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Abstract: Plants adapt to continual changes in environmental conditions throughout their life
spans. High-throughput phenotyping methods have been developed to noninvasively monitor the
physiological responses to abiotic/biotic stresses on a scale spanning a long time, covering most of
the vegetative and reproductive stages. However, some of the physiological events comprise almost
immediate and very fast responses towards the changing environment which might be overlooked
in long-term observations. Additionally, there are certain technical difficulties and restrictions in
analyzing phenotyping data, especially when dealing with repeated measurements. In this study,
a method for comparing means at different time points using generalized linear mixed models
combined with classical time series models is presented. As an example, we use multiple chlorophyll
time series measurements from different genotypes. The use of additional time series models as
random effects is essential as the residuals of the initial mixed model may contain autocorrelations
that bias the result. The nature of mixed models offers a viable solution as these can incorporate time
series models for residuals as random effects. The results from analyzing chlorophyll content time
series show that the autocorrelation is successfully eliminated from the residuals and incorporated
into the final model. This allows the use of statistical inference.

Keywords: Arabidopsis; linear mixed models; time series analysis; ARIMA

1. Introduction

A series of data is considered as a time series when it consists of observations taken or
sampled sequentially in time. The most important feature of time series is that the data
are not identically and independently distributed (IID) [1]. This feature makes methods
such as simple regression models or Analysis of Variance (ANOVA) inappropriate for the
analysis of these data. Time series analysis is an important tool for every science. The study
of phenomena across time may lead to new important findings for every scientific field.
Nevertheless, there are certain difficulties and restrictions in analyzing these kinds of data,
especially when there are many repeated measurements. Many repeated measurements
used in time series problems usually indicates that the data in the time points for each
individual plant will be correlated and not independent (autocorrelation). For example, the
value in Tn+1 directly depends on the value in Tn. So, methods such as classical ANOVA
or t-tests at each time point cannot be used as they assume independence between the
measurements which does not hold for time series. To our knowledge, so far, a standard
methodology for comparing mean values of data in different groups of time series does not
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exist. As a result, a combination of methods including time series analysis, which can deal
with the special nature of longitudinal time series data, must be applied. Consequently, if
we find a valid way to identify and describe the mechanism of creating the data (by fitting an
appropriate statistical model), we can proceed to statistical inference and multiple pairwise
comparisons of time series data which may lead to biological conclusions. Therefore, we
must create a model (a mathematical relationship between the response variable we want
to examine and explanatory variables of interest) that takes this kind of correlation into
account. Additionally, since we want to compare several time series, we need to find a
modeling method that will allow us to incorporate them into one single model. Linear
mixed models (LMMs) are the perfect mathematical tools for this situation as they can
combine population average (fixed for all individual measurements) effects and subject-
specific (called random) effects for each individual plant separately, so that the variability
between genotypes and time points is retained. As a result, a combination of linear mixed
models and time series analysis is used to address all the above-mentioned issues.

Photosynthetic acclimation to environmental conditions such a fluctuating irradiance
is an example of a biological process comprising short-term (minutes- or even seconds-
long events including changes in electron transport and enzyme activities, CO2 diffusion,
nonphotochemical quenching, light harvesting capacity, etc. [2–4]) and long-term (events
lasting for days such as photosynthetic acclimation) responses [5]. Moreover, these bio-
logical processes are species-specific, and depend on environmental factors such as daily
and seasonal irradiance fluctuations and circadian rhythms. For more details describing
the impact of environmental factors on photosynthesis, we recommend following these
comprehensive studies [6–12]. Plant phenotyping is based on noninvasive high-throughput
monitoring of parameters including photosynthetic activity, growth dynamics in response
to the environment, etc. [13,14]. As a high-throughput method, phenotyping produces
a quantity of longitudinal or time-to-event data which is challenging to process by an
adequate statistical approach [15–17]. In our study, we show that not considering the
dependency that exists among individual time points in time series might lead to wrong
assumptions, which might further cause a false hypothesis to be made. On the other hand,
we show that using mixed models combined with time series analysis methods as a tool
for comparing groups of time series in plant sciences overcomes such an issue.

