead leavesChinaMK499387MK568537MK521587
L. mahajanganaCBS 124927 = CMW27801, ex-typeTerminalia catappa, healthy branchesMadagascarFJ900595 FJ900641FJ900630
L. mahajanganaCMM 1325, ex-type of L. caatinguensisCitrus sinensisBrazilKT154760KT008006KT154767
L. mahajanganaCBS 137785 = BL104, ex-type of L. exiguaRetama raetam, branch cankerTunisiaKJ638317 KJ638336
L. margaritaceaCBS 122519 = CMW 26162 = MOZ 11A, ex-typeAdansonia gibbosaAustralia: Western AustraliaEU144050 EU144065KX464903
L. mediterraneaCBS 137783 = BL1, ex-typeQuercus ilex, branch cankerItalyKJ638312 KJ638331
L. mitidjanaMUM 19.90 = ALG111, ex-typeCitrus sinensis, branch cankerAlgeria: MitidjaMN104115MN159114
L. parvaCBS 456.78, ex-typeCassava-field soilColombiaEF622083EF622063KP872419
L. plurivoraCBS 120832 = CPC 5803, ex-typePrunus salicina, wood cankerSouth AfricaEF445362 EF445395KP872421
L. pontaeCMM 1277, ex-typeSpondias purpureaBrazilKT151794KT151791KT151797
L. pseudotheobromaeCBS 116459, ex-typeGmelina arboreaCosta RicaEF622077EF622057EU673111
L. rubropurpureaCBS 118740 = WAC 12535 = CMW 14700, ex-typeEucalyptus grandis, cankerAustraliaDQ103553EU673304 EU673136
L. subglobosaCMM 3872, ex-typeJatropha curcas, collar and root rotBrazilKF234558KF226721KF254942
L. thailandicaCBS 138760 = CPC 22795, ex-typeMangifera indica, twigsThailandKJ193637KJ193681
L. theobromaeCBS 111530 = CPC 2095 = JT 695Leucospermum sp.USA: HawaiiEF622074EF622054
L. theobromaeCPC 27881Citrus sinensis, trunkMaltaMW413867MW419185MW419248
L. theobromaeCPC 27882Citrus sinensis, trunkMaltaMW413868MW419186MW419249
L. theobromaeCPC 27883Citrus sinensis, trunkMaltaMW413869MW419187MW419250
L. theobromaeCPC 27884Citrus sinensis, trunkMaltaMW413870MW419188MW419251
L. theobromaeCPC 27885Citrus sinensis, trunkMaltaMW413871MW419189MW419252
L. theobromaeCBS 124.13USADQ458890DQ458875DQ458858
L. theobromaeCBS 164.96, ex-neotypeFruit along coral reef coastPapua New GuineaAY640255AY640258EU673110
L. venezuelensisCBS 118739 = WAC 12539 = CMW 13511, ex-typeAcacia mangium, woodVenezuelaDQ103547EU673305EU673129
L. viticolaCBS 128313 = UCD 2553AR, ex-typeWedge-shape canker of grapevine cv. Vignoles (complex hybrid of North America Vitis species and Vitis vinifera)USA: ArkansasHQ288227HQ288269HQ288306
L. vitisCBS 124060, ex-typeVitis vinifera KX464148KX464642KX464917
Neofusicoccum arbutiCBS 117453 = CMW 13455, ex-type of N. andinumEucalyptus sp.VenezuelaAY693976 AY693977KX464923
N. arbutiCBS 116131 = AR 4014, ex-typeArbutus menziesii, cankerUSA: WashingtonAY819720 KF531792 KF531793
N. australeCBS 139662 = CMW 6837, ex-typeAcacia sp.Australia: VictoriaAY339262AY339270AY339254
N. australeCMW 6853SequoiadendronAustraliaAY339263 AY339271AY339255
N. brasilienseCMM 1338, ex-typeMangifera indicaBrazilJX513630JX513610KC794030
N. buxiCBS 116.75Buxus sempervirens, leafFranceKX464165KX464678
N. cordaticolaCBS 123634 = CMW 13992, ex-typeSyzygium cordatumSouth AfricaEU821898 EU821868 EU821838
