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Abstract: Resurrection plants have an extraordinary ability to survive extreme water loss but still
revive full metabolic activity when rehydrated. These plants are useful models to understand the
complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants,
many details underlying the mechanisms of desiccation tolerance remain unexplored. To summa-
rize the progress in resurrection plant research and identify unexplored questions, we conducted
a systematic review of 15 model angiosperm resurrection plants. This systematic review provides
an overview of publication trends on resurrection plants, the geographical distribution of species
and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews
and Meta–Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020.
This yielded 185 empirical articles that matched our selection criteria. The most investigated plants
were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified
as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other
species accounting for less than 8% of publications. The majority of studies have been conducted
in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe.
Most studies were led by researchers working within the native range of the focal species, but some
international and collaborative studies were also identified. The number of annual publications
fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological
and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was
a paucity of studies on roots and only one metagenomic study was recovered. Based on these
findings we suggest that future research focuses on resurrection plant roots and microbiome inter-
actions to explore microbial communities associated with these plants, and their role in vegetative
desiccation tolerance.

Keywords: angiosperm resurrection plants; desiccation tolerance; omics technologies; systematic review

1. Introduction

Even though water is essential to life, plants are often faced with shortages of this
valuable resource due to their sessile nature. As a result, many have evolved sophisticated
strategies for resisting, avoiding or tolerating water shortages [1,2]. One of the most
successful adaptations to such extreme drought is desiccation tolerance—the ability to
survive water loss to 10% relative water content (RWC), equivalent to 0.1 g H2O/g dry
weight, and revive full metabolism when rehydrated [3]. Such plants are commonly called
resurrection plants [4]. Desiccation tolerance is common in seeds, spores, and pollen, but
very rare in vegetative tissues of plant, occurring in only ~240 angiosperms. Interestingly,
resurrection plants are extremely diverse, representing at least 10 families [5] across both
monocotyledon and dicotyledon lineages.

Resurrection plants have received growing research attention in the past 20 years
and a handful of species have emerged as models for understanding desiccation tolerance.
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Among these are the monocot resurrection plants Eragrostis nindensis, Oropetium thomaeum,
Sporobolus stapfianus, Tripogon loliiformis, Xerophyta humilis and Xerophyta viscosa* (multi-
ple populations were later reclassified as X. schlechteri) and the dicots Boea hygrometrica,
Craterostigma plantagineum, Craterostigma pumilum, Craterostigma wilmsii, Haberlea rhodopensis,
Lindernia brevidens, Myrothamnus flabellifolia, Ramonda serbica and Ramonda nathaliae. These
species are distributed across the globe, with representatives found in both the Southern
and Northern hemispheres, but the highest density of resurrection plants occurs in arid
tropical and subtropical regions in Africa, South America and Australia. Fewer resurrection
plants are found in the Northern hemisphere, but B. hygrometrica and Paraboea rufescens
occur in Asia, and H. rhodopensis and Ramonda species are endemic to Europe [6–8]. The
ability to tolerate desiccation has enabled resurrection plants to thrive in extremely arid mi-
croclimatic conditions where other plants perish. Resurrection plants grow predominantly
in sites with shallow rocky soil, high temperatures, and limited rainfall [5,9].

Resurrection plants have evolved protective mechanisms that allow them to cope
with environmental stress, including a robust antioxidant defense system, sophisticated
gene expression programs in which late embryogenesis abundant, heat shock proteins, and
other stress responsive genes are transcribed and where necessary translated, and subtle
metabolic modulations involving numerous phytohormones and phytochemicals [3,10–13].
Despite the intricacy of desiccation tolerance mechanisms in plants, scientists have made
significant improvements in developing an understanding these processes.