After germination under the surface of the soil (i.e., in the darkness), the plants start
elongating with bended cotyledons forming what are called apical hooks, protecting the
plant apex while reaching the soil surface, where the light induces the process of de-
etiolation. De-etiolation is by far the most dramatic period of plant life cycle, characterized
by complete rearrangement of plant metabolism (i.e., from heterotrophic de-etiolated
seedling to autotrophic plant). The process of de-etiolation is (among other things) initiated
by very fast (immediate) activation of light-responsive enzymes, involved in the chlorophyll
biosynthesis from its dark-phase accumulated precursor protochlorophyllide [18]. This is
a very delicate operation for the plant, as chlorophyll must be synthesized very quickly,
but the chlorophyll itself or its biosynthesis intermediates can (instead of transferring their
excitation energy to excited porphyrin pigments) mediate formation of singlet oxygen,
leading to strong photo-oxidative damage of chloroplasts [19]. Thus, sensitive phenotyping
systems as well as a correct and precise data processing that allows monitoring of the very
fast (taking place in order of minutes or even seconds) and subtle changes in chlorophyll
biosynthetic dynamics are required for studies on the processes associated with the early
stages of a plant’s life in light (photomorphogenesis).

The goal of this paper is to find a statistical tool allowing unbiased comparison in the
chlorophyll fluorescence dynamics of different genotypes (wild type vs. mutant). This fast
biological process serves as an example of time series data, where the dynamic change can
take place in the first minutes of observation. More specifically, we seek to find when in
time the difference between the chlorophyll fluorescence mean values of the genotypes
becomes statistically significant. In this way, we will be able to determine significant early
and/or late differences in chlorophyll dynamics which might otherwise be incorrectly
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identified by a wrong statistical approach. For this reason, we present a combination of
methods that can lead to accurate chlorophyll fluorescence results in the case of multiple
comparisons of chlorophyll fluorescence in different groups of time series. In particular,
linear mixed models (LMMs) [20] are applied in combination with methods of time series
analysis which can help us to overcome the difficulties arising from the longitudinal nature
of the data. Using this method, the dynamic changes in chlorophyll fluorescence of several
de-etiolating genotypes are clearly identified.

2. Materials and Methods
2.1. Plant Material and Chlorophyll Quantification

The data used in this study consist of 27 time series. We performed fluorescence-based
chlorophyll measurements in 3 genotypes of Arabidopsis thaliana, and for each genotype we
conducted 3 independent experiments, each containing 3 biological replicas. This makes 9
different time series for each genotype. The genotypes are one wild type (WT) Landsberg
erecta-1 (Ler-1) and two mutants in the same genetic background defective in chlorophyll
biosynthesis (light-dependent protochlorophyllide to chlorophyllide conversion), which
were cultivated in vitro for 4 days on half-strength Murashige and Skoog ( 1

2 MS) medium in
the dark (16 h cycle and 8h cycle at 21 and 19 ◦C, respectively). The same Ler-1 background
lines were selected since different genetic backgrounds might be associated with modulated
growth and stress responses [21].

The starting point refers to the exposure of the seedlings to the first short pulse of
actinic light (50 ms, 238 µmol m−2 s−1; 21 ◦C) used to induce fluorescence of the biosyn-
thesized chlorophyll for nondestructive real-time in vivo measurements of chlorophyll
content (Balakhonova, Dobisova et al., manuscript in preparation). Briefly, chlorophyll
content was quantified using imaging fluorometer FluorCam (Photon Systems Instruments,
Drásov, Czech Republic). The fluorescence signal was acquired by a sensitive CCD camera
(1.4 M pixels) with an emission band of 690–770 nm. Camera resolution allowed analysis
of pixels corresponding to cotyledons of individual seedlings. The fluorescence emission
was excited by 50 ms long pulses of blue actinic light generated by a LED light source with
a peak wavelength of 470 nm. The pulse was sufficient to induce chlorophyll biosynthesis
(de-etiolation), thus no additional source of light was used.

