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Abstract: Phytochemical examination of the MeOH extract from the stems and stem bark of
Cornus walteri (Cornaceae) led to the isolation and verification of a tirucallane triterpenoid, (-)-
leucophyllone, as a major component. Its structure was elucidated using NMR spectroscopy and
liquid chromatography–mass spectrometry. The effect of (-)-leucophyllone on insulin secretion
in INS-1 cells was investigated. (-)-Leucophyllone increased glucose-stimulated insulin secretion
(GSIS) at concentrations showing no cytotoxic effect in rat INS-1 pancreatic β-cells. Moreover, we
attempted to determine the mechanism of action of (-)-leucophyllone in the activation of insulin
receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and pancreatic and duodenal
homeobox-1 (PDX-1). Treatment of INS-1 cells with (-)-leucophyllone markedly increased the ex-
pression of these proteins. Our findings indicate the potential of (-)-leucophyllone as an antidiabetic
agent.
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1. Introduction

Type 2 diabetes (T2D) is a chronic metabolic disorder primarily characterized by
reduced insulin secretion, and its global incidence has been on the rise [1]. Glucose-
stimulated insulin secretion (GSIS) is generally accepted as the main mechanism of insulin
secretion [2]. Insufficient insulin secretion is a known defect in pancreatic β-cell function [3].
Thus, maintaining or enhancing pancreatic β-cell function could be a strategic approach
for the prevention and treatment of T2D.

Several natural products isolated from plants, on account of their complex chemical
structures, are known for their biological potency as drugs [4]. In particular, compounds
isolated from various plants have been reported to enhance insulin secretion via the regula-
tion of pancreatic β-cell function, including cytopiloyne from Bidens pilosa [5], capsaicin
from Capsicum annuum [6], berberine from Rhizoma coptidis [7], curcumin from Curcuma
longa [8], epigallocatechin-3-gallate from Camellia sinensis [9], and genistein from Glycine
max [10]. However, very little is known about their possible mechanisms of action.

Cornus walteri Wanger, better known as Walter’s dogwood, is a deciduous shrub
belonging to the family Cornaceae. This medicinal plant has received attention for its
anti-photoaging and anti-diarrheal effects [11,12]. In addition, its extracts possess anti-
hyperglycemic [13], anti-inflammatory [14], anti-oxidant, and anti-obesity effects [15].
This bioactive potential of C. walteri necessitates its detailed phytochemical investigation.
Our previous phytochemical analysis on C. walteri led to the isolation of triterpenoids,
including betulinic acid methyl ester, lupenone, lupeol, betulinic acid, methyl 3-O-acetyl
betulinate, and sterols such as 6β-hydroxysitostenone, 5α-stigmast-3,6-dione, sitostenone,
3β-sitostanol, and 6α-hydroxy-β-sitostenone [16,17]. Among them, the anticancer effect of
betulinic acid on A2780 human ovarian cancer cells and the renoprotective effect of benzyl
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salicylate on cisplatin-induced damage in LLC-PK1 kidney proximal tubule cells have been
explored and evaluated in our previous studies [16,17]. In the present study, we focused
on (-)-leucophyllone, a tirucallane triterpenoid isolated from the further phytochemical
investigation of the MeOH extract from C. walteri. To the best of our knowledge, the
biological activity of (-)-leucophyllone has not been reported. Therefore, we explored the
insulin enhancement effect of (-)-leucophyllone in rat INS-1 pancreatic β-cells. Additionally,
we studied the mechanism of action of (-)-leucophyllone in the activation of insulin receptor
substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and pancreatic and duodenal
homeobox-1 (PDX-1).