Over the past two decades “omics” methodologies have been increasingly applied to
resurrection plants to acquire insights into the biochemical processes and molecular mecha-
nisms of desiccation tolerance. Multiple genomic, transcriptomic, proteomic, metabolomic,
and physiological/biochemical studies of desiccation tolerant plants have been published
in recent years. The advances in “omics” techniques enable exploration of new genes,
transcripts, metabolites, proteins, and microbes that contribute to desiccation tolerance. Re-
cently, genomic and transcriptomic analyses of B. hygrometrica, C. plantagineum, E. nindensis,
H. rhodopensis, L. brevidens, O. thomaeum, T. loliiformis, and X. schlechteri, have identified gene
families and transcripts involved in desiccation responses [14–21]. Metabolomic analysis
of C. plantagineum, L. brevidens, M. flabellifolia, and X. schlechteri have provided insight into
the central role of sugars (sucrose in particular), selected amino and organic acids, and
phenolic antioxidants [22–24]. However, the bulk of these studies have been conducted
on leaf tissues only, with the role of the root being largely ignored. Furthermore, there
are limited studies addressing the microbial communities associated with resurrection
plants, despite growing awareness of the importance of plant microbiota in plant host
performance. Given that microbes have the potential to improve resilience to numerous
biotic and abiotic stresses [25,26], it is likely that these interactions play a prominent role in
desiccation tolerance.

This review describes the changing landscape of resurrection plant research over the
past 20 years and identifies under–explored areas of research. We systematically summa-
rized research efforts on resurrection plants to identify the 15 most studied resurrection
plants–based on publication number—and compiled all genomic, transcriptomic, pro-
teomic, metabolomic, metagenomic and physiological studies on these species from 2000
to 2020. In total, we summarized 185 research studies on resurrection plants to address the
following questions: (i) what are the best studied resurrection plants? (ii) where are these
species native to and how does that relate to where have they been studied? (iii) what types
of methodologies have been applied to each species? and (iv) what are under–explored
avenues of research in resurrection plants? To the best of our knowledge, this serves as the
first systematic review conducted on such a diverse set of resurrection plants.

2. Materials and Methods
2.1. Literature Search and Selection Criteria

We used a multi–step protocol called Preferred Reporting Items for Systematic reviews
and Meta–Analyses (PRISMA) to collate publications for this systematic review [27,28].
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A literature search was conducted using EBSCOhost, Scopus, google scholar, ProQuest,
PubMed, SciFinder and Europe PubMed Central (Europe PMC). The search was conducted
in January 2021 using wildcards including “resurrection plants” or “desiccation tolerant
plants”, “desiccation stress” or “water deficit conditions” and “dehydration and rehy-
dration”. There were no filters applied in the search. Additional research articles that
matched our search criteria were obtained from reference lists of the published reviews
and original articles. This literature search generated a total of 6522 studies and all citations
were exported to EndNote 20.1 for macOS.

A screening process was conducted in the EndNote software by manually evaluating
article titles and abstracts. Initial screening was performed to discard duplicates, reviews,
mini–reviews, editorials, commentaries, books, book chapters, theses, dissertations, opin-
ions, conference abstracts, presentations, meta–analyses, protocols, manuals, notes, and
news. Next, selection and exclusion criteria were applied to the title and abstract of each
article. Studies were excluded based on (i) research articles dated before the year 2000;
(ii) scientific journals without impact factor; (iii) studies of resurrection plants for medicinal
use; (iv) studies that did not focus on desiccation tolerance and defense mechanisms against
abiotic stress; and (v) resurrection plants under the divisions of Bryophyta, Marchantiophyta,
and Pteridophyta. The selection criteria for inclusion of scientific articles included (i) original
full–text articles published in English from 2000 to 2020; (ii) studies involving angiosperm
resurrection plants regardless of the location or country; (iii) research articles that focused
on desiccation tolerance mechanisms and (iv) studies based on genomics, transcriptomics,
proteomics, metabolomics, metagenomics and physiology. All records of the literature
search and the number of included full–text articles were retained in accordance with the
PRISMA framework (Figure 1).