The time series consists of 121 measurements that were taken over a 4 h and the
sampling period (defined by the pulse of the actinic light) was every 2 min.

Data were scaled to the first time point measured (T0), so all variables started at the
same point, allowing comparison of time series data which inputs values differing in scale.
Every value of the time series was divided by the first corresponding time point. As a
result, the first time point was always 1.

The scaled data are given in Figure 1 where the dots represent the mean of all the time
series of the same genotype and the error bar represents a 95% confidence interval.
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2.2. Linear Mixed Models and Time Series analysis

The idea behind linear mixed models (LMMs) is that different coefficients are esti-
mated for different subjects [20]. The estimates are characterized as subject-specific because
they are conditional on the random subject effect. This property makes LMMs appropriate
for modeling longitudinal and clustered data [17]. The implementation of a LMM analysis
begins with the construction of a normal distribution around the intercepts and then the
variance of this normal distribution is estimated. That variance is added to the regression
model in order to create different coefficient for every subject. As a result, an extension of
the simple linear model of the form:

y = XT
i b, i = 1, . . . , N (1)

is the following:
yij = b0 + XT

ijb + u0j + εij (2)

where b0 is the fixed-average intercept, u0j is the random (subject-specific) intercept for
subject j, b is the vector of regression parameters, Xij is the matrix of explanatory variables
and εij is the error for subject j at time i.

As can be seen from Equation (2), the intercepts differ between the subjects, but
the other regression coefficients are the same for all subjects. Additionally, it is common
in longitudinal studies for someone to also include random effects for the remaining
coefficients, so that all the coefficients differ between subjects. The resulting model in this
case is given by Equation (3):

yij = b0 + XT
ijb + u0j + ZT

ijuj + εij (3)

where uj represents the vector of random (subject-specific) coefficients for the variables
and Zij is the matrix of explanatory variables associated with uj.

The coefficients can be estimated by using the Maximum Likelihood (ML) and the
Restricted Maximum Likelihood (REML) methods. The estimates for the random effects
variances obtained by the REML method are less biased, while the ML method allows
for comparisons between models with the use of information criteria such as the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC), which have no
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meaning for the REML estimates. For more detail, refer to [22,23]. In this paper the ML
method is used to choose the best model describing the data.

When modeling repeated measurements of different subjects (seedlings) using the time
t as a variable, we obtain an estimate of the trend of the time series. It is possible that within
the residuals εij (error between actual values and model fitted values), autocorrelations
remain. More information about the estimate of the autocorrelation function is given in
Appendix A [1].

In this case, εij need to be further modeled so they do not contain any kind of autocor-
relations and the whole model may be considered valid.

Thus, the final form of the general model used in this work to compare means between
different time points can be given by Equations (4) and (5):

yij = b0 + XT
ijb + u0j + ZT

ijuj + εij, (4)

The ε̂ij are described as:

ARIMA
(

pj, dj, qj
)
×

(
Pj, Dj, Qj

)
S (5)

The autoregressive integrated moving average (ARIMA) model was used to fit the
initial residuals εij, while rij are the final residuals of the whole model.

