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Abstract: Birch tree bark-derived betulin has attracted scientific interest already for several centuries,
being one of the first natural products identified from plants. However, the cellular events regu-
lated by betulin and precise molecular mechanisms under these processes have been begun to be
understood only recently. Today, we know that betulin can exert important anticancer activities
through modulation of diverse cellular pathways. In this review article, betulin-regulated molecular
signaling is unraveled and presented with a special focus on its participation in anti-inflammatory
processes, especially by modulating nuclear factor-κB (NF-κB), prostaglandin/COX, and nuclear
factor erythroid2-related factor 2 (Nrf2)-mediated cascades. By regulating these diverse pathways,
betulin can not only affect the development and progression of different cancers, but also enhance
the antitumor action of traditional therapeutic modalities. It is expected that by overcoming the low
bioavailability of betulin by encapsulating it into nanocarriers, this promising natural compound
may provide novel possibilities for targeting inflammation-related cancers.

Keywords: birch bark; betulin; inflammation; cancer; NF-κB; Nrf2; nanocarriers

1. Introduction

Natural products have been a highly attractive source for different pharmacological
substances and therapeutic agents for several decades, particularly for infectious diseases
at 75% and cancer at 60% of new drugs are originated from different natural sources [? ? ? ?
]. In fact, several well-known anticancer drugs have been initially isolated from plants with
at least nine plant-derived compounds approved for the use in clinical settings since 1961 [?
]. These substances include vinblastine and vincristine from the Madagascar periwinkle
plant, paclitaxel from the bark of the Pacific yew (Taxus brevifolia) tree, podophyllotoxin
from the roots of the mayapple plant (family Berberidaceae), and camptothecin from certain
angiosperms [? ]. Considering that the incidence rate of new cancer cases is expected to
continuously increase each year [? ? ? ? ? ? ? ? ? ] and many types of malignancies are
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still remained incurable, further devoted investigation into phytochemicals can provide
potential novel leads for developing new anticancer drugs with higher efficiency and
broader safety profile [? ? ? ? ].

Betulin, a naturally occurring triterpene, is commonly derived from the bark of birch
trees Betula L. [? ]. This compound was first isolated as a pure chemical substance already
in 1788, being one of the first natural products identified from plants [? ]. Besides giving
the tree its white color and thereby protecting birches from midwinter overheating by the
sun [? ], a number of recent studies have shown that betulin is biologically active also in
human beings, particularly against development of different tumors [? ]. Although the
exact molecular mechanisms underlying anticancer action of betulin have still remained
to be unraveled, they have been largely related to anti-inflammatory activities of this
phytochemical [? ]. In this way, the role of betulin against inflammation-associated
malignancies has been often demonstrated, describing its growth inhibitory and apoptosis-
inducing effects in a wide spectrum of human malignancies, including colorectal, gastric,
liver, lung, breast, ovarian, cervical and prostate cancer cells [? ]. In this review article,
the current preclinical knowledge about anti- inflammatory and anticancer properties of
betulin is compiled and systematically presented, highlighting besides the bottlenecks also
the potential solutions to move on to clinical trials.

2. Chemistry of Betulin

Chemically, betulin is a pentacyclic triterpenoid which is also known as betulinic
alcohol (Figure ??) obtained from bark of white birch species found in northern latitude of
world including Alaska, Canada, Europe, Russia and Asia [? ].
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Figure 1. Structure formula of betulin.

Chemical modifications in betulin can be easily accomplished at positions C–28, C–3,
and C–20 [? ]. Many reports have been found in literature disclosing the pathway for the
synthesis of betulin’s derivatives. Presence of the high content of betulin in white birch bark
(up to 30%) makes it suitable for the synthesis of biologically active derivatives of Betulin.
Boryczka et al. in 2013 reported the synthesis of new interesting acetylenic derivatives of
Betulin by treating a mixture of Betulin and pyridine in dry benzene [? ] with propargyl
chloroformate (a), 2-butyn-1-yl chloroformate (b), 3-butyn-1-yl chloroformate (c), ethyl
chloroformate (d) respectively in dry benzene (Figure ??).

Betulinic acid is an important natural derivative which is formed by the oxidative
reactions of betulin. Methanolic and ethanolic extractions of various plant parts are found
to possess significant amount of betulinic acid [? ]. Betulinic acid can also be synthesized
from betulin by a two-step chemical reaction. In first step oxidation of the C3 and C28
hydroxyls occurred followed by the reduction of betulonic acid (Figure ??) by using sodium
borohydride [? ].



Plants 2021, 10, 2663 3 of ??
Plants 2021, 10, x FOR PEER REVIEW 3 of 24 
 

 

 

Figure 2. Synthesis of acetylenic derivatives of Betulin. 

Betulinic acid is an important natural derivative which is formed by the oxidative 

reactions of betulin. Methanolic and ethanolic extractions of various plant parts are found 

to possess significant amount of betulinic acid [27]. Betulinic acid can also be synthesized 

from betulin by a two-step chemical reaction. In first step oxidation of the C3 and C28 

Figure 2. Synthesis of acetylenic derivatives of Betulin.



Plants 2021, 10, 2663 4 of ??

Plants 2021, 10, x FOR PEER REVIEW 4 of 24 
 

 

hydroxyls occurred followed by the reduction of betulonic acid (Figure 3) by using so-

dium borohydride [28]. 

 

Figure 3. Synthesis of betulinic acid from Betulin by Jones oxidation followed by reduction. 

3. Absorption, Metabolic Conversion, and Bioavailability of Betulin 

Betulin exhibits enormous pharmacological potential [22–25], owing to its relatively 

small size and specific cytotoxic actions against tumor cells. This has encouraged research 

on the molecule, aiming to highlight its advantage as compared to conventional thera-

peutic agents. 

Experimental studies carried out on human and rat hepatic microsomes and cytosol 

indicated that two major biotransformation pathways for betulin are glucuronidation 

and sulfonation [29]. The data obtained from studies in rat models showed that 

hUGT1A3 and 1A4 were the main hepatic enzymes responsible for the formation of pos-

sibly a C3- hydroxyl betulin glucuronide, while hSULT2A1 (responsible for the conver-

sion of betulin into betulin sulphate I and II) was the main isoform involved in sulfona-

tion. In human systems, glucuronidation occurs hepatically and extra-hepatically (in the 

gastrointestinal tract), and the same enzymes as rat models being predominant in cata-

Figure 3. Synthesis of betulinic acid from Betulin by Jones oxidation followed by reduction.