N. cryptoaustraleCBS 122813 = CMW 23785, ex-typeEucalyptus sp., living branches and leavesSouth AfricaFJ752742FJ752713FJ752756
N. dianenseCSF6075 = CGMCC3.20082, ex-typeEucalyptus urophylla × E. grandis tree, twigsChinaMT028605MT028771MT028937
N. eucalypticolaCBS 115679 = CMW 6539, ex-typeEucalyptus grandisAustraliaAY615141AY615133AY615125
N. eucalyptorumCBS 115791 = CMW 10125 = BOT 24Eucalyptus grandisSouth AfricaAF283686AY236891AY236920
N. grevilleaeCBS 129518, ex-typeGrevillea aureaAustraliaJF951137
N. hellenicumCERC 1947 = CFCC 50067, ex-typePistacia vera cultivar AeginaGreeceKP217053KP217061KP217069
N. hongkongenseCERC2973 = CGMCC3.18749, ex-typeAraucaria cunninghamiiChinaKX278052KX278157KX278261
N. illiciiCGMCC3.18310, ex-typeIllicium verumChinaKY350149KY350155
N. kwambonambienseCBS 123639 = CMW 14023, ex-typeSyzygium cordatumSouth AfricaEU821900EU821870EU821840
N. lumnitzeraeCBS 139674 = CMW 41469, ex-typeLumnitzera racemosaSouth AfricaKP860881KP860724KP860801
N. luteumCPC 27961Citrus limon, twigPortugalMW413872MW419190MW419253
N. luteumCPC 27962Citrus limon, twigPortugalMW413873MW419191MW419254
N. luteumCBS 110497 = CPC 4594 = CAP 037Vitis vinifera, grapePortugalEU673311EU673277EU673092
N. luteumCBS 110299 = LM 926 = CAP 002, ex-typeVitis vinifera, canePortugalAY259091KX464688DQ458848
N. luteumCBS 140738 = CMW 41365, ex-type of N. mangroviorumAvicennia marinaSouth AfricaKP860859KP860702KP860779
N. macroclavatumCBS 118223 = CMW 15955 = WAC 12444, ex-typeEucalyptus globulus, woodAustralia: Western AustraliaDQ093196 DQ093217DQ093206
N. magniconidiumCSF5876 = CGMCC3.20077, ex-typeEucalyptus urophylla × E. grandis tree, twigsChinaMT028612MT028778MT028944
N. mangiferaeCBS 118531 = CMW 7024Mangifera indicaAustraliaAY615185DQ093221AY615173
N. mediterraneumCBS 121718 = CPC 13137, ex-typeEucalyptus sp., branches and leavesGreeceGU251176
N. mediterraneumCBS 113083 = CPC 5263, ex-type of N. pistaciarumPistacia veraUSA: CaliforniaKX464186KX464712KX464998
N. mediterraneumCBS 113089 = CPC 5274, ex-type of N. pistaciicolaPistacia veraUSA: CaliforniaKX464199KX464727KX465014
N. mediterraneumCPC 27931Citrus limon, twigPortugalMW413874MW419192MW419255
N. mediterraneumCPC 27932Citrus limon, twigPortugalMW413875MW419193MW419256
N. mediterraneumCPC 27935Citrus limon, twigPortugalMW413876MW419194MW419257
N. mediterraneumCPC 27936Citrus limon, twigPortugalMW413877MW419195MW419258
N. microconidiumCERC3497 = CGMCC3.18750, ex-typeEucalyptus urophylla × E. grandis treeChinaKX278053KX278158KX278262
N. nonquaesitumCBS 126655 = L3IE1 = PD484, ex-typeUmbellularia californica, cankered branchUSA: CaliforniaGU251163 GU251295GU251823
N. ningerenseCSF6028 = CGMCC3.20078, ex-typeEucalyptus urophylla × E. grandis tree, twigsChinaMT028613MT028779MT028945
N. occulatumCBS 128008 = MUCC 227, ex-typeEucalyptus grandis hybridAustralia: QueenslandEU301030 EU339509 EU339472