In Equation (5), (pj, dj, qj) is the nonseasonal part of the model for each subject and(
Pj, Dj, Qj

)
is the seasonal part of the model if seasonality is present. If seasonality is absent,

we ignore the second part.
Mixed models are ideal for situations with observations that are not identically and

independently distributed (IID) and when we have repeated measurements for different
individuals (seedlings). Additionally, there is a degree of randomness in the data acquisi-
tion that is not fully controllable. The mixed model we propose contains, as random effects,
the effects of each seedling separately, so that the model includes the randomness that
might exist between experiments and genotypes. As fixed and random parts of the model
(initially, before the addition of ARIMA models as random effects), we used the variables
Time (1, 2, 3, . . . , 121) and Time2 (1, 4, 9, . . . , 1212). The variable Time represents the time
points when the measurements were taken (1st time point is 0 min, 2nd time point is 2
min, 3rd time point is 4 min, etc.). A categorical variable “Genotype” (3 categories: wild
type (WT), Mutant 1 (MUT1), and Mutant 2 (MUT2)) was also used, but only in the fixed
part of the equation as the random effects already contained the genotypic differences and
the model would not converge if we included “Genotype” in the random effects as well.
Here, “Genotype” is a dummy variable with the 3 referred categories. The first (reference)
category is the WT and its information is contained in the intercept term b0, which plays a
significant role.

Thus, MUT1 and MUT2 are binary variables—e.g., MUT1 = 1 when the genotype is
MUT1 and 0 otherwise. When MUT1 and MUT2 are both equal to zero, then the genotype
is WT. So, the values of coefficients b3 and b4 show the general differences of MUT1 and
MUT2 with the WT. More information about dummy variables can be found in [24]. Finally,
the covariance structure that is used with this dataset is the heterogeneous unstructured
structure, which is the most commonly used as it does not limit the values of the covariance
matrix at all [25].

So, the model of Equation (4) takes the following form (Equation (6)):

yij = b0 + b1Time + b2Time2 + b3GenotypeMUT1 + b4GenotypeMUT2+u0j + u1jTime + u2jTime2 + ε̂ij + rij. (6)

Instead of using the original values of the time series, we can take their logarithms. It
was found in several studies that the log transformation of the underlying series improves
forecasting and stabilizes the variance [26].

The modeling procedure and data analysis were performed in R studio (R GUI 4.0.3)
with the use of “glmmTMB” and “forecast” packages [27–31].
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3. Results

The difficulty here follows from the fact that for different subjects the form of the
autocorrelation might be different and thus we will need a different model for each subject’s
residuals [24–26].

In Figure 1, we can observe the means (dots) and the confidence intervals (error bars)
for every group of chlorophyll fluorescence time series after transferring the seedlings from
the dark to actinic light condition. The goal is to discover if and when in time the difference
between the means of the genotypes becomes statistically significant.

To be able to do this, we need to create a common forecasting model that describes all
the time series that we want to analyze equally well. The LMM of Equation (6) is found to
be the best model to describe these data according to AIC.

The case of a third order term, Time3, was examined as well, but the coefficient was
found to be nonsignificant and the AIC was higher. The model of Equation (6) successfully
describes the trend of all the time series in one single mixed model. In addition, looking
at the coefficients b3 and b4 of GenotypeMUT1 and GenotypeMUT2, we have an indication
of whether there are differences between WT and MUT1-MUT2 by the significance of the
coefficients of dummy variables (MUT1 and MUT2).