2. Results
2.1. Isolation and Identification of (-)-Leucophyllone from C. walteri

Phytochemical analysis of the MeOH extract from the stems and stem bark of C.
walteri, using successive column chromatography on silica gel and RP-C18 silica along
with semi-preparative HPLC, resulted in the isolation and verification of (-)-leucophyllone
from the hexane-soluble fraction. (-)-Leucophyllone was isolated as a white amorphous
powder, and its molecular formula of C31H50O2 was determined based on LC/MS data at
m/z 477.7 [M+ Na]+. The 1H (Figure S1) and 13C NMR (Figure S2) data of (-)-leucophyllone
suggested the characteristic NMR spectroscopic values for eight methyl groups, one trans-
disubstituted olefinic bond, one trisubstituted olefinic bond, one methoxy group, and
one ketone group at δC 216.9, which were identical to the values of (-)-leucophyllone,
an analogue of tirucallane-type triterpenoids reported from Aglaia leucophylla [18]. By
comparing its negative value of optical specific data with previously reported data of
(-)-leucophyllone [18], the absolute configuration of (-)-leucophyllone was determined as
shown in Figure 1. Accordingly, the structural elucidation of (-)-leucophyllone isolated
was unambiguously confirmed (Figure 1).
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Figure 1. Chemical structure of (-)-leucophyllone.

2.2. Glucose-Stimulated Insulin Secretion (GSIS) Effect

In this study, we investigated whether (-)-leucophyllone could enhance GSIS and if it
was cytotoxic to INS-1 cells. (-)-Leucophyllone at 2.5 µM, 5 µM, and 10 µM was found to be
nontoxic to INS-1 cells (Figure 2A). The non-toxic concentrations of (-)-leucophyllone
were tested to determine if they led to an increase in GSIS. As shown in Figure 2B,
(-)-leucophyllone increased GSIS (ng/mL per 400,000 cells). GSIS was expressed as the
glucose-stimulated index (GSI). Fold change was set at 1 for control. The resultant GSI val-
ues were found to be 5.16 ± 0.12 and 13.11 ± 0.17 for (-)-leucophyllone at 5 µM and 10 µM,
respectively (Figure 2C). The results suggested that (-)-leucophyllone enhanced insulin
secretion in response to high glucose without causing exhibiting toxicity to INS-1 cells.
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cose-stimulated insulin secretion (glucose-stimulated insulin secretion (GSIS), ng/mL per 400,000 
cells) in INS-1 cells following 1 h of treatment, compared to that of the control (0 μM), as deter-
mined using the GSIS assay. (C) Comparison of GSIS is expressed as fold-stimulation in terms of 
the glucose-stimulated index (GSI, 16.7 mM glucose over 2.8 mM glucose for 1h). n = 3 independ-
ent experiments, * p < 0.05, Kruskal–Wallis non-parametric test. The data are presented as the 
mean ± SEM. 
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Figure 2. Effect of (-)-leucophyllone on glucose-induced insulin secretion in INS-1 cells. (A) Effect of (-)-leucophyllone on
the viability of INS-1 cells following 24 h of incubation, compared to that of the control (0 µM), as determined by cell viability
assay. (B) Effect of (-)-leucophyllone on glucose-stimulated insulin secretion (glucose-stimulated insulin secretion (GSIS),
ng/mL per 400,000 cells) in INS-1 cells following 1 h of treatment, compared to that of the control (0 µM), as determined
using the GSIS assay. (C) Comparison of GSIS is expressed as fold-stimulation in terms of the glucose-stimulated index (GSI,
16.7 mM glucose over 2.8 mM glucose for 1h). n = 3 independent experiments, * p < 0.05, Kruskal–Wallis non-parametric
test. The data are presented as the mean ± SEM.

2.3. Protein Expression of IRS-2 (Ser731), P-IRS-2, PI3K, P-PI3K, Akt, P-Akt (Ser473),
and PDX-1

Treatment with (-)-leucophyllone at 5 µM and 10 µM increased the protein expression
of IRS-2, PI3K, Akt, and PDX-1 compared to the untreated controls in INS-1 cells (Figure 3).
These results suggested that (-)-leucophyllone upregulated PDX-1 expression via the IRS-
2/PI3K/Akt signaling pathway in INS-1 cells. A schematic illustration of the proposed
mechanisms of the effect of (-)-leucophyllone on pancreatic β-cell metabolism is shown in
Figure 4.
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Figure 3. Effect of (-)-leucophyllone on the protein expression levels of insulin receptor substrate-2
(IRS-2) (Ser731), P-IRS-2, P-phosphatidylinositol 3-kinase (PI3K), PI3K, P-Akt (Ser473), Akt, and
pancreatic and duodenal homeobox-1 (PDX-1) in INS-1 cells. (A) Protein expression levels of P-
IRS-2 (Ser731), IRS-2, P-PI3K, PI3K, P-Akt (Ser473), Akt, PDX-1, and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in INS-1 cells treated or untreated with 5 and 10 µM (-)-leucophyllone for
24 h. (B–E) Each bar graph presents the densitometric quantification of western blot bands. * p < 0.05
compared to the control (0 µM).
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3. Discussion