2.2. Literature Analysis and Data Acquisition

From this set of literature, we summarized overall trends on the number and type
of publications on resurrection plants from 2000 to 2020, including the number of studies
conducted on each species, the country where these studies were conducted relative to the
native range of the species, and the types of studies performed—with a particular focus on
“omics” methodologies. Initially, we compared publication trends over time by computing
the number of studies published annually from 2000 to 2020 (see Supplementary Table S1
for a detailed list of full-text surveyed articles). Next, we computed the total number
of studies for each focal species. It is noteworthy that some populations of Xerophyta
viscosa have recently been reclassified as X. schlechteri. In addition, the majority of papers
(reference: 2, 10, 16, 18, 50, 77 and 85) on X. schlechteri refer to it as Xerophyta viscosa. This
has been taken into account in our dataset. To understand the geographical distribution
of focal species relative to research efforts, we categorized studies into three groups:
(i) native—conducted by researchers working within the native range of the focal species,
(ii) collaborative—conducted by researchers working both within and beyond the native
range of the focal species, and (iii) international—conducted by researchers working
outside of the focal species native range. To understand research methodologies, we
classified studies into six categories: (i) studies involving analysis of genes, their function
and expression using different techniques were assigned to genomic studies; (ii) articles
that were investigating ribonucleic acid (RNA) transcripts were classified as transcriptomic
studies; (iii) articles that reported the role of proteins were categorized as proteomic
studies; (iv) studies that involved profiling and quantification of primary and secondary
metabolites were captured as metabolomic studies; (v) studies involving the analysis
of microbes associated with resurrection plants were classified as metagenomics; and
(vi) physiological studies included studies looking at a range of responses from RWC, dry
mass, germination, stomatal conductance, photosynthesis rate, antioxidant enzyme activity,
to ultrastructural image–based technologies.
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Figure 1. Systematic reviews and Meta–Analyses (PRISMA) flow chart outlining the exclusion and
selection procedure used in the current meta-analysis with corresponding records from the database
of angiosperm resurrection plants.

Data were extracted and arranged in Microsoft Excel 2019 and analyzed in R version
1.2.5033 (R Studio Inc., Boston, MA, USA, 2019). We computed the number of studies
conducted on each species annually, if they were native, collaborative or international
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study, and what the methodologies were. The R Packages gplots, ggplot2 and plotly were
used for data visualization.

3. Results

After a rigorous screening and filtering, the literature search yielded 185 articles
(Figure 1). We used these articles to identify the best studied resurrection plant species,
to summarize the geographical distribution of focal species relative to research efforts, and
to quantify the research methodologies used. A total of 15 angiosperm resurrection plants
were selected for inclusion, namely B. hygrometrica, C. plantagineum, C. pumilum, C. wilmsii,
E. nindensis, H. rhodopensis, L. brevidens, M. flabellifolia, O. thomaeum, R. nathaliae, R. serbica,
S. stapfianus, T. loliiformis, X. humilis, and X. schlechteri.

3.1. Well Studied Angiosperm Resurrection Plants

To identify the best studied resurrection plants, we computed the total number of
studies focusing on each species. Some articles analyzed more than one resurrection species
and these studies were counted for each plant species. Therefore, the sum of all studies
reported on each plant (211) exceeds the total number of studies (185). The largest propor-
tion (17.5%, 37/211) of studies were conducted on C. plantagineum. Following that, 13.7%
of studies were conducted on H. rhodopensis, 11.9% on X. schlechteri, 8.5% on M. flabellifolia,
8.1% on B. hygrometrica, 7.1% on X. humilis, 7.6% on R. serbica, 6.2% on S. stapfianus, 4.7% on
E. nindensis, 3.3% on L. brevidens, 2.8% on C. wilmsii, 2.4% on R. nathaliae, and T. loliiformis,
and 1.9% on C. pumilum and O. thomaeum (see Figure 2).

3.2. Distribution of Resurrection Plants

Resurrection plants occur and have been studied across the globe, from Africa to Asia,
Oceania, Europe, and North America (Table 1). Researchers working in South Africa have
published more studies (56) on resurrection plants than any other nation. These studies
investigated the focal species M. flabellifolia (12), Craterostigma spp. (3), Xerophyta spp. (39)
and multiple species within Poaceae (10). Bulgaria was the country with the second most
studies—primarily focused on H. rhodopensis (24) and R. serbica (1), followed by China with
17 studies of B. hygrometrica (Figure 3).