However, if we plot the autocorrelation function for the residuals of each time series,
we will see that strong autocorrelations exist. This means that if we directly apply statistical
inference in this model to identify differences (multiple comparisons, etc.), the result will be
incorrect. This happens because the model which is used for forecasting is not the correct
one, as these autocorrelations should be incorporated in the model fitted values (i.e., they
are taken into consideration when we make comparisons) and not in the residuals, as the
data here are not independent, as mentioned before, so the inclusion of autocorrelations in
the model is essential. Otherwise, we can obtain biased (misleading) results (either false
positive or false negative). Estimates of the autocorrelations of residuals for each seedling
are given in Figure 2. Autocorrelation plots such as those in Figure 2 show the dependence
that exists within observations in every time series. The autocorrelation with lag zero
always equals 1, because it reflects the autocorrelation between each observation in the time
series and itself. The autocorrelation with lag 1 shows the relation that exists between the
observations of the time series whose distance is one step; the one with lag 2 shows the
relation that exists between the observations whose distance is two steps, etc. Each value
of the autocorrelation function that is above or below the dashed lines (95% confidence
interval) is considered to be statistically significant. If we have values significantly different
from zero, this shows that significant autocorrelations exist in the time series. Briefly,
significant autocorrelations contain information that should be included in the model and
not in the residuals of the model. If the residuals of the model do not contain significant
autocorrelations, the procedure described in this work is not necessary. In Figure 2, one
can observe that the chlorophyll measurements are highly correlated with each other as
there are many values of the autocorrelation functions above and below the 95% confidence
intervals. To be able to remove these autocorrelations from the residuals and make the model
appropriate for statistical inference, time series analysis can be applied. One way to do this
is to separately examine every autocorrelation function and find a proper time series model
to remove it. The most popular time series models for this case are the autoregressive (AR)
models, the moving average (MA) models, and the more complex autoregressive moving
average (ARMA) models or autoregressive integrated moving average models (ARIMA) in
case trends are still present in the residuals. It is possible to have more complex time series
where periodical phenomena are present. In this case, seasonal ARIMA (SARIMA) models
can be useful [32]. A more automatic procedure that makes things easier and much faster
is the “auto.arima” function from the “forecast” package in R. The auto.arima function
uses a variation of the Hyndman–Khandakar algorithm, which combines unit root tests
and finds the best ARIMA model based on several information criteria such as AIC, AICc
(corrected AIC for small samples), and BIC [28]. Plotting the residuals will allow us to see if
trends remain. Figure 3 presents the residuals of the initial model of Equation (3). A trend
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is present in time series when a long-term increase or decrease exists. Identifying these
patterns is the first step for choosing a proper forecasting method. Figure 3 clearly shows
that trends are still present in the residuals.
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autocorrelation function is given in Appendix A. It can be observed in the residuals of every time
series that there are patterns of significant autocorrelations (several values are outside the 95% confi-
dence interval). This means that further modeling is required to remove these autocorrelations from
the residuals.
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Index refers to time points (2 min, 4 min, etc.). The title of each plot refers to Genotype: Replicate:
Experiment (WT: Wild Type, MUT1: Mutant 1, MUT2: Mutant 2). It is obvious that long-term
increases or/and decreases (trend) exist in the residuals of the model given by Equation (3).

To deal with this, we need to set at least d=1 in the ARIMA models for all the residuals,
so the trends were eliminated from the time series after differentiation. In Equation (5),
dj reflects the number of differences (nonseasonal) needed for the trends to be removed.
Differentiation in time series might help to stabilize the mean value of the time series and
it is the most popular way of removing trends [32]. A list of all the fitted ARIMA models
for the residuals is provided as a supplementary material. Finally, if we add these models
to the previously fitted LMM, we obtain the form of the model given in Equation (4). It is
obvious from Figure 4 that the estimated residuals rij of the final model given by Equation
(4) and consequently by Equation (6) do not contain significant autocorrelations as there
are no significant values in general. This implies that the model is now valid for statistical
inference. Additionally, the mean values of the residuals for each genotype are very close
to zero which is another important result (see Supplementary Materials: Figure S1).

Furthermore, other diagnostics for the model are provided as Supplementary Materials
(Figures S2 and S3).

Hereafter, we can proceed with the comparison of the means of each time point. Since
in R there is no automatic procedure for such a model yet, we can use a t-test considering
the Bonferroni correction for all time points. At each time point are three comparisons,
so that the corrected threshold for the p-value is 0.05/3 = 0.01667. The t-test was applied
on the model fitted values and the groups that are compared are the values (scaled) of
chlorophyll at separate time points between genotypes. For example, for the first time
point, we compared the mean value of WT chlorophyll measurement with the MUT1
mean value. It is very critical to correct the p-value, otherwise there will be an increase in
Type I errors [33].