Insulin is the only hormone responsible for lowering plasma glucose levels. Glucose
homeostasis is maintained when the insulin secretion is normal [19]. Because GSIS is a
vital concept in the development of T2D, it needs to be explored as a strategy to discover
novel bioactive compounds to treat T2D [20]. In the present study, we investigated whether
(-)-leucophyllone could enhance GSIS. Moreover, we evaluated its cytotoxicity in INS-1
cells. Based on our results, we concluded that while (-)-leucophyllone did not increase
cell viability; it also did not induce cytotoxicity at any concentration that was used in
our study. In addition, we found that (-)-leucophyllone enhanced insulin secretion in
response to high glucose levels in INS-1 cells. Therefore, we suggest that (-)-leucophyllone
may enhance GSIS by modulating cellular signals rather than increasing the viability of
insulin-secreting cells.

Flavonoids are known to upregulate protein expression, including the expression of
IRS-2 and PDX-1, thereby enhancing insulin secretion in pancreatic β cells [21]. Phosphory-
lated IRS-2 has essential roles, including the regulation of normal pancreatic β-cell function,
particularly, the maintenance of pancreatic β-cell mass and activation of the PI3K/Akt
pathway [22,23]. Although its role is not fully understood, the PI3K/Akt pathway is
critical for the nuclear translocation of PDX-1 [24,25]. PDX-1 is a crucial transcription
factor that maintains pancreatic β-cell function in normal GSIS and activates the insulin
gene promoter [26,27]. Its deficiency has been shown to cause defective GSIS in mouse
and human pancreatic β cells [26,28,29]. The polyphenol extract of Caesalpinia bonduc was
previously shown to enhance insulin secretion and PDX-1 expression in pancreatic β cells
of rats [30]. It has been demonstrated that the extract of mistletoe (Viscum album coloratum)
has an insulin-secreting effect through the activation of PDX-1 in alloxan-induced diabetic
mice [31]. Another study showed that the polysaccharide extracted from mulberry (Morus
alba L.) leaf ameliorated insulin-secreting activity by increasing PDX-1 expression through
nuclear localization in the pancreatic β cells of diabetic rats [32].

In our study, we also investigated the involvement of the pathway associated with
β-cell function in INS-1 cells after treatment with (-)-leucophyllone. Our results were
consistent with the theory suggested by previous studies that PDX-1 expression via the
IRS-2/PI3K/Akt signaling pathway played a key role in insulin secretory capacity. In
the current study, treatment with (-)-leucophyllone increased the protein expression of
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IRS-2, PI3K, Akt, and PDX-1 compared to untreated controls in INS-1 cells. These results
established the underlying mechanism of action of (-)-leucophyllone to enhance GSIS.
However, the biggest drawback of natural product research is still difficult to separate
enough components for animal testing, and we need to further study the mechanism of
action using other experimental models and diabetic animals in future studies.

4. Materials and Methods
4.1. Extraction, Fractionation, and Purification Methods

Cornus walteri stems and stem bark (2.5 kg) were dried, chopped, and extracted with
80% aqueous MeOH (2 × 6 h) under reflux, and the resultant extract was filtered. The
filtrate was concentrated using evaporator under vacuum to afford a MeOH extract (220 g),
which was applied to distilled H2O (7.2 L) and then successively solvent-partitioned with
three organic solvents including hexane, CHCl3, and n-BuOH, providing 9.5, 25, and 43 g
of residue, respectively. The hexane-soluble fraction (9.5 g) was chromatographed on a
300 g of silica gel column eluted with hexane-EtOAc (3:1 to 1:1, gradient solvent system) to
yield fractions F1–F5. Fraction F1 (3.3 g) was chromatographed on a 100 g of RP-C18 silica
gel column eluted with 100% MeOH to yield subfractions F11–F15. Fraction F14 (300 mg)
was subjected to medium pressure liquid chromatography (MPLC) using a LiChroprep
Lobar-A Si gel 60 column (n-hexane-EtOAc, 16:1) and then purified using semi-preparative
normal-phase HPLC and a solvent system comprising n-hexane:EtOAc (12:1) to yield
(-)-leucophyllone (30 mg, 0.0136%).