Table 1. The best studied angiosperm resurrection plants in the past two decades and their native range.

Resurrection Plant Continent Region Reference

Monocot
E. nindensis Africa Southern Africa [29,30]

O. thomaeum Asia and East Africa India, Northeast tropical and
East tropical Africa [31]

S. stapfianus Africa South Africa [32–34]
T. loliioformis Australia Australia [15]

X. humilis Africa Southern Africa [29,35]
X. schlechteri Africa Lesotho, South Africa, Swaziland [10,24,29]

Dicot
B. hygrometrica Asia China [7]
C. plantagineum Africa Kenya, South Africa [36]

C. pumilum Africa East Africa [37]
C. wilmsii Africa South Africa [38]

H. rhodopensis Europe Bulgaria [6]
L. brevidens Africa Kenya [39]

M. flabellifolia Africa Namibia, South Africa,
Zimbabwe [40]

R. nathaliae Europe Serbia, Bulgaria [41]
R. serbica Europe Serbia, Bulgaria [8]
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Figure 2. The number of studies published on each resurrection plant species. Species are ordered phylogenetically.
Studies are categorized as either native (conducted by researchers working in the native range of the species), collaborative
(involving researchers from both within and beyond the native range of the species) or international (studies conducted by
a team working outside of the native range of the species).
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Figure 3. Map showing where the model resurrection plants are native to relative to where they have been studied. Circles
indicate the native area of the species and are scaled by the number of studies conducted in their native range. Arrows
point to the location where international and collaborative studies have been conducted and are scaled by the number of
studies. Dashed arrows are for collaborative studies and solid arrows are for international studies. Plants in the same genus
(or family for grasses) are consolidated for simplicity and studies are grouped by continent.

Most studies (55.1%, 102/185) were conducted by teams working within the native
range of the focal species (Figure 2). Six countries explored their native resurrection plants,
namely Australia, Bulgaria, China, Kosovo, Serbia, and South Africa. Other studies (30.8%,
57/185) were conducted by teams working outside the native range of the focal species.
These international studies were distributed across the world, with major contributions
from European countries, including Germany, Hungary and Italy (Figure 3). Other interna-
tional studies were conducted in China, India, Kenya, and the United States of America
(USA). Germany, in particular, studied many non–native resurrection species including
Craterostigma spp. (35), L. brevidens (6), M. flabellifolia (2) and grasses in Poaceae (2). We also
identified a number of collaborative studies (14%, 26/185) involving scientists working
both within and beyond the native range of the focal species. Many of these involved
participants from Asia, Europe, and USA who established collaborations with researchers
in South Africa (Figure 3).

3.3. Publication Trends and Methodologies of Investigation

Publication rates have been relatively erratic, with 2008, and 2018–2020 showing the
highest numbers of publications (Figure 4A). An average of seven articles were published
per year, despite the decline in the years 2009, 2010 and 2016. In the past two decades,
C. plantagineum was most intensively studied from 2000 and 2005, while the investiga-
tion of H. rhodopensis and M. flabellifolia took an upsurge in 2009 and 2019, respectively
(Figure 4B). In contrast, X. schlechteri studies remained steady from the year 2000, but
slightly decreased in 2015–2018. A wide range of high–throughput technologies have been
employed in order to explore desiccation tolerance mechanisms in resurrection plants
(Table 2). These methodologies have been applied to individual species in differing pro-
portions (Figure 4A). Physiological studies were the most common approach to studying
resurrection plants while genomic studies are the least reported. Proteomic and transcrip-
tomic studies followed a comparable publication pattern, however, there was a significant
increase of transcriptomics in 2020. Metabolomic studies have fluctuated between 2000 to
2020, however, a significant reduction occurred in 2009, 2010, and 2016. Out of 185 records,
there was only one metagenome study recovered–conducted on Ramonda species.
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Figure 4. The number of studies exploring desiccation tolerance mechanisms of resurrection plants
in the past two decades using various techniques. (A) Research articles published per year from
2000–2020 focused on Genomic (genetics), Transcriptomic (RNA), Proteomic (proteins), Metabolomic
(metabolites), Metagenomic (microbes), and Physiological (biochemical) techniques to understand
the mechanisms of desiccation tolerance in resurrection plants. (B) Analysis of publication trends of
five most widely analyzed angiosperm resurrection plants, namely B. hygrometrica, C. plantagineum,
H. rhodopensis, M. flabellifolia and X. schlechteri studies per year.
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Table 2. Tools and technologies used for investigation of desiccation tolerance mechanisms in resurrection plants.