The fixed part of the model is given in Table 1. The “Estimate” column corresponds
to b0, b1, b2, b3 and b4 of Equation (6). Additionally, the standard deviation that exists
within the random/subject-specific effects (u0j, u1j and u2j) is given. The random effects
u0j, u1j and u2j, as well as those concerning the residuals, are provided as supplementary
materials (the standard deviation in Table 1 resulted from finding the standard deviation
for each column of the supplementary file random_effects.xlsx which corresponds to
the values of u0j, u1j and u2j of Equation (6)). With regard to the fixed coefficients of
MUT1and MUT2, we expected, in the final analysis, to see significant differences between
WT-MUT1 (p-value of coefficient of MUT1 is <0.001 which indicates significant difference
from the reference genotype WT) and MUT1-MUT2 (MUT2 is not significantly different
from WT (p-value = 0.657)). However, it would be wrong to make inferences just from
these p-values as the random effects of the ARIMA models are not considered and they
might significantly affect this result in the pairwise comparisons, as referred to before,
because of the autocorrelation.

Thus, based on this modified model combined with the ARIMA models for the
residuals (see supplementary file random_effects.xlsx and ARIMA_models.pdf), we can
proceed to apply statistical inference.

The multiple comparison results are summarized in Figure 5. The vertical lines
correspond to the intervals in which there are significant differences between the genotypes.
Indeed, as indicated in Table 1, we obtained significant differences between WT-MUT1 and
MUT1-MUT2.
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Replicate: Experiment. The dashed blue lines represent the 95% confidence interval. (WT: Wild Type,
MUT1: Mutant 1, MUT2: Mutant 2). We can see that except for the zero lag which is always 1, there
are generally no statistically significant values (outside the 95% confidence intervals). This means
that the model is now valid for statistical inference.

Table 1. Linear mixed model for chlorophyll data.

Family = Gaussian (link = Identity)

Model formulae are given in Equations (4) and (5)

Fixed Effects:

Coefficients Estimate Standard Error z-Value p-Value

Intercept − b0 0.09175 0.0182 5.04 <0.001

Time − b1 0.04297 8.471 × 10−4 50.72 <0.001

Time2 − b2 −1.961 × 10−4 5.681 × 10−6 −34.52 <0.001

GenotypeMUT1 − b3 −0.1914 0.02289 −8.36 <0.001

GenotypeMUT2 − b4 0.1083 0.02443 −0.44 0.657

Random Effects (Conditional Model):

Groups Name Variance Standard Deviation Correlation

Id Intercept 0.003901 0.0625

Time 1.923 × 10−5 4.385 × 10−3 −0.65

Time2 8.624 × 10−10 2.937 × 10−5 0.58 −0.97

Residual 1.318 × 10−3 3.630 × 10−2

Number of Groups (id): 27 (3 experiments each containing 3 replicas for each genotype)

Number of Observations: 3267

In the final residuals of the model (εij in Equation (6)), we can see that there are
some outliers (see Figure S2: Q-Q plots in Supplementary Materials) which are due to
slightly larger prediction errors in the beginning of some of the time series (see Figure S1:
Final residuals). If these outliers are not considered, then the residuals approximate the
standard normal. These errors exist because the exponential increase is affected by complex
regulations in chlorophyll metabolism [18].
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Figure 5. Pairwise comparisons of genotypes for each time point. The intervals inside the solid black vertical lines are
considered as significantly different. The intervals inside the dashed red lines are the wrong results we would have if we did
not take the autocorrelation into consideration. (A) There are significant differences in the chlorophyll dynamics between
WT and Mutant 1 from 6 min to 102 min after the first measurement. Without considering autocorrelations, the (wrong)
result would be from 2 min to 130 min (dashed red lines). (B) There are no significant differences found between WT and
Mutant 2. (C) There are significant differences in the chlorophyll dynamics between Mutant 1 and Mutant 2 from 2 min to
80 min after the first measurement. Without considering autocorrelations the (wrong) result would be from 2 min to 68 min
(dashed red lines).



Plants 2021, 10, 362 13 of 16

4. Discussion

Comparing groups of time series can be essential in plant sciences. Longitudinal
studies are now very popular in plant biology to describe plant adaptation strategies to
various environmental conditions. There are many plants and crop studies containing
growth curve modeling during stress and recovery periods. Other methods such as paired
t-tests and repeated measures ANOVA (RMANOVA) are useful but not for the type of
problem we deal with in this work [34]. A paired t-test (dependent sample t-test) is
used to determine if the difference of the means between two groups of observations is
zero (null hypothesis) [35]. In a paired sample t-test, each subject or entity is measured
twice, resulting in pairs of observations. In an RMANOVA, we can extend this to more
time points. These methods can lead to useful conclusions as well. For example, we
can check if the genotypes differ if we average over all seedlings and all time points,
or if the mean response differs over time when we average over all seedlings and all
genotypes. Finally, based on interaction terms, we can assess whether the pattern across
time depends upon the specific genotypes. Neither of the above methods can focus on
specific time points. Other studies also deal with chlorophyll fluorescence data using time
series. In [36], the authors identified differences between wild types and mutants using
deep neural networks and discriminant analysis. More specifically, they used a time series
deep learning algorithm to extract time series chlorophyll fluorescence features which
were then used for classification by applying several methods. Their method appeared to
be very efficient as the discrimination–classification accuracy percentages are very high.
However, this leads to more general results (finds discrimination between mutants and
wild type) and not time-specific results as our method obtained. Furthermore, in [37], the
author used residuals (restricted) maximum likelihood (REML) models for comparing
time series of chlorophyll fluorescence measurements. There is no reference, however, to
autocorrelation. The reason for this is that the measurements were taken 0, 23, 47, 71, 143
and 191 h following detachment. When the sampling intervals are so large, and the number
of the measurements so small (six measurements with intervals of 24 hours between them),
the observations within time series are not correlated and therefore can be considered
independent. In contrast, we made 121 measurements with intervals of 2 min between
them. Now, if we did not take into account the autocorrelation that exists in the residuals
and directly apply statistical inference in the model of Equation (3) (similarly to [37]), i.e.,
without further analyzing the residuals and removing them from the autocorrelation, we
would have obtained false significant differences (i.e., false positives) or/and significant
differences which were missed (false negatives). This is so because the autocorrelation
contains information that should be included in the estimations of the coefficients of the
model and not in the residuals. In particular, for WT-MUT1 (Figure 5A), we would have
wrong significant differences until the point of 130 min after the first measurement, and for
MUT1-MUT2, we would have 6 points (12 min) which, with the present method, would
be considered significant, while without the extra time series analysis, the significance in
the difference is lost (false negatives). The wrong results we would have if we did not
consider the autocorrelation are shown in Figure 5A,C with dashed red lines. It should
be also noted here that, in our study, we did not measure the chlorophyll fluorescence to
quantify the photosynthesis efficiency, used most frequently to evaluate the immediate
physiological status of the plant as referred to in the mentioned works [36,37]. Here,
the chlorophyll fluorescence corresponds dominantly to the chlorophyll amount in the
de-etiolating seedlings.

The proposed method, combining LMMs which are commonly used for longitudinal
studies, with time series analysis seems to be a valuable tool for analyzing longitudinal
data without producing any bias in the results since every case of possible bias due to
repeated measurements (non-IID, strong autocorrelations that remain in the residuals, etc.)
has been carefully taken into consideration.

The pairwise comparison of genotypes using mixed models identified significant
differences in the early phases of de-etiolation (see Figure 5) after transferring the seedlings
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from dark to light conditions. More specifically, from the multiple pairwise comparisons,
the 2-minute interval measurements provided us with sufficient coverage of time points
and the final shape of the chlorophyll biosynthetic curves. Thus, we were able to apply
our robust statistical method that projected the significant changes in early dynamics
of chlorophyll biosynthesis, which could be otherwise obscured by not fulfilling all the
necessary conditions for time series analysis.