N. pandanicolaMFLUCC 17-2270 = KUMCC 17-0184, ex-typePandanus sp.ChinaMH275072
N. parviconidiumCSF5667 = CGMCC3.20074, ex-typeEucalyptus tree, twigsChinaMT028615MT028781MT028947
N. parvumCBS 138823 = ICMP 8003 = CMW 9081 = BOT2487 = ATCC 58191, ex-typePopulus nigra, bark of dead twigNew ZealandAY236943AY236888AY236917
N. parvumCPC 26119Citrus sinensisx Poncirus trifoliata, trunkItalyMW413878MW419196MW419259
N. parvumCPC 26120Citrus sinensisx Poncirus trifoliata, trunkItalyMW413879MW419197MW419260
N. parvumCPC 26121Citrus sinensisx Poncirus trifoliata, trunkItalyMW413880MW419198MW419261
N. parvumCPC 26122Citrus sinensisx Poncirus trifoliata, trunkItalyMW413881MW419199MW419262
N. parvumCPC 26124Citrus sinensisx Poncirus trifoliata, trunkItalyMW413882MW419200MW419263
N. parvumCPC 26126Citrus sinensisx Poncirus trifoliata, trunkItalyMW413883MW419201MW419264
N. parvumCPC 26127Citrus sinensisx Poncirus trifoliata, trunkItalyMW413884MW419202MW419265
N. parvumCPC 26128Citrus sinensisx Poncirus trifoliata, trunkItalyMW413885MW419203MW419266
N. parvumCPC 26129Citrus sinensisx Poncirus trifoliata, trunkItalyMW413886MW419204MW419267
N. parvumCPC 26130Citrus sinensisx Poncirus trifoliata, trunkItalyMW413887MW419205MW419268
N. parvumCPC 27866Citrus limon, branchMaltaMW413888MW419206MW419269
N. parvumCPC 27867Citrus limon, branchMaltaMW413889MW419207MW419270
N. parvumCPC 27868Citrus limon, branchMaltaMW413890MW419208MW419271
N. parvumCPC 28173Microcitrus australasica, twigItalyMW413891MW419209MW419272
N. parvumCPC 28175Microcitrus australasica, twigItalyMW413892MW419210MW419273
N. parvumCPC 28177Microcitrus australasica, twigItalyMW413893MW419211MW419274
N. parvumCBS 110301 = CAP 074Vitis viniferaPortugalAY259098AY573221EU673095
N. parvumMFLUCC 15-09002, ex-type of N. italicumVitis viniferaItalyKY856755KY856754
N. parvumCBS 137504 = ALG1, ex-type of N. algerienseVitis vinifera, branchesAlgeriaKJ657702KJ657721
N. pennatisporumWAC 13153 = MUCC 510, ex-typeAllocasuarina fraseriana, healthy stemAustralia: Western AustraliaEF591925EF591976EF591959
N. pistaciaeCBS 595.76, ex-isotype of Camarosporium pistaciaePistacia vera, fruitsGreeceKX464163KX464676KX464953
N. protearumCBS 114176 = CPC 1775 = JT 189, ex-typeLeucadendron salignum × L. laureolum cv. Silvan Red, stemsSouth AfricaAF452539KX464720KX465006
N. ribisCBS 115475 = CMW 7772, ex-typeRibes vulgareUSAAY236935AY236877AY236906
N. ribisCBS 124924 = CMW 28363, ex-type of N. batangarumTerminalia catappa, healthy branchesCameroonFJ900607FJ900653 FJ900634
N. ribisCBS 123645 = CMW 14058, ex-type of N. umdonicolaSyzygium cordatumSouth AfricaEU821904EU821874 EU821844
N. sinenseCGMCC3.18315, ex-typeUnknown woody plantChinaKY350148KY817755KY350154
N. sinoeucalyptiCERC2005 = CGMCC3.18752, ex-typeEucalyptus urophylla × E. grandis treeChinaKX278061KX278166KX278270