Technology–Based
Approach Genomics Transcriptomics Proteomics Metabolomics Physiology Metagenomics

DNA sequencing,
genetic profile, genetic
mapping, structural &
functional genomics

RNA sequencing,
expression profiling,

transcriptional
regulation

Protein identification,
quantification,

Translation modification

Metabolites profiling,
identification &
quantification

Morphological,
biochemical &
phenotypical

characterization

Bacterial and fungal
and viral nucleic

acids analysis

Methodology and
Quantitative techniques

• Southern blotting
• DNA sequencing

and cloning
• Polymerase chain

reaction (PCR)
• DNA microarray

• RNA gel blot
(Northern blotting)

• cDNA-AFLP
• qRT-PCR

• Western blotting
• 1/2D SDS–PAGE
• Protein microarray
• iTRAQ proteomic

analysis

• Sonication
• Chromatography-

based
techniques

• Machine-learning
• Digital colour

camera (JVC)
• Light microscope
• Confocal laser

scanning
microscope

• Nucleic acid
extraction

• Denaturing
gradient gel
electrophoresis
(DGGE)

• PCR

High–throughput
techniques

• Single nucleotide
polymorphism
(SNP)

• Marker-assisted
selection

• Quantitative trait
loci (QTL) mapping

• Hybridization
technology based
chip (cDNA-chip),

• Serial analysis of
gene expression
(SAGE)

• Expressed sequence
tags (ESTs)

• RNA-sequencing,
• RNA-PET-seq
• sRNA-seq

• Matrix assisted
laser desorption
ionization
(MALDI-TOF/MS)

• LC-MS/MS
• X-ray

crystallography
• NMR spectroscopy

• Ion mobility
spectrometry-mass
spectrometry
(IM-MS)

• NMR spectroscopy
• Gas

chromatography-
mass spectrometry
(GC-MS),

• LC-MS/MS
• Electrospray

ionization
multistage tandem
mass spectrometry
(ESI-MS)

• X-ray tomography
• Transmission

electromagnetic
microscope

• Scanning electron
microscope

• Fluorescence and
infrared imaging

• Spectral, 3D,
magnetic resonance
imager

• Whole
metagenomic
shotgun
sequencing

• Amplicon
metagenomic
sequencing

References [42–45] [15,46–50] [51–53] [23,54,55] [24,39,56,57] [58–61]

Key: cDNA-AFLP (cDNA-amplified fragment length polymorphism); qRT-PCR (real-time quantitative PCR); RNA-PET-seq (paired end sequencing); sRNA-seq (small RNA sequencing); SDS-PAGE (sodium
dodecyl sulphate–polyacrylamide gel electrophoresis); iTRAQ (isobaric tag for relative and absolute quantitation); LC-MS (liquid chromatography-mass spectrometry); NMR (nuclear magnetic resonance).
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4. Discussion

Resurrection plants are a distinctive group of species that could provide scientists
with key insights into the mechanisms of extreme stress tolerance, which may ultimately
be leveraged to improve tolerance in drought–sensitive crops. It is not surprising that
resurrection plants have received increasing research attention over the past years as
appreciation for their phenomenal defense mechanisms has become more widespread. Our
study was based on the analysis of 185 empirical studies of angiosperm resurrection plants
published over the past two decades. Our systematic review identifies the best studied
resurrection plants, the geographical distribution of species and research efforts across the
world, and changes in the methodologies used for investigation.

Our findings revealed that out of the 15 model species, C. plantagineum was the
most studied, with 17.5% of all publications in the past 20 years devoted to this species.
The publication trends of C. plantagineum were at the maximum between 2000 and 2005.
However, in some studies C. plantagineum was explored concurrently with other resur-
rection plants. For instance, Moore et al. [29] simultaneously investigated the functional
role of arabinose polymers as plasticizers and maintaining flexibility in the cell wall of
C. plantagineum, M. flabellifolia, E. nindensis and Xerophyta spp. These multi–species ap-
proaches enable researchers to identify conserved aspects of desiccation tolerance across
disparate clades. Surprisingly, 95% studies of C. plantagineum were international studies,
with German researchers leading the work on this species, although it is native to Southern
Africa. Another resurrection species, H. rhodopensis, was extensively studied with 13.7% of
publications addressing desiccation tolerance mechanisms in this species. The desiccation
tolerance features of H. rhodopensis have been recently reviewed by Liu et al. [12]. Interest-
ingly, H. rhodopensis was also frequently investigated alongside other species. For example,
a study by Vassileva et al. [62] assessed leaf micromorphology of both H. rhodopensis and
R. serbica, and both species are native to Bulgaria. Xerophyta spp. were also widely ex-
plored, constituting 19% of all studies. Although C. pumilum, L. brevidens, O. thomaeum,
R. nathaliae, and T. loliiformis have been classified as best studied resurrection species by
others, our findings showed that these were among the least studied species in our dataset.
This is partially explained by the fact that some of the work on O. thomaeum, is not re-
lated to desiccation tolerance mechanisms and was therefore not included in the current
analyses [31,63]. Despite the relatively low number of studies on O. thomaeum, there is a
chromosome-level genome assembly and associated RNA-seq data [16,20] for the species.
This is in contrast to some of the other species, such as R. nathaliae, for which there are
no genomic resources available. We suggest that more research is required to understand
how these species respond to desiccation and to identify mechanistic deviations relative
to other angiosperms. The families of Poaceae and Cyperaceae contain many of the known
desiccation tolerant species [64], however, within those families only few species have
been extensively studied. Despite some similarities among angiosperm resurrection plants,
substantial variations in mechanisms of tolerance have been identified [5,65], including
differences in the production of metabolites, expression of genes, synthesis of proteins and
physical and ultrastructural features. Thus, there is still room to explore the intricate and
diverse mechanisms of stress tolerance exhibited by these species.

We also investigated the distribution of resurrection plant research across the world.
Resurrection plants are common in arid tropical and subtropical regions, occurring mostly
on mountains with exposed and rocky surfaces [9,66]. Our results showed that most studies
of resurrection plants were conducted within the native range of the species, likely because
access to plant material is much easier when working within the native range of the focal
species. In particular, most studies were executed in South Africa which is likely due to
the remarkable diversity of resurrection plants native to Southern Africa. In fact, seven
out of the fifteen best studied species are native to Southern Africa, which is known as an
epicenter of diversity of resurrection plants [64,65,67,68]. Despite the species richness in
Africa, resurrection plant research still lags behind in other African countries, possibly due
to lack of resources or funding. Outside of Africa, Bulgaria has been a major contributor to
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resurrection plant research with many studies of H. rhodopensis and R. serbica, both of which
are native to the Balkan and Rhodope mountains of Eastern Europe [6,69]. Similarly, 99% of
the studies conducted on B. hygrometrica were carried out within the species native range of
China. It is noteworthy that limited collaborative studies were discovered. A number of the
resurrection plants native to the Global South were studied in European countries without
instigating collaboration. This could be attributed to the narrow distribution of resurrection
plants in the Global North as well as differences in funding and resources available for
research in the Global North relative to the Global South [70]. Despite these imbalances,
South Africa remains a leader in the research of angiosperm resurrection plants. That being
said, multiple collaborative efforts were identified linking researchers in South Africa to
international scientists in Asia, Europe, and North America. These collaborative efforts
may facilitate the exploration of desiccation tolerance mechanisms and minimize costs for
those residing in indigent countries.

High–throughput methodologies have been increasingly applied to resurrection plants
and provide comprehensive insight into the mechanisms of desiccation tolerance. We found
that a greater proportion of studies focused on physiological and transcriptomic techniques,
relative to other methodologies. The physiological studies correlate with average research
publications per year. This could be attributed to the fact that physiological studies typically
do not involve advanced technologies compared to other methodologies and are therefore
easier to initiate. For instance, light microscope, scanning electron microscope (SEM),
and transmission electron microscopes were used to examine physiological [68,71] and
ultrastructural [24,65,72] aspects of resurrection plants.

In the past years, scientists have explored resurrection plant genomes, yet only 5 of
the 15 best studied resurrection plants have a publicly available whole genome assem-
bly [73]. Although genome sequencing of desiccation tolerant plants has sought to identify
a “footprint” of vegetative desiccation tolerance in these species [3,74], such signatures
have not been forthcoming. There have been some genetic studies of Ramonda spp. [75],
however, the focus was not directed to the functional role of genes under desiccation
conditions. There are various emerging genetic technologies such as genome-editing (clus-
tered regularly interspaced short palindromic repeats) applied for gene identification in
microorganisms and plant species, but this approach is rarely employed in resurrection
plant research. However, Costa et al. [76] suggested a futuristic approach of further study-
ing desiccation tolerance genes by breeding plants with improved tolerance to drought.
Nevertheless, Hilhorst et al. [11] postulated that more genomic research is anticipated in
the near future.

The rapid increase in omics research in recent years correlates with the advances in
technologies. It is worth noting that high–throughput technologies are expensive and
mostly performed in well–developed countries, while lower income countries lag behind.
Our analyses show that most expensive high–throughput technologies were applied in
studies conducted in the USA, Australia, China, and European countries. For instance,
all genome sequencing studies have emanated from the Global North, with the exception
of China–a notable outlier relative to other countries in the Global South. Transcrip-
tome studies were also predominately conducted in the Global North including those on
B. hygrometrica [21], C. plantagineum [77], L. brevidens [20], E. nindensis [19], O. thomaeum [16]
and S. stapfianus [34]. Similarly, proteome studies were mostly performed in the Global
North on C. plantagineum [77], R. serbica and B. hygrometrica [78], although two papers on
X. viscosa [51,79] have come from South Africa. Metabolomic studies, on the other hand
show equal distribution been the Global North, on S. stapfianus [34], C. plantagineum [77],
H. rhodopensis [80] and B. hygrometrica [81], and the Global South on, M. flabellifolia [82]
and X. schlechteri [24]. In addition, the execution of these high–throughput techniques was
also noted in collaborative studies between well resourced (mostly Northern) and under
resourced (mostly Southern) countries, such as those by Plancot et al. [55], Costa et al. [16],
Vidović et al. [83] and Pardo et al. [19]. These patterns further reinforce the notion that
economic barriers limit participation in omics studies by teams working exclusively in
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the Global South. Omics research is underrepresented in Africa, not only in plant biology,
but also in the biomedical research [70] and these challenges are mainly associated with
socio–economic factors. In this regard, we urge researchers to develop more collaborations
between countries with a rich diversity of desiccation tolerant plants and countries with
economic resources. Such collaborations will not only aid in understanding desiccation
tolerance and facilitating the biotechnological roll out of drought tolerant crops, but will
also expand participation and bring diverse expertise to resurrection plant research. This
is critical for food security especially in economically depressed African nations, where
95% of agriculture relies on rainfall and where, due to climate change, droughts are pre-
dicted to have become so severe that by 2050 all conventional farming practices will be
abandoned [84,85].

Collectively, molecular studies have revealed that there are core transcripts, proteins
and metabolites produced by different resurrection plants. However, there are also consid-
erable mechanistic differences among genera and species [12,74]. Thus, it is imperative to
continue in depth systems studies on as many resurrection plants as possible to fully under-
stand the spectrum of ‘’tools” used, and the manner in use thereof, in achieving desiccation
tolerance. With this insight, the use of individual resurrection species as models for specific
crops becomes more feasible. Interestingly, some individual species show natural variation
and plasticity in desiccation tolerance. Bentley et al. [82] reported differences in the metabo-
lites of M. flabellifolia from different geographical regions. This could be due to numerous
environmental factors including the soil/bedrock type and respective microbial interac-
tions, light intensities, temperatures, rainfall and biotic stresses experienced in different
regions. The nature of such fine tuning could explain “leeways” in vegetative desiccation
tolerance and is of interest to the medical and cosmetic industries. M. flabellifolia itself has
several medicinal [82] and cosmetic [86] applications. We suggest that investigation of
a species across its geographic range could provide insight on the genetics, metabolites,
microbes, and environmental factors that impact desiccation tolerance.

The role of roots in desiccation tolerance is largely unexplored. The few studies
that report on roots include a physiological study on roots of X. schlechteri [87] and
H. rhodopensis [88], one phenology and carbohydrate metabolism in C. plantagineum [89],
one metabolomic and transcriptomic study in T. loliiformis [15] and one study on the signif-
icant role of phytohormones in dehydrated H. rhodopensis [90]. While diverse in nature,
these studies confirm the central role of sucrose and antioxidants in desiccation tolerance,
but also reveal stark differences in root longevity. Roots of C. plantagineum senesce after
rehydration and new ones are generated [89]. In the other two species, roots are maintained,
and indeed senescence is actively suppressed in T. lolliformis [15]. Numerous questions
remain and we propose that root systems studies are sorely needed.

Similarly, there has been limited research published on the microbiome associated
with resurrection plants. The only metagenomic study recovered from all 185 records in
our analyses explored rhizospheric bacterial diversity associated with Ramonda species [91].
Rakic et al. [8] also investigated the role of mycorrhizal fungi associated with R. nathaliae
roots in facilitating mineral stress associated with serpentine soils, but this was not directly
related to their desiccation tolerance.

As indicated before, plant–microbiome interactions play an important role in allevi-
ating environmental stress, improving nutrient uptake and facilitating plant growth [25].
Therefore, metagenomics studies aimed at the identification and characterization of mi-
crobiota inhabiting the rhizosphere and roots of resurrection plants could provide insight
into the functional role of plant microbiomes and their influence on desiccation tolerance
mechanisms. Further investigation should be conducted to understand the role of plant
associated microbiota under desiccating conditions.

5. Conclusions and Future Research

Resurrection plants are excellent models for investigating plant responses to environ-
mental stresses and adaptive mechanisms of water stress tolerance. Our analyses showed
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that research efforts have been skewed to C. plantagineum, H. rhodopensis, B. hygrometrica,
and Xerophyta spp. We also identified a link between the geographical range of the focal
resurrection plants and the national affiliations of the researchers studying them, with
most resurrection species being studied within their native range. The integration of multi–
omics studies provide new opportunities to understand desiccation tolerance mechanisms.
Despite extensive research on the intricate mechanisms of vegetative desiccation tolerance,
our results showed that the biggest gaps lie belowground, and more research is needed to
understand root molecular physiology, metagenomics and plant microbe interactions.

This systematic study identifies knowledge gaps pertaining to resurrection plants
and points towards socio–economic barriers impacting research outputs. We recommend
that (i) despite the available literature on the well-studied angiosperm resurrection plants
(O. thomaeum, S. stapfianus, T. loliiformis, X. humilis, C. pumilum, C. wilmsii, L. brevidens,
R. serbica, and R. nathaliae) more research is still needed on these species; (ii) researchers
establish collaborations across geographic and socio economic space to apply new method-
ologies to resurrection plants native to Global South; (iii) studies aim to identify the complex
interplay between, and regulatory features associated with, the genome, transcriptome,
proteome, metabolome and consequent physiological outplay; and. Within these, there are
still big gaps in our knowledge. For example, there are no studies on epigenetic regulation
of vegetative desiccation tolerance, although some hint that this plays a significant role
(reviewed in [92]); (iv) that more focus should be given to studies aimed at exploring the
belowground dynamics of desiccation tolerance.
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