To maintain the equilibrium between the fast chlorophyll biosynthesis and avoidance
of photo-oxidative damage, plants evolved an instrumentation with delicate and complex
regulations, employing feed-forward and feed-back regulatory mechanisms [18,38,39]. This
is, however, a rather common feature of many fast-responding (not only) biological systems.
To study these complex regulations, we need to measure not only the end points, but also
the dynamics of the process before they are reached. For this, we need techniques that can
discriminate changes in the measured variable with not only (high) spatial resolution, but
also time resolution. A prerequisite of correct data interpretation is using the proper tools for
the generated data processing/evaluation. Based on our results, it seems that linear mixed
models combined with time series analysis might be one of the possible solutions. One
possible limitation of this study is that the model used can describe data that are expressing
an exponential increase. In this study, all the genotypes have an exponential increase in
chlorophyll through time. In general, in case of applied stress for example, this can change.
The problem is not so important when they do not have exponential growth (other models
may be applied in this case, e.g., linear, without the use of the exponential term or even
logistic models, Gompertz, monomolecular, etc. [40,41]), but when the genotypes that we
have to compare follow completely different growth patterns. The modeling process will
then become more difficult as we will have to experiment with random effects to find the
most suitable model that describes the data and then apply statistical inference. Of course,
the method used in this work can be also applied to other scientific fields and areas in
which time and repeated measurements play important roles, such as economic and sales
forecasting, medical studies, engineering problems and others [1].

5. Conclusions

The use of proper statistical methods for data analysis is essential in life sciences.
In this work, we present a combination of linear mixed models and time series analysis
permitting the use of statistical inference when comparing chlorophyll contents in groups
of time series that belong to different genotypes. Even though repeated measurements and
longitudinal data are becoming more popular in life sciences as they can examine various
effects through time, to our knowledge there is no standard methodology for comparing
mean values of time points in different groups of time series. Especially when the time
points examined are many, it is almost certain that autocorrelations will be present within
time series and this is not considered for standard models. As a result, a combination of
methods must be applied for valid statistical inference.

The results of the analysis combining linear mixed models and time series analysis
models show that the proposed method can be a valuable tool to explore fast responses
assayed using time series. More specifically, it was found that the significant differences
between the wild type and Mutant 1 exist from 6 min to 102 min after the first measurement
and between Mutant 1 and Mutant 2 from 2 min to 80 min after the first measurement.
No significant difference was found between wild type and Mutant 2. In addition, the
results without considering the autocorrelation are provided. These show that if we do not
consider this, the results will be different, leading to false positive or/and false negative
results.

For future research, it would be interesting to also apply this method under different
conditions (stress, heat, etc.) for other phenotypic traits which will be more difficult due to
the different dynamics that the genotypes might have under different treatments.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-7
747/10/2/362/s1, Figure S1: Final residuals of the model, Figure S2: Normal Q-Q plots of the
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final residuals of the model, ts_means_comparison.R: The R code used for this paper, guide for R
code.pdf: Instructions for how to use the R code. Chlorophyll.xlsx: The raw data used in this paper
(chlorophyll measurements are denoted as CHL). Random_effects.xlsx: Random effects of the mixed
model. ARIMA_models.pdf: ARIMA models for the initial residuals.
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Appendix A

Autocorrelation is defined as the correlation of a signal with a copy of itself and is a
function of delay (lag). At lag k ≥ 0 the autocorrelation function is given by Equation (A1):

rk =
σk
σ0

, (A1)

where σ0 is the estimated variance of the time series and σk is the estimated autocovariance
function given by Equation (A2):

σk =
1
n

n−k

∑
i=1

(yi − y)(yi+k − y) =
1
n

n

∑
i=k+1

(yi − y)(yi−k − y) (A2)
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