N. stellenboschianaCBS 110864 = STE-U 4598 = CPC 4598, ex-typeVitis viniferaSouth AfricaAY343407AY343348KX465047
N. terminaliaeCBS 125264 = CMW 26683Terminalia sericeaSouth AfricaGQ471804GQ471782KX465053
N. ursorumCBS 122811 = CMW 24480, ex-typeEucalyptus sp.South AfricaFJ752746FJ752709KX465056
N. variabileCMW 37739, ex-typeMimusops caffraSouth AfricaMH558608MH569153
N. viticlavatumCBS 112878 = CPC 5044 = JM 86, ex-typeVitis viniferaSouth AfricaAY343381AY343342KX465058
N. vitifusiformeCBS 110887 = CPC 5252 = JM5, ex-typeVitis viniferaSouth AfricaAY343383AY343343KX465061
N. vitifusiformeCBS 120081 = CPC 12925, ex-type of N. corticosaeEucalyptus corticosa, leavesAustralia: New South WalesDQ923533KX464682KX464958
N. vitifusiformeCBS 121112 = CPC 5912, ex-type of N. pruniPrunus salicinaSouth AfricaEF445349EF445391KX465016
N. yunnanenseCSF6142 = CGMCC3.20083, ex-typeEucalyptus globulus, twigsChinaMT028667MT028833MT028999
1 ATCC: American Type Culture Collection, Virginia, USA; BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CERC: China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), China; CGMCC: China General Microbiological Culture Collection Center, Beijing, China; CMM: Culture collection of Phytopathogenic Fungi “Prof. Maria Menezes”, Universidade Federal Rural de Pernambuco, Recife, Brazil; CMW: Tree Pathology Co-operative Program, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; CPC: Culture collection of Pedro Crous, housed at Westerdijk Fungal Biodiversity Institute; IMI: International Mycological Institute, Kew, U.K.; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Ria, Thailand; MUCC: Murdoch University, Perth, Western Australia; URM: Culture collection Prof. Maria Auxiliadora Cavalcanti, Recife, Brazil. For other codes see the GenBank accession numbers. 2 ITS: internal transcribed spacers and intervening 5.8S nrDNA; TEF1: partial translation elongation factor 1-alpha gene; TUB2: partial β-tubulin gene.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Bezerra, J.D.P.; Crous, P.W.; Aiello, D.; Gullino, M.L.; Polizzi, G.; Guarnaccia, V. Genetic Diversity and Pathogenicity of Botryosphaeriaceae Species Associated with Symptomatic Citrus Plants in Europe. Plants 2021, 10, 492. https://doi.org/10.3390/plants10030492

AMA Style

Bezerra JDP, Crous PW, Aiello D, Gullino ML, Polizzi G, Guarnaccia V. Genetic Diversity and Pathogenicity of Botryosphaeriaceae Species Associated with Symptomatic Citrus Plants in Europe. Plants. 2021; 10(3):492. https://doi.org/10.3390/plants10030492

Chicago/Turabian Style

Bezerra, Jadson Diogo Pereira, Pedro Wilhelm Crous, Dalia Aiello, Maria Lodovica Gullino, Giancarlo Polizzi, and Vladimiro Guarnaccia. 2021. "Genetic Diversity and Pathogenicity of Botryosphaeriaceae Species Associated with Symptomatic Citrus Plants in Europe" Plants 10, no. 3: 492. https://doi.org/10.3390/plants10030492

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop