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Abstract: Shifts in microbiota undoubtedly support host plants faced with abiotic stress, including
low temperatures. Cold-resistant perennials prepare for freeze stress during a period of cold accli-
mation that can be mimicked by transfer from growing conditions to a reduced photoperiod and a
temperature of 4 °C for 2-6 days. After cold acclimation, the model cereal, Brachypodium distachyon,
was characterized using metagenomics supplemented with amplicon sequencing (16S ribosomal
RNA gene fragments and an internal transcribed spacer region). The bacterial and fungal rhizosphere
remained largely unchanged from that of non-acclimated plants. However, leaf samples representing
bacterial and fungal communities of the endo- and phyllospheres significantly changed. For example,
a plant-beneficial bacterium, Streptomyces sp. M2, increased more than 200-fold in relative abundance
in cold-acclimated leaves, and this increase correlated with a striking decrease in the abundance of
Pseudomonas syringae (from 8% to zero). This change is of consequence to the host, since P. syringae
is a ubiquitous ice-nucleating phytopathogen responsible for devastating frost events in crops. We
posit that a responsive above-ground bacterial and fungal community interacts with Brachypodium’s
low temperature and anti-pathogen signalling networks to help ensure survival in subsequent freeze
events, underscoring the importance of inter-kingdom partnerships in the response to cold stress.

Keywords: Brachypodium distachyon; cold acclimation; microbiome; amplicon and shotgun sequenc-
ing; metagenomics; Pseudomonas; Streptomyces

1. Introduction

As sessile organisms, plants are at the mercy of an array of abiotic stresses, and, as win-
ter approaches in mid- to high-latitudes and altitudes, one such stress is low temperature.
Plants employ various strategies that allow them to recognise and cope with the cold [1]. As
autumn progresses, perennials undergo a period of cold acclimation, which in a few days of
low temperature exposure allows them to physiologically prepare for freezing conditions.
Such preparations include changed levels of hundreds of proteins, the accumulation of
fatty acids, lipid remodelling for plasma membrane protection, increased production of
cryoprotective metabolites, such as soluble sugars and amino acids, as well as chaperones
and reactive oxygen scavengers [2]. This acclimation process also appears to coincide with
changes in host-associated microbial communities. Such a turnover in microbiota could
assist plants in preparing for sub-zero temperature conditions and their vulnerability to
psychrophilic pathogens. Indeed, winter seasonality in the plant microbiome has been
previously reported [3-5]. Although the impact of cold acclimation on the microbiomes
of perennial grass has not been hitherto explored, the identification of their bacterial and
fungal communities offers the promise of understanding how the battle against coming
winter conditions can be won by partnerships.

The perennial grass and model cereal, Brachypodium distachyon (hereinafter, Brachy-
podium), is capable of cold acclimation, reaching peak freezing tolerance after two days
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at 4 °C, and is associated with changes in the abundance of multiple plasma membrane
proteins at 2-6 days [6]. In turn, these proteins are involved in complex crosstalk networks
that prime the Brachypodium defensive response to a variety of abiotic and pathogenic
stresses. Studies of cold acclimation have, for the most part, ignored the host-associated
microbiota [1,7,8]. Nevertheless, the plant microbiome is emerging as an important factor
in stress responses, including symbiont-mediated tolerance [9,10].

The general beneficial effects of microbes on plant fitness under a variety of stressful
conditions have recently come to be known as the “Defence Biome” [5,10-17]. Symbiont-
mediated fitness benefits may be a collective result of microbial exudates and function,
for example, by facilitating early stress sensing and more efficient nutrient uptake and
transfer, as well as by the induction of plant stress genes [9,10]. Specifically, symbiont-
mediated cold tolerance has been directly demonstrated with some plant species and
plant growth promoting bacteria (PGPBs) [9]. For example, Burkholderia phytofirmans-
inoculated grape vines expressed cold stress-responsive genes earlier than non-inoculated
vines [18] and Streptomyces neyagawaensis J6-inoculated turfgrass showed enhanced cold
tolerance over non-inoculated plants [19]. Microbes thus have a demonstrated role in
plant protection. They excrete a variety of products to benefit host plants, including
anti-pathogenic microbial compounds and osmolytes, including proline and trehalose, as
well as scavengers of reactive oxygen species, such as superoxide dismutase, catalase, and
peroxidases [9,10,20]. Taken together, plant-associated microbial communities undoubtedly
help plants survive cold stress.

The identification of host-associated microbiota that enhance freezing tolerance may
lead the way to the development of synthetic cocktails of species that could eventually
be used to inoculate crops or seeds to enhance cold tolerance [21]. Here, shotgun se-
quencing and metagenomic analysis of the phyllosphere/endosphere and rhizosphere in
cold-acclimated Brachypodium is an important first step towards this goal. Our experimental
inoculation of a commercial growing mix with old pasture soil allowed for the exposure
and subsequent identification of bacterial and fungal taxa that thrived after transfer of
the growing plants to low temperatures and thus are prospective native partners in the
cold acclimation process. In addition, we contribute to the general appreciation of the
robustness of the plant abiotic stress response, which employs communities of diverse
organisms for survival.

2. Materials and Methods
2.1. Soil Inoculation and Preparation

Commercial potting soil (Sun Gro Horticulture, Agawam, MA, USA) was autoclaved
twice and sealed in a double layer of plastic autoclave bags before being inoculated with
bulk field soil (5% w/v). Bulk field soil was sampled using a sterilized trowel from the
active layer (3-7 cm depth) in autumn (29 October 2020) after 96 h of day and night
temperatures of ~5 °C and ~0 °C, respectively. The sampled fallow field had been left
unfertilized and unplowed for 26 years and without domestic grazing animals for 15 years
(Figure S1). It was characterized by grasses, including orchard grass, brome, and timothy
(Dactylis, Bromus, and Phleum species, respectively) on clay soils and was located north of
Sydenham, Ontario, Canada (44°24/26” N, 76°36'1” W). Soils were thoroughly mixed for
15 min using a cement mixer that had been rinsed with 70% ethanol, with the inoculated
soil then stored in a lidded container that had also been rinsed with 70% ethanol. The
inoculated soil mixture was kept at room temperature until use.

2.2. Plant Material and Growth Conditions

Surface-sterilized Brachypodium seeds of an inbred line (ecotype: Bd21) (RIKEN, Wako,
Japan) were sown in the inoculated potting soil and grown in a temperature-controlled
chamber (Conviron GEN2000, Queen’s University Phytotron, Kingston, ON, Canada) on
a 20 h light (~100 umol m~2s71; 22 °C) and 4 h dark (22 °C) light cycle. Brachypodium
that had been grown under standard conditions for three weeks (Figure S2) were then
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cold acclimated by transferring the plants to a low temperature chamber (Coldmatic
Refrigeration, Etobicoke, ON, Canada) (4 °C, 12 h light as indicated above; 12 h dark) for 6
days [6]. Plants maintained at standard conditions until time of use were considered the
non-acclimated controls.

2.3. Microbiome Extraction and Preparation

Microbiome extractions were performed under sterile conditions. Above-ground
extractions were from tissue excised from the tips of primary leaves. Phyllosphere microbes
are found on the leaf surface and endosphere microbiota include communities that enter
the plant through the leaves, as well as those that circulate within the xylem. Rather than
separate these, we reasoned that both phyllosphere and endosphere communities would
be driven by the changing environmental conditions, in addition to plant interactions.
Accordingly, these leaf microbiota were extracted together using a DNeasy Plant Pro Kits
(Qiagen, Hilden, Germany), following the manufacturer’s recommended directions, using
10 mg of leaf tissue per plant (10 plants per replicate for a total of 100 mg of tissue) and
three replicates.

Extractions of the below-ground, tightly bound root soil of the rhizosphere (Figure S3)
were performed as previously described [22] using a DNeasy PowerSoil Pro Kit (Qiagen,
Hilden, Germany), following the manufacturer’s recommendations. Adhering root soil
(25 mg per plant) was released from the roots following careful removal of the plants from
the pots and gentle shaking. Extra care was taken to remove any root tissue, or non-soil
material from samples, such as wood or perlite. Three replicates were performed, each
using 10 individual plants. DNA purity and concentration was quantified using a Synergy
H1 microplate reader with a Take3 Micro-Volume Plate (both BioTek Instruments Inc.,
Winooski, VT, USA).

2.4. Shotgun Metagenomics Library Preparation and Sequencing

Libraries were prepared using an Illumina DNA Prep (M) Tagmentation library prepa-
ration kit (Illumina Inc., San Diego, CA, USA), following the manufacturer’s user guide.
Initial DNA concentration was evaluated using the Qubit dsDNA HS Assay Kit (Life
Technologies, Carlsbad, CA, USA). Eukaryotic DNA was depleted in leaf tissue samples
using an NEBNext Microbiome DNA Enrichment Kit (New England Biolabs, Ipswich, MA,
USA), following the manufacturer’s user guide to decrease the probability of recovery of
host genomic, chloroplast, and mitochondrial DNA sequences [23]. DNA (500 ng) was
used for depletion of the eukaryotic DNA, as recommended by Molecular Research LP (MR
DNA; Shallowater, TX, USA). The enriched microbial DNA was quantified using the Qubit
dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA) (Table S1). Subsequently,
50 ng of DNA was used to prepare the libraries. The samples underwent simultaneous frag-
mentation and addition of adapter sequences, which were utilized during a limited-cycle
polymerase chain reaction in which unique indices were added to the sample. Following
library preparation, library concentration and mean library size were determined using the
Qubit dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA) and the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), respectively. Libraries were
pooled in equimolar ratios (0.6 nM), and sequencing was performed on a NovaSeq 6000
platform (Illumina Inc., San Diego, CA, USA) to a depth of 10 million 2 x 150 bp reads.

2.5. Preprocessing and Quality Control

Analysis of sequencing data was performed following the Sunbeam pipeline (v2.1.0) [24]
with 26 available cores (15.425 Gb of memory each) on Ubuntu (v18.04.05). Raw fastq files
of paired-end reads were quality controlled to remove adapter sequences using Cutadapt
(v3.4.0) [25] and Trimmomatic (v0.3.9) [26], following which read quality was assessed
using FastQC (v0.11.9) [27]. Low-complexity sequences were masked using Komplexity
(v0.3.6) [24] and contaminating plant host reads were removed by Sunbeam following map-
ping of reads to the Brachypodium genome (RefSeq assembly accession GCF_000005505.3)
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using BWA (v0.7.17) [28]. Following initial host read decontamination, individual reads
were interrogated using the National Center for Biotechnology Information (NCBI) BLAST
(blastn; available at https:/ /blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 18 August 2021),
revealing numerous hits to mitochondrial genomic sequences. Subsequently, several mito-
chondrial genomic sequences (detailed below) were subsequently downloaded and added
to the host genome path for removal of contaminating mitochondrial sequences. This
process was repeated until a subset of individual reads did not return any mitochondrial
genomes with high coverage.

Most mitochondrial genomes used to filter contaminating sequences were retrieved
from NCBI from the following species with GenBank IDs: Saccharum officinarum cv. Khon
Kaen 3 (NC_031164.1), Sorghum bicolor (NC_008360.1), Triticum aestivum cv. Chinese Yu-
mai (NC_036024.1), Oryza sativa (NC_011033.1), Zea mays (NC_007982.1), Lolium perenne
(JX999996.1), Oryza coarctata (MG429050.1), Sporobolus alterniflorus (MT471321.1), Aegilops
speltoides (AP013107.1), Stipa capillata (MZ161090.1, MZ161091.1, MZ161093.1, MZ161092.1),
Bambusa oldhamii (EU365401.1), and a Brachypodium sequence (AC276583.1), suggesting
a partial Brachypodium mitochondrial draft genome. In addition, the Hordeum vulgare
mitochondria genome sequence was downloaded from Ensembl Plants (ID: IBSC_v2,
chromosome Mt). Pre-processing and quality control data is summarized in Table S2.

2.6. Taxonomic Classification

Taxonomic assignment was performed on the quality-controlled and host-decontaminated
reads using a Kraken2 (v2.1.2) [29] database containing RefSeq libraries [30] of archaea
(628 sequences), bacteria (58,811 sequences), fungi (1579 sequences), and protozoa (11,151
sequences) for a total of 72,217 sequences and ~110 billion bp (as of 24 June 2021). A
Bayesian re-estimation of abundance with the Kraken (Bracken) (v2.6) [31] database was
subsequently built with the Kraken2 database using the default 35 k-mer length and
150 bp read lengths. Kraken2 was run as an integrated module of Sunbeam using the
development branch. Bracken was run on the Kraken2 output files, and the Bracken
outputs were combined using the combine_bracken_outputs.py function for downstream
analysis. Barplots were produced using the thresholds indicated in the legends to group
together low abundant taxa for visual presentation. For diversity analysis, the kraken-biom
tool (v1.0.1) (https:/ /github.com/smdabdoub /kraken-biom; accessed on 27 September
2021) was used to convert Bracken outputs at the species level into .biom files for use with
the Phyloseq (v1.36.0) [32] and Vegan (v2.5.7) [33] R packages.

2.7. Core and Functional Microbiome

To further characterize the microbiomes, PAST (Paleontological Statistics, v4.08, available
at https:/ /www.nhm.uio.no/english/research /infrastructure/past/; accessed on 15 Novem-
ber 2021) [34] was used for similarity percentage (SIMPER) analyses using the Bray—Curtis
similarity matrix to compare leaf and rhizosphere-associated microbiota and to facilitate the
identification of a core microbiome [35-37]. Core microbiomes were calculated based on species
and ASVs present in 100% of the tissue-specific samples with >5% relative abundance.

Paired-end quality-controlled and decontaminated reads outputted by Sunbeam were
concatenated using the command “cat sample_R1.fq sample_R2.fq > merged_sample.fq” and
inputted into HUMANN (v3.0.0) [38] running MetaPhlan (v3.0) [38], Bowtie2 (v2.4.4) [39],
DIAMOND (v2.0.11) [40], and SAMtools (v1.13) [41,42]. Sequences were processed using
the default UniRef90 database and the following parameters for MetaPhlAn: —stat_q 0,
-bt2_ps very-sensitive-local; the following parameters for HUMAaN 3: —nucleotide-subject-
coverage-threshold 5.0, —translated-subject-coverage-threshold 5.0; and the following pa-
rameters for and Bowtie 2: -D 20-R3-N1-L 20-i5,1,0.50 —local.

Gene families were regrouped and renamed to the uniref90_Pfam database using
the humann_regroup_table and humann_rename_table commands. Special features, in-
cluding ungrouped genes and unintegrated pathways, were retained by skipping normal-
ization in favour of downstream normalization using MaAsLin2 (v1.6.0) [43]. The final
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renamed gene family and unnormalized pathway abundance tables were joined using the
humann_join_table command and split into the stratified and unstratified tables using
the humann_split_table command, the latter of which was used for differential abun-
dance testing. Standard HUMANN3 MetaCyc assigned metabolic pathways were used for
analysis and were assigned classes based on the respective associated MetaCyc pathway
superclasses. All scripts can be found in Supplementary File S1.

2.8. Amplicon Sequencing

Aliquots of the DNA extractions used for shotgun sequencing were sent to MR DNA
for amplification and barcoded amplicon sequencing of the 16S rRNA V4 region using
primers 515F (5'-GTGYCAGCMGCCGCGGTAA-3') [44] and 806R (5'-GGACTACNVGGG
TWTCTAAT-3') [45], and of the ITS region using primers ITS1F (5'-CTTGGTCATTTAGAGG
AAGTAA-3') and ITS2R (5'-GCTGCGTTCTTCATCGATGC-3') [46]. Peptide nucleic acid
clamps pP01 (5-GGCTCAACCCTGGACAG-3'), as previously described [47], were used
to reduce amplification of Brachypodium-contaminating sequences during the amplification
of the 165 rRNA V4 regions. Blank kit controls for both Plant Pro and PowerSoil Pro kits
were performed in triplicate and subjected to the same amplification and sequencing as the
corresponding samples. Sequencing was performed on a MiSeq platform (Illumina Inc.,
San Diego, CA, USA) for ITS and NovaSeq 6000 platform (Illumina Inc., San Diego, CA,
USA) for 16S.

2.9. Amplicon Sequence Processing

Sequences were processed using QIIME2 (v2021.4) [48]. Raw .fastq files were de-
multiplexed and non-biological sequences were removed, including primers, adapters,
spacers, and linkers, using FASTqProcessor (v20.11.19). Sequences were trimmed and
denoised to remove any chimeras and singletons using DADA?2 (v1.18) [49] before being
grouped into amplicon single variants (ASVs). ASVs were used for taxonomic classification
with SILVA (v138) for 16S rRNA sequences and UNITE (v8) for ITS sequences [50-55]. In
the leaf samples, any taxa classified as eukaryota, chloroplast, mitochondria, archaea, or
unclassified were filtered out of the 16S rRNA feature tables. Shannon’s diversity index was
used as a measure for alpha diversity and Bray—Curtis dissimilarity distance was used as a
measure for community dissimilarity. Principal coordinate analysis (PCoA) was performed
using Bray—Curtis dissimilarity matrices and plots made in R using ggplot2. Differential
abundance between cold-acclimated and non-acclimated samples and between blank kit
controls and samples was also assessed at the genus taxonomic levels using ANCOM-BC
in R (v1.2.2) [56]. All commands and codes used can be found in Supplementary File S1.

2.10. Statistical Analysis

All statistical analyses were performed in RStudio (v1.3.1073) running R (v4.1.1) and
all scripts used are available in Supplementary File S1. All plots, when necessary, were
cleaned up using Inkscape (v0.92.2). Alpha and beta diversity analysis was performed
using the Vegan and Phyloseq packages and PCoA plots were performed using ggplot2
(v3.3.5). To find differentially abundant taxa between the two temperature conditions,
ANCOM-BC was run on Bracken outputs with default parameters for shotgun data and
feature tables for amplicon data. Output coefficients representing the natural log fold-
change model were converted to log2 fold changes. ANCOM-BC outputs were parsed to
remove any low abundant taxa from differential abundance results.

3. Results
3.1. Pre-Processing, Shotqun Sequencing, and Kit Controls

Initial DNA samples representing the cold-acclimated (CA) leaf and rhizosphere were
sent for shotgun sequencing without eukaryotic depletion, revealing high host contam-
ination in the leaves (not shown). Subsequent replicate samples undergoing eukaryotic
depletion proved successful as the classification of processed reads showed a full order
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of magnitude better recovery of microbial sequences. DNA and library concentrations
and average size, quality control, host read decontamination, and Kraken?2 classification
results are summarized in the Supplementary Materials (Figure S4, Tables S1 and S2).
Although shotgun DNA library construction was attempted on the blank kit controls, a
lack of sufficient DNA resulted in no results for this sequencing method. However, the
same control samples were subject to amplicon marker gene sequencing. Following QIIME2
processing, it was determined through diversity analysis and PCoA using Bray—Curtis dissimi-
larities that the microbial compositions associated with the kits were significantly different than
the Brachypodium leaf (p < 0.001 16S, p < 0.05 ITS, pairwise PERMANOVA) and rhizosphere
microbiomes (p < 0.001 16S, p < 0.05 ITS, pairwise PERMANOVA) (Figure S5).

3.2. Compatible Results with Shotgun and Amplicon Sequencing

The correlation between taxa identified in both the shotgun data and the amplicon data
was assessed at the genus level in order to compare the two methods. In the CA rhizosphere,
the genera identified by shotgun metagenomic and 165 rRNA amplicon sequences, as well
as shotgun metagenomics and ITS amplicon sequencing, were well correlated (R? = 0.93
and R? = 0.88, respectively) (Figure S6). The non-acclimated (NA) rhizosphere shotgun and
165 rRNA, and the shotgun and ITS amplicon results (R = 0.91 and R? = 0.45, respectively)
also correlated, but less well. It is notable that for the leaf microbiome, bacterial taxa in the
CA shotgun and 16S rRNA samples, as well as for the NA leaf samples, showed mixed
correlations (R? = 0.31 and R? = 0.75, respectively). Insufficient fungal reads in the leaves
following Bracken re-estimation resulted in no correlation between the shotgun and ITS
reads in the leaves.

3.3. Cold Acclimation and the Rhizosphere Microbiome

In total, 4646 microbial species were identified in the rhizosphere shotgun data with
45 £ 3% of reads remaining unclassified. The majority of identified reads, 99.70 & 0.06%,
represented bacterial microbes with 0.15 + 0.03% and 0.13 £ 0.02% representing fungi
and archaea, respectively. Alpha diversity, assessed using Shannon’s diversity index,
across all rhizosphere samples was 4.98 & 0.21 and was not significantly different between
conditions with 5.07 & 0.29 in the CA and 4.91 + 0.94 in the NA samples. The rhizosphere
was dominated by Streptomyces sp. M2, a PGPB, accounting for approximately one-third
of the taxa in all samples. Rounding out the top abundant species across the rhizosphere
samples were taxa present at 1-10% abundance, which included Actinocatenispora sera,
Actinocatenispora thailandica, Rhodanobacter denitrificans, and Rhodanobacter sp. FDA-ARGOS
1247 (Figure 1A; Table S3). Nearly half of all species in the rhizosphere shotgun data were
below a cut-off value (0.2%) for low relative abundance leaving a balance of 53% and 56%
of species found in NA and CA samples, respectively.

The amplicon analysis identified 651 distinct ASVs at the genus level. Alpha diversity
appeared similar in the NA and CA samples (6.79 £ 0.25 and 6.40 =+ 0.16, respectively) and
differences were not significant. Both conditions were dominated by the genera Strepto-
myces, Actinocatenispora, and Rhodanobacter (Figure 1B; Table S3). After CA, low abundant
taxa (<1% relative abundance) remained equal at 29%. Again, a similar number of ASVs
were considered at low abundance under NA and CA conditions (20% and 15%, respec-
tively). ITS analysis showed 25 distinct ASVs at the genus level (Figure 1C). Ascomycota
and Apiotrichum each represented a third of the ASVs in the rhizosphere irrespective of
conditions (Figure 1C; Table S3). Alpha diversity was significantly different (p < 0.05,
two-tailed t-test) at 3.43 + 0.06 in the CA and 3.05 £ 0.17 in the NA.
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Figure 1. Average relative abundance of the taxonomies of the non-acclimated and cold-acclimated Brachypodium distachyon

rhizosphere microbiomes: (A) species identified from shotgun sequencing and metagenomics classified using a custom

Kraken2 database, (B) distinct amplicon sequence variants assigned down to the genus or lowest possible level by QIIME2

using the SILVA database for 165 rRNA sequences amplified using the V4 region of prokaryotes, and (C) distinct amplicon

sequence variants assigned down to the genus or lowest possible level by QIIME2 using the UNITE database for ITS regions

of eukaryotes.

A Kribbella gitaiheensis

Kribbella flavida

Penicillium

Phialemonium

Pseudogymnoascus

Although there were few changes in the rhizosphere community following 6 days at
4 °C, differential abundance testing using ANCOM with bias control and parsed for taxa
above the assigned low relative abundance thresholds (Figure 1) identified two modestly
differentially abundant species (out of 143; 1.4%) in the shotgun data. Kribbella gitaiheensis
(log2 fold change: 0.37) and Kribbella flavida (log2 fold change: 0.38) increased in relative
abundance after CA (Figure 2A). In addition, the relative abundance of three fungal genera
(out of 25; 12%) changed following CA, including a decrease in Penicillium (log2 fold
change: —1.8) and Phialemonium (log2 fold change: —1.7) and a more substantial relative
increase in Pseudogymnoascus (log2 fold change: 8.43) (Figure 2B).
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Figure 2. Differentially abundant taxa between the non-acclimated and cold-acclimated Brachypodium distachyon rhizosphere

microbiomes as determined by ANCOM-BC and showing their average relative abundance in both conditions and log?2 fold

changes with error bars representing standard error: (A) species identified by Kraken2 from shotgun sequencing data that

are differentially abundant and above an average relative abundance threshold of 0.2%, and (B) ITS amplicon sequence

variants that are differentially abundant. Only statistically significant changes are shown, as determined by ANCOM-BC.
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Although shifts in the rhizosphere community appeared modest, the Bray—Curtis
dissimilarity analysis showed that the shotgun rhizosphere communities were significantly
different under the two temperature regimes (p < 0.01, pairwise PERMANOVA) (Figure 3A).
In contrast, there were no differences in Bray—Curtis dissimilarity for the amplicon analysis,
either for 16S (Figure 3B) or ITS data (Figure 3C). Taking all the results together, it appears
that overall, the CA regime resulted in only a very minor shift in the rhizosphere microbial
community. We speculate that a longer period of low temperature with concomitant
changes in root exudates would be required for a more dramatic change in the root-
associated microbiota.

Shotgun Rhizo 16S Rhizo ITS Rhizo
A B c
0.3-
0.0 @ @ )
-0.3-
p< 001 . ca
Shotgun Leaf 16S Leaf ITS Leaf NA
D E F
0.3- &
\\
01 @ é? \@
0.3
p< 001
-04 00 04 ~04 00 04 -04 00 04

Figure 3. Principal coordinate analysis comparing non-acclimated and cold-acclimated conditions in
each sample type for each sequencing method, for the following samples: (A) shotgun sequencing in
the rhizosphere, (B) 165 rRNA sequencing of the V4 region in the rhizosphere, (C) ITS sequencing of
the rhizosphere samples, (D) shotgun sequencing of the leaf samples, (E) 165 rRNA sequencing of the
V4 region in the leaf samples, and (F) ITS sequencing of the leaf samples. Pairwise PERMANOVAs
were conducted between conditions with significance as noted.

3.4. Cold Acclimation and the Leaf Microbiome

Although shotgun sequencing of the leaf, representing the endosphere and phyllo-
sphere microbiomes, identified 143 microbial species with the most abundant taxa shown
(Figure 4A; Table S4), an average of 92 & 4% of the reads remained unclassified, with a
portion of these likely attributable to as yet unsequenced host mitochondrial sequences
(Figure 54C). Bacteria accounted for ~100% of the microbiota except in a couple of samples
from which a few fungal sequences were recovered. Overall, alpha diversity was signif-
icantly lower (p < 5 x 107, two-tailed t-test) in leaf samples (3.18 + 0.36) compared to
rhizosphere samples (4.99 + 0.21).

Leaf alpha diversity did not significantly change after CA treatment (mean Shannon
indices at 3.30 £ 0.29 in NA samples and 3.06 & 0.47 in CA samples). However, the
taxa profile changed with the cyanobacteria Microcystis aeruginosa, decreasing from ~27%
to ~13% relative abundance after CA. Streptomyces sp. M2 showed the opposite profile,
increasing from ~4% to ~15% average relative abundance after transfer to 4 °C. NA leaves
were dominated by the plant pathogens Pseudomonas syringae and ‘Candidatus Liberibacter
africanus’, as well as the plant beneficial Rhodococcus gingshengii, whose levels substantially
decreased in the CA conditions. Lower abundant reads (<1%) made up about a quarter of
the taxa, similar to the CA samples.
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Figure 4. Average relative abundance of the taxonomies of the non-acclimated and cold-acclimated Brachypodium distachyon

leaf microbiomes representing the endosphere and phyllosphere: (A) species identified from shotgun sequencing and

metagenomics classified using a custom Kraken2 database, (B) distinct amplicon sequence variants assigned down to the

genus or lowest possible level by QIIME2 using the SILVA database for 165 rRNA sequences, amplified using the V4 region

of prokaryotes, and (C) distinct amplicon sequence variants assigned down to the genus or lowest possible level by QIIME2

using the UNITE database for ITS regions of eukaryotes.

Amplicon sequencing of the 16S rRNA from the leaves identified 188 distinct ASVs at
the genus level (with the most abundant shown in Figure 4B and Table 54). Again, alpha
diversity was not significantly different between conditions (5.04 £ 0.25 and 4.60 £ 0.70
in the CA and NA samples, respectively). Taxa present under both conditions included
the genera Solimonas, Rhodanobacter, and Streptomyces. Pseudomonas and Rhodococcus were
abundant (21% and 15% average relative abundance, respectively) in NA conditions, but
decreased in relative abundance after transfer of the plants to 4 °C with log2 fold changes
of —4.18 and —5.41, respectively. The cereal growth-promoting genus Nocardioides and an
unidentified genus from the same family, Nocardioidaceae, both increased in abundance to
represent 11% of the taxa in CA plants. ASVs at low relative abundance (<1%) made up a
similar 18% and 21% of CA and NA 16S samples, respectively. ITS analysis resulted in 20
distinct ASVs at the genus level (Figure 4C).

After shotgun sequence analysis, 3.5% (5/143) of the taxa were identified as differ-
entially abundant between the NA and CA conditions (Figure 5A). After transfer to 4 °C,
reads attributed to P. syringae (log2 fold change: —8.68) and R. gingshengii (log2 fold change:
—8.33) decreased so that there was a change in the estimated average relative abundance
of P. syringae and R. gingshengii from 8.2% and 5.0% to 0%, respectively. At the same time
there was a corresponding increase in the relative abundance of Streptomyces sp. M2 (log2
fold change: 2.81), A. sera (log2 fold change: 3.20), and A. thailandica (log2 fold change:
3.87). In 16S CA samples, nine other taxa increased, including the genus Solimonas, which
increased in relative abundance but was below the low abundance threshold. In total, 5.9%
(11/188) of the identified sequences above the threshold were found to be differentially
abundant. For the ITS analysis, the genus Phialemonium represented 5% (1/20) of the ASVs
and decreased in relative abundance (log2 fold change: —10.6) (Figure 5C).
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Figure 5. Differentially abundant taxa between the non-acclimated and cold-acclimated Brachypodium distachyon leaf

microbiomes representing the endosphere and phyllosphere as determined by ANCOM-BC and showing their average

relative abundance in both conditions and log?2 fold changes with error bars representing standard error: (A) species

identified by Kraken2 from shotgun sequencing data that are differentially abundant and above an average relative
abundance threshold of 1%, (B) distinct 16S rRNA amplicon sequence variants assigned by QIIME2 and the SILVA database
to the genus level that are differentially abundant, and (C) distinct ITS amplicon sequence variants assigned by QIIME2 and

the UNITE database to the genus level that are differentially abundant. Only statistically significant changes are shown as
determined by ANCOM-BC.

Despite the apparent community differences, Bray—Curtis dissimilarity analysis suggested
that the microbial communities identified with the shotgun sequencing approach were not
significantly different, undoubtedly due to the low number of sequences (Figure 3D), similar
to the leaf ITS communities. Supporting that conclusion, 165 rRNA communities were
shown to be significantly different between conditions (p < 0.01, pairwise PERMANOVA)
with the analysis supported by high ASV numbers (Figure 3E).

3.5. Dissimilarity Comparisons and Core Microbiome

The root and leaf-associated microbiomes were further independently characterized
with SIMPER to identify taxa that contributed the most dissimilarity between NA and CA
regimes (Table 1). For microbiota isolated from the rhizosphere, the taxa contributing to
the top ~25% of dissimilarity were Streptomyces sp. M2, A. sera, and A. thailandica for the
shotgun data, the genera Actinocatenispora and Streptomyces for the 16S data, and the genera
Phialemonium and Apiotrichum for the ITS data. For leaf samples, taxa contributing to the
top ~25% dissimilarity were M. aeruginosa and Streptomyces sp. M2 for the shotgun data,
the genera Pseudomonas and Rhodococcus for the 16S data, and the genera Aspergillus and
Goidanichiella for the ITS data.

Highly conserved taxa that are present in most samples, typically ~70%, can be con-
sidered part of the “core” microbiome that orchestrates the interactions between the host
and the microbiota [57]. As described in the methods, we employed strict criteria that the
taxa must appear in all of the samples for each condition (Table 2). In the rhizosphere,
the core microbiota identified in the shotgun analysis included Streptomyces sp. M2 and
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Actinocatenispora sera. Core taxa in the leaves included Streptomyces sp. M2 and ‘Candidatus
Liberibacter africanus’, both of which persisted across the two different conditions and all
samples. The larger number of taxa associated with the rhizosphere ASVs were consistent
with the microbes identified by shotgun analysis and indicated bacterial (Streptomyces,
Actinocatenispora, and Rhodanobacter) as well as fungal taxa (Ascomycota, Apiotrichum, Phiale-
monium, and Candida) as contributors to the core microbiome. Leaf ASVs revealed that
bacteria (Streptomyces, Rhodanobacter, and Solimonas), as well as a single unidentified fungal

sequence, comprised the core.

Table 1. Similarity of percentage (SIMPER) analysis of microbiota contributing to the top ~25% of dissimilarity (Bray—Curtis)

between non-acclimated (NA) and cold-acclimated (CA) samples (showing average relative abundance in %) in both leaf

tissue and rhizosphere performed in PAST (v4.08).

Taxa NA (%) CA (%) Average Dissimilarity Contribution (%) Cumulative (%)
Shotgun Rhizo (Overall Average Dissimilarity 7.1%)
Streptomyces sp. M2 32.5 32.8 0.9 12.8 12.8
Actinocatenispora sera 5.7 7.3 0.8 11.2 24.0
Actinocatenispora 3.6 49 0.6 9.1 33.1
thailandica
16S Rhizo (Overall Average Dissimilarity 10.7%)
Actinocatenispora 8.1 114 1.7 15.7 15.7
Streptomyces 24.2 26.6 1.4 13.4 29.2
ITS Rhizo (Overall Average Dissimilarity 19.0%)
Phialemonium 21.3 13.4 4.0 21.1 21.1
Apiotrichum 29.9 30.8 4.0 211 422
Shotgun Leaf (Overall Average Dissimilarity 52. 6%)
Microcystis aeruginosa 12.1 27.4 9.6 18.2 18.2
Streptomyces sp. M2 4.4 15.1 5.4 10.2 28.4
16S Leaf (Overall Average Dissimilarity 60.9%)
Pseudomonas 19.7 1.0 94 154 154
Rhodococcus 15.0 0.4 7.3 12.0 27.4
ITS Leaf (Overall Average Dissimilarity 80.3%)
Aspergillus 159 47.5 16.6 20.7 20.7
Goidanichiella 25.1 0.0 12.6 15.7 36.4

Table 2. Core microbiota taxa (species or distinct ASVs as indicated) present in 100% of samples for each sequencing and

analysis method of shotgun, 165 rRNA, and ITS sequencing methodologies with an average relative abundance >5%.

Phyla Class Order Family Genus Species
Core rhizosphere species (shotgun)

Actinobacteria Actinomycetia Streptomycetales Streptomycetaceae Streptomyces Strep toI\r/[ng €es Sp-
Actinobacteria Actinomycetia Micromonosporales ~ Micromonosporaceae  Actinocatenispora Actznozcéizmspom
Core rhizosphere genera (165)

Actinobacteria Actinomycetia Streptomycetales Streptomycetaceae Streptomyces
Actinobacteria Actinomycetia Micromonosporales  Micromonosporaceae  Actinocatenispora
Proteobacteria Gammaproteobacteria Xanthomonadales Rhodanobacteraceae Rhodanobacter
Core rhizosphere genera (ITS)
Ascomycota
Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Apiotrichum
Ascomycota Sordariomycetes Sordariales Cephalothecaceae Phialemonium
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Table 2. Cont.
Phyla Class Order Family Genus Species
Ascomycota Saccharomycetes Saccharomycetales Saccharomycetaceae Candida
Core leaf species (shotgun)

Actinobacteria Actinomycetia Streptomycetales Streptomycetaceae Streptomyces Strep tﬁcg €es Sp-

Proteobacteria Alphaproteobacteria  Hyphomicrobiales Rhizobiaceae Liberibacter * ‘Candidatus L. a.
Core leaf genera (16S)

Actinobacteria Actinomycetia Streptomycetales Streptomycetaceae Streptomyces

Proteobacteria Gammaproteobacteria Xanthomonadales Rhodanobacteraceae Rhodanobacter

Proteobacteria Gammaproteobacteria Salinisphaerales Solimonadaceae Solimonas
Core leaf genera (ITS)

Unidentified Fungi

* ‘Candidatus Liberibacter africanus’.

4. Discussion

The plant-microbiome partnership is responsive to stress, with the details of the
signalling between the kingdoms of Eubacteria, Fungi, and Planta only beginning to be
investigated [9,10,58,59]. Sub-zero temperatures are a particular challenge, resulting in
cellular dehydration, membrane rupture, and increased vulnerability to psychrophilic
pathogens and death, but some perennials respond to earlier non-freezing temperatures,
and/or shortened day lengths to initiate a signalling response. This CA stress triggers
changes in plant metabolism, resulting in cold-hardening and survival during subsequent
freeze events and is accompanied by significant changes in the leaf microbiome community
profile, but with less substantial community shifts in the rhizosphere (Figures 1 and 3).

4.1. Little Change in Rhizosphere Communities after Cold Acclimation

The different sequencing methodologies employed, either amplicon or shotgun anal-
yses, generally yielded compatible results. As indicated, there were few changes in the
rhizosphere community after the shift to low temperatures, as shown by the overlapping
PCoA groupings with rare exceptions, and for the most part these did not make up a
large proportion of the taxa. The rhizosphere communities from both NA and CA plants
contained taxa previously reported in bound soils associated with Brachypodium and similar
to those found in wheat [22]. Some species of the order Burkholderiales have been isolated
from ryegrass rhizospheres and are associated with nutrient acquisition such that there is
interest in their potential as beneficial probiotics for crop enhancement [60]. Ascomycota is
dominant in grassland soils, which can be low in organic matter and nutrients, playing key
roles in cyanobacteria-dominated soils as well as having important roles in cycling carbon
and nitrogen in addition to nutrient transport [61]. The fact that these taxa are shared in
wheat and Brachypodium underscores the co-evolution of the plant-host relationship, since
microbiota in the dicot, Arabidopsis, is distinct [22]. As noted, neither the Brachypodium
bacterial nor fungal communities changed significantly after the plants were moved to 4 °C,
suggesting that there was insufficient time for the soil to reach that temperature. Indeed,
investigations of cold-responsive rhizosphere microbiota in maize used 5 weeks exposure
to “chilling” conditions compared to our 6-day treatment [17]. In addition, it is notable that
the myriad of CA-dictated changes made in the above-ground portion of Brachypodium are
not apparently signalled to the rhizosphere during the treatment regimen.

4.2. Shifts in Leaf Communities Accompany Cold Acclimation

Compared to the rhizosphere, which is relatively protected from rapid abiotic and
biotic stresses, leaves are exposed to daily temperature fluctuations, visible and ultraviolet
light, herbivore and mechanical damage, and arguably more pathogens. Within two days
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of the shift to CA conditions, the Brachypodium leaf membrane is protected from freeze-
induced electrolyte leakage, contains elevated levels of soluble sugars, and shows changes
in the abundance profiles of hundreds of proteins [6]. The leaf community response
was also rapid, as revealed by numerous abundance changes in the bacterial and fungal
microbiota, as well as in the proportion of individual core taxa, as supported by the
distinct groupings shown in PCoAs (Figures 3 and 5; Table 2). Similarly, cold-associated
shifts occurred in leaves from European grasslands over winter while the rhizosphere was
relatively unchanged [4]. As in the rhizosphere data, results from the two sequencing
methods were generally consistent. However, a notable exception was for sequences
corresponding to the toxic cyanobacteria Microcystis aeruginosa, which were abundant
in NA and increased after CA, but only when using the shotgun methodology. It is
possible that these sequences were misclassified as chloroplast DNA and were mistakenly
filtered from the amplicon data. We speculate that the increase in relative abundance of
cyanobacteria after CA is likely due to the reduction in evaporation on the leaf surfaces at
low temperatures, consistent with their preference for aquatic habitats, and their known
colonization of the phyllosphere [62].

For other taxa, there was clear evidence of a change in relative abundance after CA
that was generally consistent irrespective of the sequencing methodology. This included
three prominent Actinobacteria species that increased in relative read numbers, including
the grassland-associated Actinocatenispora thailandica and Actinocatenispora sera, as well as
the mycelium-producing Streptomyces sp. M2, a known PGPB [63]. Although present in
the rhizosphere samples under both conditions, Streptomyces sp. M2 increased 216-fold
in relative abundance following CA in leaves. Presumably, it promotes plant growth
with its extensive repertoire of antibiotics, plant growth hormones, siderophores, and
insecticides [63-65]. Strikingly, this Streptomyces strain can inhibit the plant pathogen P.
syringae, perhaps due to siderophores that chelate iron required by Pseudomonas [63]. Such
inhibition could explain the disappearance of P. syringae after CA treatment, representing a
log2 fold change of —8.7.

Other bacteria also showed inverse abundance profiles depending upon the condition,
as described in the Results section. Fungal ascomycete taxa similarly exchanged their
relative abundance, with a decrease in the genus Goidanichiella and an increase in the genus
Aspergillus detected after CA. These changes may be related to the temperature regime
since Goidanichiella was reported to dominate summer-collected wheat leaves whereas
cold-tolerant Aspergillus are of interest as growth promoters likely due to their ability to
solubilize phosphates [66,67].

4.3. Leaf Cold Acclimation Associated with Low Temperature and Pathogen Responses

After transfer to 4 °C, the leaf microbiome was impacted by the temperature shift and
also showed changes in the relative abundance of potential pathogens. These observations
reflect the results of network analysis of hundreds of plasma membrane proteome changes
after CA that showed crosstalk between pathways for low temperature stress and disease
and defence [6]. Brachypodium responds to CA by diverting resources away from growth
and to the stress response. It appears then that the host-microbiome works together in a
joint effort to prepare for the worsening conditions associated with winter.

One of the most obvious examples of the connection between low temperature and
disease is found in the ice nucleation-active plant pathogen P. syringae, which can facili-
tate the formation of ice at temperatures just below 0 °C, presumably to lyse plant cells
and thus access nutrients [68]. In NA leaves, P. syringae was a large contributor to the
bacterial taxa (8% of the shotgun reads). However, as the temperature drops, such a large
proportion of P. syringae in the leaf microbiota would surely present a grave risk to the host
plant. Remarkably, after CA there was no evidence of this bacteria. This disappearance
is undoubtedly fostered by Brachypodium’s defence pathways that lead to the production
of multiple proteins, including antifreeze proteins, that target the ice nucleator, but we
propose that the microbiome also supports this protective strategy.
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Coincident with the collapse of the P. syringae population, there was a 216-fold increase
in the relative abundance of Streptomyces sp. M2 (0.1% to 15.1%). It is important to
note that this increase after CA cannot be explained by sensitivity to the NA growth
conditions since it is routinely cultured at 30 °C [69]. Thus, the change in its abundance is
independent of the temperature shift and may be fostered by Brachypodium. As mentioned,
this PGPB secretes antibiotics and siderophores and is known to inhibit P. syringae [63].
Rhodococcus also decreased 40-fold in relative abundance, but to date there is no information
on its interaction with Streptomyces or other plant beneficials. Nevertheless, as well as
directly targeting P. syringae, it is likely that Streptomyces alerts plant defences against
other phytopathogens since the inoculation of Streptomyces spp. induces the expression of
defense-related genes—at least, so it was found to do in a pea crop [70]. This ability could
also explain why Streptomyces spp. are not limited to inhibition of bacterial species but also
inhibit fungal phytopathogens in planta [71,72].

Therefore, in addition to combating the cold-associated pathogen P. syringae, Strep-
tomyces sp. M2 likely contributes to the overall cold tolerance of Brachypodium and thus
would be central to the cold-acclimated microbiome. Streptomyces spp. have a variety
of adaptations for cold resistance, including the production of cold shock proteins and
small solutes for cryoprotection [73-75]. These products may assist host survival, since
a strain of Streptomyces was shown to alleviate the effects of cold stress in turfgrass [19]
and drought stress in maize [76]. In addition, BioCyc genome-wide predictions indicate
that Streptomyces sp. M2 produces key oxidative stress enzymes that can be secreted in
Streptomyces spp. [77-79]. In addition, Streptomyces sp. M2 synthesizes cryoprotective solu-
ble sugars that coincidentally increase rapidly in CA Brachypodium [6,80]. The synthesis of
the osmoprotectant proline may also benefit host plants, as inoculation of sugarcane with
Streptomyces increased proline content and drought tolerance [81]. Streptomyces spp. are
also reported to increase drought tolerance in maize and aid in the accumulation of soluble
sugars [76].

Another bacterial taxon, the genus Solimonas, increased 3.3-fold after CA, and although
these species have a wide temperature optimum, they are characterized by polar lipids
and fatty acids, which are known to contribute to cold tolerance [82]. In parallel findings,
Brachypodium shows changes in metabolic pathways leading to restructuring of the plasma
membrane after CA, a common vulnerability for both microbes and their hosts [6,83,84].
Already mentioned was the cold tolerance of the plant-beneficial fungus Aspergillus. More
insight could be revealed by an investigation of the functional microbiomes of CA Brachy-
podium. However, due to low reads and sequencing depths, our results can only be
considered preliminary (see Supplementary File S2 and Figures S7-59). Nevertheless, in
parallel with the CA Brachypodium plasma membrane proteome [6], microbial proteins
involved in pathways that intersect with low temperature tolerance, such as the synthesis
of soluble cryoprotectants, oxidative stress, and pathogen resistance, were detected in the
microbiome in response to cold stress. Again, this underscored the inter-dependent and
symbiotic character of the CA response.

4.4. Prospects and Conclusions

Taken together, both the changes in microbial community profiles following CA and
the functional role of these plant beneficials suggest that commercial growers could see
some benefit from the inoculation of mixed community strains, including Streptomyces sp.
M2, for protection against P. syringae and other phytopathogens, while at the same time
benefiting from other plant growth-promoting characteristics as well as enhancing cold
resilience. With the presentation of this first CA Brachypodium microbiome, it is hoped
that the insights gained will inspire treatment options to enhance cold tolerance and other
intersecting stresses tailored toward specific agriculturally important grain crops [1,9,85,86].

This special issue of Plants asks, “What makes the life of stressed plants a little easier?”
The answer for Brachypodium undergoing acclimation to low temperature in preparation for
the coming winter is very clear. It is the strong partnership with a shifting above-ground
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bacterial and fungal community that works in concert with plant networks that intersect cold-,
drought-, and antipathogen-signalling pathways to ensure that within only a few days host
plants survive freeze events. Not only does it make the life of plants a “little easier”, we also
argue that it may very well be essential for survival. Therefore, we propose that the battle
against winter condition stresses is won by important inter-kingdom partnerships.
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