3. Absorption, Metabolic Conversion, and Bioavailability of Betulin

Betulin exhibits enormous pharmacological potential [? ? ? ? ], owing to its rela-
tively small size and specific cytotoxic actions against tumor cells. This has encouraged
research on the molecule, aiming to highlight its advantage as compared to conventional
therapeutic agents.

Experimental studies carried out on human and rat hepatic microsomes and cytosol
indicated that two major biotransformation pathways for betulin are glucuronidation and
sulfonation [? ]. The data obtained from studies in rat models showed that hUGT1A3
and 1A4 were the main hepatic enzymes responsible for the formation of possibly a C3-
hydroxyl betulin glucuronide, while hSULT2A1 (responsible for the conversion of betulin
into betulin sulphate I and II) was the main isoform involved in sulfonation. In human
systems, glucuronidation occurs hepatically and extra-hepatically (in the gastrointestinal
tract), and the same enzymes as rat models being predominant in catalyzing the reactions.
One betulin glucuronide and two betulin sulfates were yielded at the end of the metabolism
process [? ].
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In vivo studies have shown that the carbon-carbon double bond and hydroxy func-
tional group are the main metabolism sites for betulin. The compound undergoes demethy-
lation, dehydroxylation, deoxidization, dehydration as a part of the phase-1 metabolic reac-
tions, followed by conjugation reactions with cysteine, sulfate, taurine and N-acetylcysteine
as a part of phase-2 metabolism. Metabolites are obtained at each stage, as a product of the
reactions. A total of 62 metabolites of betulin have been studied, a majority of which are
obtained from phase-1 biotransformation [? ].

An experimental study has demonstrated the modulation of mitochondrial mem-
branes, in case of colon and prostate cancer, which enhances the uptake of membrane
proteins and expression of cytochrome c oxidase. Anti-cancer agents such as betulin may
exert therapeutic effects by targeting the modified membranes, owing to the high affinity
of betulinic acid to the lipid monolayers present on the membranes. This mechanism may
inhibit the growth and multiplication of cancerous cells [? ].

Betulin and its product of oxidation, betulinic acid show poor aqueous solubility
owing to their structure. Hence, various derivatives, such as amino acid esters, have been
synthesized to improve bioavailability and delivery to target tissues [? ]. Additionally,
various 3-modified derivatives have been synthesized, which show promising ADME
parameters and are more hydrophilic. These derivatives showed hydrogen bond acceptor
(HBA) and hydrogen bond donor (HBD) values lying in the required range, along with low
TPSA values, which facilitate delivery across the blood-brain barrier. As these derivatives
show good transport properties, they may be harnessed for the treatment of neoplasms
of the central nervous system [? ]. These derivatives are synthesized with the purpose of
enhancing the therapeutic potentials of betulin.

4. Anti-Inflammatory Mechanisms Involved in Anticancer Action of Betulin
4.1. NF-kB-Mediated Signaling

NF-κB is known to induce the expression of a diverse range of inflammatory genes that
are further found to modulate the transcriptional rate of various cytokines and chemokines
(interferons, interleukins, lymphokines, tumour necrosis factor) [? ? ? ]. In addition,
NF-κB displays a promising role in modulating the cancer cell survival, and differentiation
signaling cascade [? ? ? ]. Currently a vast amount of research is carried on cancer
treatment therapies [? ? ] however, there are still some issues to be solved such as
chronic inflammatory micro environment of tumor and high mortality rates. Therefore,
the researchers have concentrated on developing the anti-inflammatory agents that could
successfully treat cancer without causing any or minimal side-effects [? ? ? ? ]. One answer
to this problem is to use of the anti-inflammatory phytochemicals such as betulin for the
cancer treatment. Betulin has proven to possess anti-cancerous and anti-inflammatory
properties against pancreatic, gastric, lung, ovarian [? ], melanoma cells [? ], and nervous
system carcinomas [? ]. In addition, its cytotoxic effect on normal cells was lesser as
compared towards the cancer cells [? ? ]. It affects the expression of NF-κB and triggers a
diverse range of cellular mechanisms like cell-cycle arrest, cell viability inhibition, apoptosis
induction, invasion/migration inhibition, and anti-angiogenesis (Figure ??). The tumors are
formed in the body when the dynamic balance between the cell death and cell proliferation
is disturbed, and excess of cell proliferation is caused. Therefore, apoptosis induction of
the affected cells could be a good choice of treatment of the cancerous cells.

Apoptosis or programmed cell death is the mechanism of the cells to remove the
superfluous, damaged, and defective cells [? ? ] through release of cytochrome c and
activation of caspase-9 or activation of caspase-8 via pro-apoptotic receptors [? ? ? ]. The
cancerous cells overexpress the anti-apoptotic proteins (Bcl-2 and XIAP) and betulin targets
them to express its anti-cancerous properties [? ] by generation of reactive oxygen species
(ROS). In a study, it was found that the gastric cancer SGC7901, MDA-MB-231 breast
cancer, and colon carcinoma (Caco 2) cell growth was inhibited by betulin as it triggered
mitochondrial release of cytochrome c, mitochondrial translocation of Bak, and Bax, and
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down-regulation of NF-κB p50 and 65, IKKα and β, ICAM-1 and bcl-2 [? ? ? ]. Therefore,
betulin can be used as an anti-cancerous agent for various types of cancers.
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4.2. Prostaglandin/COX-2-Regulated Inflammatory Events

For numerous inflammatory pathways, the arachidonic acid (AA) acts as one of the
most important metabolic precursor [? ? ]. The membrane bound AA cleaves from the
phospholipids after the activation of phospholipase A2 (PLA2) by external and internal fac-
tors which gets available to various inflammatory events such as lipoxygenase, cytochrome
P-450 monooxygenase and cyclooxygenase pathway [? ]. In mammals, the most compre-
hensively studied inflammatory pathway is cyclooxygenase pathway, which begins with
AA conversion to PGH2 (substrate for prostaglandin) due to the action of prostaglandin
G/H synthase commonly referred as cyclooxygenases [? ? ]. The COX-1 and COX-2 are
the isoenzymes of cyclooxygenase enzymes. COX-1 acts as a housekeeping enzyme, as it is
constitutive in nature and expressed in various parts of the body. In addition to this, it also
carries out numerous physiological functions. Studies on mice revealed that COX-1 also
plays a crucial role in development and progression of inflammation [? ? ? ? ].

On the other side, COX-2 is mainly induced in response to various endogenous and
exogenous stimulus such as cytokines (tumor necrosis factor α (TNF-α), interleukins (IL-1
and IL-6), tumor promoters (v-src, v-Ha-ras, and Wnt)) and stress [? ? ]. It is mainly
responsible for maintenance of inflammatory event after the initiation of inflammatory
acute phase with COX-1 [? ]. Although COX-2 shows the structural similarity with COX-1,
its enzymatic activity pattern is quite different due to prostaglandin-endoperoxide syn-
thase 2 (PTGS-2) gene. After the induction of COX-2, there is excessive production of
PGE2 along with other prostaglandins, which increases the vascular permeability and
lowers the pain threshold. The physiological functions like blood pressure and immune
response are maintained by PGE2, but in some pathological conditions more than 10-fold
increase in the level of PGE2 concentration leads to serious complications [? ]. Controlled
level of COX-2 enzyme production plays a crucial role in the physiological protective
response to tissue injury. However, if uncontrolled enzyme production occurs, it can pro-
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mote angiogenesis and tumor invasiveness and ultimately causes inflammatory-induced
carcinogenesis [? ? ? ? ? ].

For decades, traditional methods using natural products were used as medicines for
treating numerous diseases [? ]. There are evidences of using these as remedies from
pre historic times for all sorts of inflammatory diseases. Since, COX-2 is responsible for
inflammatory events through PGE2 production and its uncontrolled level can cause carcino-
genesis. Therefore, it is widely accepted that natural product having potential to inhibit
COX-2 and PGE2 expression, will exhibit anti-inflammatory and anti-cancerous activities.
Numerous triterpenoids such as betulin (B) and betulinic acid (BA) (the oxidation product
of Betulin) isolated from botanical sources play an important role in inflammation reduction
and exhibit anti-cancerous properties by targeting COX-2 and PGE2. These can induce anti-
inflammatory, tumor-differentiating, proliferation-arresting, and apoptotic effects based on
the usage of their dose administered [? ]. Recent study on immunopharmacological activity
of betulin revealed that it has a potential use in inflammation-associated carcinogenesis [?
]. The derivatives of betulin can also inhibit IFN-γ and modulate COX-2 expression [?
]. Previous studies reported that betulinic acid can inhibit the cyclooxygenase pathway
by reducing the synthesis of prostaglandins (PGE2) and attenuate the inflammation in
response of stimuli [? ? ? ]. Study on betulinic acid isolated from the Dillenia serrata
also revealed the same that betulinic acid can modulate the activity of COX-2 and inhibit
the PGE2 release [? ]. This COX-2-mediated inhibition of prostaglandin by betulin and
betulinic acid controls the cell proliferation, angiogenesis, invasion and metastasis [? ]. Col-
lectively, based on evidence in the literature it can be stated that betulin and its oxidation
product betulinic acid induces its potent anti-inflammatory and anti-cancerous effects by
blocking COX-2-mediated NF-κB pathway mechanisms [? ? ? ? ]. They can control the
inflammation-induced cancer by inhibiting proliferation, invasion, metastasis, angiogenesis
and inducing apoptosis, but more clinical investigations are required in order to support
the proposed COX-2 inhibitory mechanism by betulin and betulinic acid (Figure ??).
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Figure 5. Action of Betulin (B) and Betulinic Acid (BA) on cyclooxygenase enzymes (Cox-1 and Cox-2) which convert the
arachidonic acid to prostaglandins. Inhibition of prostaglandin PGE2 derived from Cox-2 by blocking its pathway through
Betulin (B) and Betulinic Acid (BA) leads to inhibition of angiogenesis, proliferative invasion.

4.3. Nrf2-Associated Signaling

Betulin has been associated with its antiinflammatory effect over different cellular
mechanisms including the nuclear factor erythroid 2-related factor 2 (Nrf2), a critical tran-
scriptional activator for antioxidative responses (Figure ??). Nrf2 is a transcription factor
that regulates an adaptive cellular defense response to oxidative stress and inflammation [?
? ]. It plays a crucial role in cellular redox homeostasis coordinating the induction of over
250 genes, including those encoding antioxidant and phase 2 detoxifying enzymes and
related proteins, such as NADPH, quinine oxidoreductase 1 (NQO1), heme oxygenase-1
(HO-1), γ-glutamyl cysteine synthetase catalytic subunit (GCLC) and modifier subunit
(GCLM) [? ].
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Figure 6. Schematic representations of betulin (represented as red star) mediated modulation (upregulation ↑, downregula-
tion ↓) of Nrf 2 phosphorylation and anti-oxidant defense system.

Phosphorylation of Nrf2 at serine and threonine residues by upstream kinases, such
as protein kinase C, phosphatidylinositol-3-kinase/Akt (PI3K/Akt), and mitogen-activated
protein kinase (MAPK), facilitates the release of Nrf2 from Keap1, a repressor molecule that
facilitates Nrf2 ubiquitination [? ]. Nrf2 phosphorylation regulating the cellular responses
to oxidative stress and inflammation is also regulated by AMP-activated protein kinase
(AMPK), a heterotrimeric serine/threonine kinase [? ]. Activated Nrf2 quickly translocates
from the cytoplasm into the nucleus to regulate gene expression. Nrf2 is anchored within
the cytoplasm by Kelch-like-ECH-associated protein 1 (Keap1) before ubiquitarian. AMPK
is also associated with PI3K/Akt pathway that has been shown to be regulated with AMPK.
Furthermore, AMPK increases the phosphorylation of glycogen synthase kinase 3 beta
(GSK3β) inhibition [? ]. Nrf2 signaling has been implicated as an important target for
averting DMBA-induced mammary cancer via augmented expression of MAPKs, Keap1,
ARNT, AhR, and CYP1A1 [? ]. Therefore, strong antioxidant behavior of betulin by Nrf2
mediated MAPKs oxidative stress could be considered to inhibit cancer proliferation. Ci
et al. [? ] has shown that betulin increased Nrf2-targeted antioxidant enzymes, in a dose and
time dependent manner in LPS and endotoxin induced inflammatory responses in vitro and
in vivo. Treatment with betulin increased Nrf2 translocation from cytoplasm to nucleus
and downregulated the expression of the Keap1 protein in a dose-dependent manner.
Furthermore, betulin attenuated LPS-induced inflammatory mediators (iNOS and COX-2)
and MAPK inflammatory signaling pathway upregulating the HO-1 and NQO1, and
downregulating the iNOS and COX-2 revealing that its anti-inflammatory effect is strongly
coordinated with Nrf2 signaling pathways. Furthermore, betulin pretreatment reduced the
increased levels of JNK, ERK, p38 and AKT phosphorylation in LPS induced macrophages.
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Activation of Nrf2 by triterpenoids induces the expression of phase 2 detoxifying and
antioxidant enzymes such as NQO1 and HO-1, known enzymes which can protect cells
or tissues against various toxic metabolites [? ]. Bai et al. [? ] has revealed that betulinic
acid attenuates impairments of aortic contraction and relaxation in LPS-challenged rats by
activating Nrf2-regulated anti-oxidative pathways.

Nrf2-mediated anti-inflammatory response is thought to be ROS-dependent, however
a direct inhibitory effect of Nrf2 on the recruitment of RNA polymerase II, preventing
the transcription of genes coding for the proinflammatory cytokines IL-1β, IL-6 [? ? ? ],
which is also important for the viral infections including Covid-19 [? ? ]. Activation of
Nrf2 signaling pathway in phagocytic cells improved their anti-viral [? ], and anti-bacterial
functions [? ]. Furthermore it has been noted that in macrophages regulating the Nrf2
mechanisms in bacterial infections is very important to control the inflammation [? ]. The
most common Nrf2 nutrients has been listed by Iddir et al. [? ] including flavonoids and
terpenoids [? ] and betulin has also been shown to act through Nrf2 signaling which
deserves further investigation on Covid-19.

5. Betulin as a Treatment Strategy for Cancer

To design effective cancer treatment strategy, it is essential to understand the interac-
tions of natural bioactive molecules with the recognized cellular targets. Several anti-cancer
agents have been known to mediate both intrinsic (mitochondrial) as well as extrinsic
(Fas/FasL) apoptotic cell death in cancer cells [? ? ]. Previous studies have suggested
the role of bioactive natural molecules to arrest cell cycle by regulating the expression of
cyclin-dependent kinases (CDKs) [? ? ]. In addition, the expression of metastatic as well
angiogenesis proteins including matrix metalloproteinases (MMPs) and VEGF have also
been down-regulated by the action of such bioactive metabolites [? ? ]. Furthermore, the
anti-tumor aspect of natural metabolites can be correlated with their inhibitory effects
on various inflammatory mediators (IL-6, IL-8, IFN-γ, iNOS, COX-2, and TNF-α) [? ? ? ].
Therefore, exploring the mechanistic insight of bioactive molecules will help us to un-
derstand the biology of cancer and to investigate novel anti-cancer strategies in the near
future [? ]. For instance, researchers have investigated the interaction of tumor cells with
their microenvironment to develop promising anti-cancer strategy. Modulations of expres-
sion/activity of TNF-β-, NF-κB, MMP-9, CXCR4, Ki-67, β1-integrin, and caspase-3 could
be a promising strategy for tumor control. Therefore, suppression of proinflammatory
molecules by using natural agents can inhibit the cancer growth, survival, and metastasis [?
? ].

5.1. Co-Effects of Betulin with Standard Anticancer Therapies

Secondary metabolites or natural compounds found ubiquitously distributed in differ-
ent plant types have been documented to potentiate standard chemo-preventive measures
used for cancer treatment [? ? ]. Such combinatorial or synergistic approaches exhibit
remarkable efficacy in cancer therapy due to their multi-targeted actions, minimum side-
effects with little or no drug resistance and lack of considerable toxicity [? ? ? ? ? ]. Betulin
when used in combination with a gamma-cyclodextrin derivative in melanoma B164A5
cells, the combinatorial therapy was found to reduce the cell proliferation, and induced
differentiation and cell death [? ]. Further, combination strategy using betulinic acid and its
derivatives in combination with radiation therapy on human malignant glioma cell lines
has shown slightly enhanced effects on the radiosensitivity of malignant glioma cells [?
]. In addition, few studies have shown to have an additive effect of the compound in
combination with irradiation on growth inhibition in melanoma [? ] and head and neck
squamous cell carcinoma (HNSCC) cell lines [? ]. Moreover, in one of the studies, the
efficacy of 5-fluorouracil (5-FU) and betulinic acid (BA) combination on ovarian carcinoma
cells was studied and the results demonstrated increased sub-G1 cell population, increased
rate of cell apoptosis and morphological changes in mitochondrial membrane. Therefore,
the combinatorial therapy was found to be a promising strategy for the treatment of ovarian
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carcinoma [? ]. Furthermore, the study was conducted to explore the interactions between
the natural compound and tumor necrosis factor-related apoptosis-inducing ligand of
APO2, also known as TRAIL, in liver cancer cells and a synergistic effect of betulinic acid
and APO2 combination on apoptosis induction in liver cancer cells was observed [? ].
Additionally, the compound also showed synergistic effects with taxol to induce breast
cancer cells G2/M checkpoint arrest and apoptosis induction, but had little cytotoxicity
effects on normal mammary epithelial cells [? ]. Combination treatment of the compound
with ginsenoside Rh2 (G-Rh2) synergistically induced apoptosis in human cervical ade-
nocarcinoma (HeLa), human lung cancer A549, and human hepatoma HepG2 cells by
enhancing cleavage of caspase-8 and Bid [? ]. Likewise, studies have also shown that
betulinic acid along with other triterpenes, especially Japanese apricot extract, are effective
supplements for increasing the chemotherapeutic effect of 5-fluorouracil on esophageal
cancer [? ]. In conclusion, betulin and its derivatives like betulinic acid could prove to
be promising treatment agents in various cancer types and a combination of the natural
compound with different chemotherapeutic drugs seems to be beneficial.

5.2. Role of Nanotechnology in Delivery of Betulin to Target Tissues

Despite poor aqueous solubility, triterpenoids such as betulin have gained interest
in the arena of nanotechnology on account of their potent cytotoxic properties. Formu-
lating these compounds as nanopharmaceuticals additionally helps to enhance systemic
bioavailability and stability of such phytoconstituents [? ? ]. Betulin was first encapsulated
in liposomes by Mullauer et al., that could be used for the amelioration of colon and lung
cancer tumors [? ]. More recently, Liu et al., formulated polyethylene-glycol modified
liposomes of Betulinic acid, which showed promising in vivo results [? ].

The formulation of liposomes has a two-fold impact: enhancement of solubility as well
as increasing the affinity of the agent to tumor cells, which enhances the permeation, and
thereby efficacy of the molecule. Liposomes containing betulinic acid and a biosurfactant
mannosylerythritol lipid-A (MEL-A) have been observed to trigger early-stage apoptosis
of HepG2 cells, which in turn blocks cell division, thereby arresting tumor growth [? ]. In
addition to this, micellar systems have been formulated to improve the delivery of betulin
to target cells. Loading co-polymeric Soluplus micelles with betulinic acid has been seen
to inhibit angiogenesis, DNA replication and tumor growth in vivo, specifically for breast
cancer cells [? ].

In relation to nanoemulsions, Dehelean et al., formulated a nanoemulsion of betulinic
acid by high-pressure homogenization, using flax-seed oil as the oil phase [? ]. The anti-
neoplastic effects of betulinic acid were assessed in vivo by Tan et al., using nanoparticles of
betulinic acid, establishing that the magnetic nanoparticles may facilitate improved entry of
the drug into cells [? ]. betulinic acid was also incorporated into a γ-cyclodextrin complex,
thus allowing studies of betulinic acid delivery using cyclodextrin inclusion complexes [? ].

In a study, liquid crystalline nanoparticles of betulinic acid were formulated, helping
to expand its therapeutic potential. The objective of such experiments is the formulation
of theranostics, for drug delivery to specific, targeted tissues. Betulinic acid, in combina-
tion with manganese, was administered to mammalian breast cancer cell lines, as they
demonstrate a synergistic effect. The formulation passed the biosafety test, carried out on
embryonic hepatic cell lines, thus establishing its safety in biological systems. The apopto-
sis of MDA-MB-231 cells was seen by the onset of oxidative stress, as well as the exertion
of an anti-inflammatory action [? ]. In an attempt to improve the oral bioavailability of
betulinic acid, incorporation into poly(lactic-co-glycolic acid) (PLGA) has been reported to
exert a preventive action against hepatocellular carcinoma (HCC) [? ].

Silver-based nanoparticles have been used as drug-delivery agents owing to their sur-
face properties and mild cytotoxic properties, which make them potent anti-cancer agents.
Based on data obtained from pre-clinical research, the usage of betulin in conjunction with
silver nanocolloids (uncoated as well as PEG-coated) has shown efficacy in inhibiting the
proliferation of HepG2 and A549 cells [? ]. Cyclic β-glucans may be used for encapsulating
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betulinic acid, owing to their ability to form complexes and dose dependent antioxidant
property. In-silico studies have demonstrated a synergistic interaction, thereby potentiating
the anti-neoplastic properties of betulin [? ].

These studies have yielded promising in vitro data, indicating the potential for usage
of these nanotechnology systems in humans, as they help to combat some of the drawbacks
of naturally derived triterpenes like betulin. Undertaking clinical trials would further im-
prove the understanding of the therapeutic potentials and efficacy of betulin, thereby aiding
management of neoplasms and various disorders with afflicted inflammatory pathways.

5.3. Safety Issue of Betulin

The most important aspect of any novel drug candidate is its safety on normal healthy
tissues, allowing to elaborate the optimal dosage schemes with minimal adverse reactions [?
? ]. Animal studies have shown no toxic symptoms and good tolerability of triterpene
extract, being administered either intraperitoneally to rats (540 mg/kg for 28 days) or
subcutaneously to beagle dogs (300 mg/kg/day for 28 days). Moreover, subcutaneous
administration of betulin to male and female dogs resulted in a maximum plasma level
of 325 ng/mL four weeks after treatment [? ]. Also, betulin was shown to reveal no
mutagenic activity by Salmonella/microsome assay, again proving its potential safety [? ].
In addition, clinical trials with topical application of betulin-based Oleogel-S10 displayed
well tolerability and safety of this treatment for patients with actinic keratoses [? ], epider-
molysis bullosa [? ] or burn wounds [? ]. Although all these data clearly show the general
safety of betulin and encourage further pharmacological and pharmaceutical studies using
this natural compound (????), recently published results still demonstrate cytotoxicity of
betulin in fish (BF-2) and murine fibroblasts (NIH/3T3) at doses similar to the IC50 values
previously measured for malignant cells [? ]. Therefore, further thorough research on the
safety of betulin is needed, verifying the selectivity of cytotoxic action of this compound
towards cancerous cells.

Table 1. Anticancer effects of betulin and betulinic acid based on in vitro studies.

Type of Cancer Cell Lines Effects Mechanisms Concentration References

Leukemia Lucena 1 and K562 Blocking of the efflux
mediated by P-gp

↑ restore sensitivity to doxorubicin in
Lucena 1 cells, did not exhibit

erythrocyte hemolysis
0.39–50 µM [? ]

Myeloma RPMI 8226 Induces apoptosis
↓ proliferation, migration and invasion

by tumor cells, ↓ bcl-2, ↑ bax, ↓ cyclin D1,
No change in CREB phosphorylation,

0, 2.5, 5, 10 and
25 µM [? ]

Human T-cell
leukemia Jurkat E6.1 Induces apoptosis

↓ proliferation, migration and invasion
by tumor cells, ↓ bcl-2, ↑ bax, ↓ cyclin D1,

No change in CREB phosphorylation,
Amounts of the CREB protein, and

ERK1/2, Akt, CaMKII kinases remained
unchanged

0, 2.5, 5, 10 and
25 µM [? ]

Glioma T98G and C6 Induces apoptosis

↓ cell viability/survival and proliferation,
↓ % age of T98G cells in G1 phase, ↑ in

cell number in S phase, significant
activation of caspase 3

0.0–25 µM for
EB5 or 0.0–50 µM

for EB25/1
[? ]

Osteosarcoma HOS and MG-63 Induces autophagy↓↑ ↑ LC 3-II, ↑ phospho-Akt (Ser473), ↓
activation of mTOR

0, 0.5, 1, 2, 4, 5, 10
and 20 µM [? ]

Medulloblastoma TE671 Induces apoptosis

↓ proliferation, migration and invasion
by tumor cells, ↓ bcl-2, ↑ bax, ↓ cyclin D1,

No change in CREB phosphorylation,
Amounts of the CREB protein, and

ERK1/2, Akt, CaMKII kinases remained
unchanged

0, 2.5, 5, 10 and
25 µM [? ]
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Table 1. Cont.

Type of Cancer Cell Lines Effects Mechanisms Concentration References

Oral squamous KB Induced apoptosis

↓ cell proliferation, ↑ TUNEL+ cells in KB
cells, ↑ caspase 3, ↑ caspase 9, ↑ Bax, ↓

Bcl-2, ↓ oxygen consumption rate,
Induced a significant mitochondrial

dysfunction, ↑ cell number in the G 0/G1
phase,

0, 12.5, 25, 50 and
100 µM [? ]

Thyroid FTC 238 Induces apoptosis
↓ proliferation, migration and invasion

by tumor cells, ↓ bcl-2, ↑ bax, ↓ cyclin D1,
No change in CREB phosphorylation,

0, 2.5, 5, 10 and
25 µM [? ]

Melanoma

Colo-829 Induces apoptosis
↓ NQO1 protein, ↑ formation of

superoxide, ↑ oxidative stress, ↑ TP53 ↑
CDKN1A genes, ↓ p53 protein

0.1 to 100 µg/mL [? ]

C-32 Induces apoptosis

↓ transcription of the gene encoding the
histone H3, ↓ NQO1 protein, ↑ formation
of superoxide, ↑ oxidative stress, ↑ TP53
↑ CDKN1A genes, ↑ BAX gene, ↓ BCL-2
gene, ↑ BAX/BCL-2 ratio, ↓ p53 protein

0.1 to 100 µg/mL [? ]

Me-45 Induces apoptosis

↑ apoptotic nuclei, ↑ cytotoxicity towards
malignant cells, ↑ apoptosis arte, ↑
pro-apoptotic effects, ↑ PARP-1, ↓

expression of caspase-3

0.75–100 µM [? ]

B164A5 and B16F10 Induced apoptosis

↓mitochondrial oxidoreductase, ↓ cell
division rate, ↑ Bax, ↓ Bcl-2, ↑ IL-12p70

secretion, ↑ cleaved caspase 3, ↑ cleaved
PARP

0, 40, 80, 120 and
160 µM [? ]

Epidermoid
squamous A431 Induces apoptosis

↑ apoptotic cells, ↑ Increased cytotoxicity
for cancerous cells, ↑ PARP-1, ↓ amounts

of caspase-3
0.75–100 µM [? ]

Breast

MDA-MB-231 Anti-angiogenic

↑ betulin uptake, ↓ cell viability of the
cancer cells, ↑ in vitro cytotoxicity, ↑
mononucleated cells, ↓in binucleated

cells

Nanosuspension
of betulin

equivalent to 5,
10, 25, 50, 100,

150 and 200 µM

[? ]

MDA-MB-231 Induces apoptosis

↓ cell size, ↑ shrinkage of the cytoplasm,
↓ NF-kB p65 and p50, ↓ IKK α and β, ↓

ICAM-1, ↓ bcl-2 expressions, significantly
induced loss of mitochondrial

transmembrane potential

0–50 µM [? ]

MCF-7 and
MDA-MB-231 Induces apoptosis

↓ histone H3, ↓ NQO1 protein, ↑
formation of superoxide, ↑ oxidative

stress, ↑ TP53 ↑ CDKN1A genes, ↑ BAX
gene, ↓ BCL-2 gene, ↑ BAX/BCL-2 ratio,

↓ p53 protein

0.1 to 100 µg/mL [? ]

MDA-MB-231 and
BT-549 Inhibited metastasis

↓ aerobicglycolysis, ↓reduction of lactate
production, ↓ down regulation of aerobic

glycolysis-related proteins, ↑ GRP78
overexpression, ↓ c-Myc-mediated
glycolysis, ↓MMP-2 and MMP-9, ↑

LDHB, ↑ PERK signaling, ↑
phosphorylation of eIF2α

0, 2.5, 5, 10, 15,
20, 25, 30, 40 and

50 µM
[? ]

MCF-7, and
MDA-MB-231 Induces apoptosis

↓ cancer cell proliferation and augments
chemosensitivity of taxol, ↑ cleaved

PARP, ↑ Cytochrome c, ↑ Bax, ↓ Bcl-2, ↑
intracellular free calcium concentration

BA - 0.1–50
µMTaxol 0–24

nM
[? ]

MCF7 Induces apoptosis ↓ cancer cell growth, ↑ DNA
fragmentation,

IC50 values of
8.32 [? ]

MCF-7 Induces apoptosis ↑ caspase-9 activity, ↑ caspase-3, ↑ Bax, ↑
Bak

0, 1, 5, 10, 20, 50
and 100 µg/ µl [? ]
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Table 1. Cont.

Type of Cancer Cell Lines Effects Mechanisms Concentration References

Ductal T47D Induces apoptosis
↓ NQO1 protein, ↑ formation of

superoxide, ↑ oxidative stress, ↑ TP53 ↑
CDKN1A genes,

0.1 to 100 µg/mL [? ]

Lung

A549, HepG2and
5RP7 Induces apoptosis ↑ rate of Apoptosis, caused G1 cell cycle

arrest, ↑ cleaved caspase 3

IC50 values of
207.7, 125.0 and

28.3 µg/mL
[? ]

HKULC2, H1299,
and H23

Inhibit metastatic
ability

↑ cycle arrest in G1 phase, ↓migration
and invasive potential of cells, ↑ p21, ↑

p53, ↓ CD133, ↓ ALDH, ↓ BCL2, ↓MCL1,
↓ c-Myc expression, ↓ ABCG1 protein

10 µM of
betulinic acid
nanoparticles

[? ]

A549 Induces apoptosis

↓ histone H3, ↓ NQO1 protein, ↑
formation of superoxide, ↑ oxidative

stress, ↑ TP53 ↑ CDKN1A genes, ↓ p53, ↑
BAX/BCL-2 ratio

0.1 to 100 µg/mL [? ]

NCI-H460 Antimetastatic and
Apoptosis

↑ caspase-3, 6 and 9), ↑ BAX, ↑ BAK, ↓
BCL-2, ↓ p53, ↓MMP-2/-9. ↓

Osteopontin

10, 25, 50, 75, and
100 µM [? ]

A549 Induces apoptosis ↑ caspase-9 activity, ↑ caspase-3, ↑ Bax, ↑
Bak

0, 1, 5, 10, 20, 50
and 100 µg/µL [? ]

A549 Induced apoptosis ↓ PCBP1, ↓ isoform 1 of 3-HAD CoA
dehydrogenase, ↓ HSP 90-α 2, ↓ ECH

0, 12.5, 25, 50 and
100 µM [? ]

A549 Induces apoptosis
↓ proliferation, migration and invasion

by tumor cells, ↓ bcl-2, ↑ bax, ↓ cyclin D1,
No change in CREB phosphorylation,

0, 2.5, 5, 10 and
25 µM [? ]

Gastric

SNU-16 and
NCI-N87 Triggers apoptosis

↑ cytotoxic and inhibitory effects on
cancer cells, ↓migratory and invasive

abilities of cancer cells, ↓ EMT
progression, ↓ N-cadherin, ↑ E-cadherin

0, 2.5, 5, 10, 20, 40
and 80 µM [? ]

BGC-823, MNK45
and 293T Induces apoptosis

↓ proliferation and migration the cancer
cells, ↓ expression of VASP mRNA, ↓

Cyclin D1, ↓ PCNA, ↓ c-Myc, ↓ AKT, ↓
Vimentin, ↓ NF-κB activity, ↓ p-p65

protein

0–60 µM [? ]

SGC7901 Induced apoptosis

↓ cell proliferation, ↑ Caspase- 3 and 9
activities, caspase-8 activity remained
unchanged, ↑ PARP cleavage, ↑ Bax,↑

Bak, ↓ Bcl-2, ↓ XIAP, ↑ intracellular ROS
level,

0, 1, 5, 10, 20, 50,
100 µg/ µL [? ]

Bladder T-24, UMUC-3, and
5637 Induced apoptosis

↓ cell proliferation and migration
potential of cells, ↓ Cdc25c, loss of

mitochondrial membrane potential, ↑
Bax, ↑ cleaved- PARP, ↑ caspase-3, 8, and
9, ↓ wound healing and invasion ability,

↓ Snail, ↓ Slug, ↓MMP-9

0, 10, 15, 20 and
30 µg/ µL [? ]

Colon

HCT116 and HT29 Induced apoptosis

↓ viability of HCT116 cells, ↑ number of
floating cells, ↑ rounding of cells, ↑

emergence of irregular bulges in cell
membrane, ↑ condensed chromatin, ↑

micronucleation,

0, 1, 5, 10, 20, 50
and 100 µg/ µL [? ]

HT-29 Induces apoptosis

↓ proliferation, migration and invasion
by tumor cells, ↓ Bcl-2, ↑ Bax, ↓ cyclin D1,

No change in CREB phosphorylation,
Amounts of the CREB protein, and

ERK1/2, Akt, CaMKII kinases remained
unchanged

0, 2.5, 5, 10 and
25 µM [? ]

HCT116, SW480 and
DLD-1

Promoted apoptosis
and inhibited

metastasis

↑ Bax, ↑ caspase-3, ↓ Bcl-2, ↑ ROS, ↓
mitochondrial membrane potential, ↓
migration and invasion of colorectal

cancer cells, ↓MMPs, ↑MMPs inhibitor
(TIMP-2)

0, 05, 10, 20, 40
and 80 µM [? ]
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Table 1. Cont.

Type of Cancer Cell Lines Effects Mechanisms Concentration References

Pancreatic Mia PaCa-2 and
Panc-1 Inhibits stemness

↓ proliferation and tumorsphere
formation, ↓ EMT, activates AMPK

signaling ↓mRNA expression levels of
Sox2, Oct4, ↓ Nanog and Nanog, ↑
E-cadherin, ↓ vimentin, ↓ effects of

gemcitabine on stemness, ↑ sensitivity of
pancreatic cancer cells to gemcitabine

0, 12.5, 25, 50, 100
and 200 µM [? ]

Hepatocellular

HepG2, LM3, and
MHCC97H Induces apoptosis

↓ cell viability and proliferation, ↓
migration and invasion, ↓ adhesive

ratios, ↑ condensed nuclei and nuclear
fragmentation, ↑ apoptosis rate

significantly, ↑ Bax, ↑cleaved caspase-3, ↓
Bcl-2, ↓ ROS level, lost mitochondrial
membrane potential, ↓MMP-2 and

MMP-9, ↑ TIMP2

2.5–40 µM [? ]

HepG2 Induces apoptosis ↑ caspase-9 activity, ↑ caspase-3, ↑ Bax, ↑
Bak

0, 1, 5, 10, 20, 50
and 100 µg/µL [? ]

Renal

786-O and ACHN Induces apoptosis

↓migrative and invasive capabilities of
cancer cells, ↓ Bcl2, ↓ Bcl-2, ↑ Bax, ↑

cleaved caspase-3, ↓ B-cell lymphoma 2,
↑ ROS, ↑ loss of mitochondrial

membrane potential, ↓MMP-2, ↓MMP9,
↓ Vimentin, ↑ tissue inhibitor of

metalloproteinase 2, ↑ E-cadherin

0, 5, 10 and 20
µg/mL [? ]

786-O and Caki-2 mTor activation
↓ colonies of cancer cells, ↓ glucose

consumption, ↓ lactate production, ↓
p-S6, p-4EBP1, ↓ aerobic glycolysis

0, 0.5, 1 and 5 µM [? ]

RCC4 Induces apoptosis

↓ cell viability, ↑ caspase-3, 7, 8 and 9, ↑
TRAIL R1/DR4 and R2/DR5, ↑ TNFR1, ↑
cytotoxicity, ↑ cleaved PARP, ↓ protein 1
(MDR1), ↑ t-Bid, ↑ Bax, ↑ PuMA, ↓ Bcl-2,

↓ XIAP

0, 6.25, 12.5, 25
and 50 µM [? ]

Neuroblastoma SK-N-AS Induces apoptosis
↓ proliferation, migration and invasion

by tumor cells, ↓ bcl-2, ↑ bax, ↓ cyclin D1,
No change in CREB phosphorylation,

0, 2.5, 5, 10 and
25 µM [? ]

Prostate LNCaP and PC-3 Induced apoptosis
↓ STAT3 (Y727), ↓ c-Jun (S63), ↓ eNOS
(S1177), ↓ ap70 S6 kinase (T389), ↓ p53

(S392) ↓ PYK2 (Y402)
1–90 µM [? ]

Ovarian
SKOV3 and SW626 Inhibited metastasis ↓ proliferation, ↓ N-cadherin, ↑

E-cadherin, ↓ EMT process
0, 2.5, 5, 10, 20,
40, and 80 µM [? ]

A2780 Induces apoptosis ↓ viability of cancer cells, ↑ condensation
of nuclei, ↑ caspase-8, 3,9, ↑ Bax, 25 and 50 µM [? ]

Cervix
HeLa Suppresses

angiogenesis

↓ hypoxia-induced accumulation of
HIF-1α,↓ VEGF, ↓ GLUT1, PDK1, ↑ β1, β

2, and β 5 activities of the proteasome
3–30 µM [? ]

HeLa Induces apoptosis ↓ cancer cell growth, ↑ nuclear
condensation and fragmentation,

IC50 values of
6.67 [? ]

Equine
malignant
melanoma

PriFi1, PriFi2,
MelDuWi and

eRGO1
Induces apoptosis ↓ cell proliferation, ↓ cell viability, ↑cell

cycle arrest – [? ]

Canine
osteosarcoma D-17 Induces apoptosis ↓ Growth of cancer cells. arrested cell

cycle in S phase, ↑ %age of apoptotic cells
1, 5, 10, 15, 20, 25,

30 and 40 µM [? ]
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Table 2. Anticancer effects of betulin and betulinic acid based on in vivo studies.

Type of Cancer Animal Models Effects Mechanisms Dosage Duration References

Oral squamous
Balb/c nude mice

injected with KB cells
(1 × 107 cells per mouse)

Inhibited the
increase in tumor

volume

↓ p53 in implanted
tumor, ↓ STAT3
signaling, ↓ p-

STAT3 in tumor
tissues declined

50, 75 and 150 mg/kg 21 days [? ]

Colorectal

BALB/c nude mice
xenografted with

HCT116 cells
(1 × 107 cells per mouse)

Inhibits metastasis ↓MMP-2, ↓ Ki-67, ↑
caspase-3 0, 10, and 20 mg/kg 21 days [? ]

Gastric

BALB/c nude mice
xenografted with

SNU-16 cells
(1 × 107 cells/mouse)

Delay tumour
growth and inhibit

pulmonary
metastasis

↓ tumour weight, ↓
number of metastatic

nodules, ↓ Ki-67 ↓
MMP2

40 mg/kg 21 days [? ]

Breast Adult orange zebra
danio fishes Anti-angiogenesis ↓tail fin regrowth

Betulin suspension
(BetS) (5 mg/g of

betulin) and Group III
– BeTNS (5 mg/g of

betulin)

15 days [? ]

Breast

Balb/c-nu/nu mice
subcutaneously injecting

MDA-MB-231 cells
(5 × 106)

Inhibited tumor
growth

↓ Body weight loss, ↑
apoptosis ratio, ↓
Ki67 expression, ↑

expression of GRP78,
↑ CHOP

BA 250 mg/kg + taxol
10 mg/kg 24 days [? ]

Breast

Balb/c nude mice
xenografted with

MDA-MB-231 cells
(2 × 105)

Inhibits metastasis

↓MMP-2 & 9, ↓
vimentin, ↑

E-cadherin, ↑ GRP78,
↓ β-catenin, ↓ c-Myc

125 and 250 mg/kg 28 days [? ]

Hepatocellular

NOD/SCID mice
implanted

subcutaneously with 100
µL HepG2 cells

suspensions
(1 × 107 cells/mouse)

Reduces tumour
growth

↓ Ki-67 positive cells,
↓MMP-2 positive
cells, ↓ cancer cell

proliferation, ↓
Extents of metastatic

nodules, ↓ lung
weights

10 mg/kg 18 days [? ]

Renal
BALB/c nude mice

injected with 786-O cells
(1 × 106 cells per mouse)

Inhibits metastasis
↓ Ki67-positive cells,
↓MMP9-positive

cells,
0, 5, and 10 mg/kg 15 days [? ]

Ovarian
BALB/c nude mice

injected with SKOV3
cells (5 × 106 cells)

Inhibits tumor
growth and

Inhibited metastasis

↓ EMT process, ↓
Ki-67+ cells, ↓
MMP-2+ cells

40 mg/kg 21 days [? ]

6. Conclusions

In this study, clear evidences are presented in favor of considering birch tree bark-
derived betulin as a potential lead molecule for further development of anticancer agent.
The anti-inflammatory properties of betulin would make it possible to apply this natural
compound especially for the treatment of inflammation-related tumors. However, to reach
this goal, the bottlenecks associated with low bioavailability should be solved first as well
as the safety issues of this triterpene need to be enlightened. In this way, it is expected that
betulin will represent “a long-known but newly discovered” phytochemical for the use
in oncological field. The necessity for new anticancer drugs is obvious in view of several
impediments related to the current treatment modalities, including acquired drug resistance
and toxicities towards normal tissues. Therefore, identification and characterization of
novel anticancer agents from naturally occurring products may lead to development of
more efficient and safer cancer therapies in future, especially considering the steadily rising
incidence rates of new cancer cases all over the world. In addition, chemical derivatizations
or structural modifications of existing natural agents may also open new avenues in
medicinal chemistry.
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159. Drag-Zalesińska, M.; Wysocka, T.; Borska, S.; Drag, M.; Poreba, M.; Choromańska, A.; Kulbacka, J.; Saczko, J. The new esters
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