4.2. Cell Culture

Rat pancreatic β-cells (INS-1) were purchased from Biohermes (Shanghai, China). INS-
1 cells were routinely maintained in RPMI-1640 (Cellgro, Manassas, VA, USA) containing
11 mM D-glucose, 10% fetal bovine serum, 1% penicillin/streptomycin (Invitrogen Co.,
Grand Island, NY, USA), 0.05 mM 2-mercaptoethanol, 2 mM L-glutamine, 10 mM HEPES,
and 1 mM sodium pyruvate under 5% CO2 and 95% humidity at 37 ◦C.

4.3. Measurement of Cell Viability

To assess the non-toxic dose range of (-)-leucophyllone, INS-1 cells (1 × 104 cells/well)
were seeded in 96-well plates for 24 h. Cells were then treated with 2.5, 5, or 10 µM (-)-
leucophyllone for 24 h. EZ-Cytox cell viability assay solution (100µL; Daeil Lab Service Co.,
Seoul, Korea) was added to the plates and incubated for 40 min. Next, the absorbance of
the samples in the wells was measured using a PowerWave XS microplate reader (Bio-Tek
Instruments, Winooski, VT, USA) at a wavelength of 450 nm as previously described [33,34].

4.4. GSIS Assay

INS-1 cells (4 × 105 cells/well) were seeded in 12-well plates for 24 h. Cells were
then carefully washed twice with warm Krebs–Ringer bicarbonate buffer (KRBB, 4.8 mM
KCl, 129 mM NaCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2, 10 mM HEPES,
5 mM NaHCO3, and 0.1% bovine serum albumin (pH 7.4). Then, INS-1 cells were starved
with fresh KRBB for 2 h and treated with 2.5, 5, and 10 µM (-)-leucophyllone for 1 h.
Thereafter, INS-1 cells were stimulated with fresh KRBB containing 2.8 mM or 16.7 mM
glucose for 1 h. The culture supernatant was immediately collected and used to measure
the GSIS according to the manufacturer’s instructions for the rat insulin ELISA kit (Gentaur,
Shibayagi Co. Ltd., Gunma, Shibukaw, Japan). GSIS is expressed as fold-stimulation in
terms of the glucose-stimulated index (16.7 mM glucose over 2.8 mM glucose for 1 h).

4.5. Western Blotting

INS-1 cells (8 × 105 cells/well) were seeded in six-well plates for 24 h. Cells were
then treated with 5 or 10 µM (-)-leucophyllone for 24 h. To extract the whole protein lysate,
INS-1 cells were lysed for 20 min on ice in RIPA buffer (Cell Signaling, Danvers, MA, USA)
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containing a protease inhibitor. Protein samples (20 µg) were separated and detected as
previously described [35,36].

4.6. Statistical Analysis

Statistical significance was assessed using one-way analysis of variance (ANOVA)
and multiple comparisons with a Bonferroni correction. p values less than 0.05 indicated
statistical significance. All analyses were performed using SPSS Statistics ver. 19.0 (SPSS
Inc., Chicago, IL, USA).

5. Conclusions

Based on the results from our study, we conclude that (-)-leucophyllone identified from
C. walteri was capable of GSIS. These effects were supported by the increased expression
of IRS-2, PI3K, Akt, and PDX-1. Further studies are necessary to investigate the impact of
(-)-leucophyllone on insulin secretion in animal models of T2D and to evaluate whether
(-)-leucophyllone might be of therapeutic interest for the treatment of T2D in humans.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/3/431/s1, general experimental procedures, plant material, Figure S1: The 1H NMR spectrum
of (-)-leucophyllone (CDCl3, 500 MHz); Figure S2: The 13C NMR spectrum of (-)-leucophyllone
(CDCl3, 125 MHz).
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