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Abstract: Postharvest diseases of fruits caused by phytopathogens cause losses up to 50% of global
production. Phytopathogens control is performed with synthetic fungicides, but the application
causes environmental contamination problems and human and animal health in addition to gen-
erating resistance. Yeasts are antagonist microorganisms that have been used in the last years as
biocontrol agents and in sustainable postharvest disease management in fruits. Yeast application
for biocontrol of phytopathogens has been an effective action worldwide. This review explores
the sustainable use of yeasts in each continent, the main antagonistic mechanisms towards phy-
topathogens, their relationship with OMIC sciences, and patents at the world level that involve
yeast-based-products for their biocontrol.

Keywords: biocontrol; antagonistic mechanisms; OMIC sciences; patents

1. Introduction

Fruit is an important resource in human diet because of its contribution in vitamins,
minerals, organic acids, fiber, among others [1]. Moreover, obesity, cardiovascular, cogni-
tive, skin, eye, lung, and bone diseases could be prevented through regular fruit intake [2,3].
Nowadays, the consumer demands fruit with a high-quality standard, both in appearance
and in nutritional content [4,5]. However, postharvest fruit quality is affected by various
factors, especially fungal diseases [6], which decrease its organoleptic properties and cause
significant losses during storage, affecting up to 25% of total production in industrialized
countries and more than 50% in developing countries [7,8].

The main strategy to control fungal infections at the postharvest level in fruit is
the application of synthetic fungicides [9]. Nevertheless, these products have negative
effects on human, animal, and environmental health [10,11] and induce resistance in
phytopathogens [12,13].

The rise of biotechnology in the last decade has made biocontrol one of the most
studied sustainable alternatives in reducing postharvest diseases by using antagonistic
microorganisms against phytopathogens [14,15], which is considered a viable alternative
to synthetic fungicides [16]. Among the microorganisms, yeasts stand out for their antag-
onistic capacity, for example, they have certain characteristics, such as genetic stability,
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efficacy at low concentrations; control towards different phytopathogens [17]; simple nutri-
tional requirements; survival under adverse environmental conditions; compatibility with
other chemical and physical treatments; resistance to synthetic fungicides; and absence of
pathogenicity towards the host [18,19]. Additionally, the yeasts do not produce metabolites
potentially toxic to humans or animals and do not contaminate the environment [20–22].

In this review, we describe the use and applications of yeasts as biocontrol agents
and its role in global sustainable postharvest disease management of fruits, including the
characteristics of antagonist yeasts, their mechanisms of action, interaction with OMIC
sciences, and future trends in their application.

2. Global Overview of the Use of Yeasts for Fruit Disease Biocontrol

Around the world, different yeast species have been evaluated for in vitro and in vivo
control of postharvest fruit pathogens (Table 1). Although biocontrol commercial products
for postharvest disease control have been developed, the search for new antagonists
continues to allow the development of more effective biocontrol products that can be
incorporated into crop sustainable management including fruits [23].

Table 1. Yeast antagonists evaluated for the biocontrol of postharvest diseases in five continents of the earth.

Continent Yeast Pathogen Disease Fruit
Inhibition Range (%)

ReferenceIn Vitro In Vivo

ASIA
China Candida oleophila Botrytis cinerea Gray mold Kiwifruit - 17–45 [24]

Thailand Papiliotrema
aspenensis

Colletotrichum
gloeosporioides Anthracnose Mango 66 94 [25]

India Candida tropicalis Colletotrichum
musae Anthracnose Banana 70–85 84–96 [26]

Malaysia Trichosporon asahii Colletotrichum
gloeosporioides Anthracnose Papaya 55–70 51 [27]

Israel Candida oleophila Penicillium
digitatum Green mold Grapefruit - 50–85 [28]

Taiwan Aureobasidium sp. Botrytis cinerea Gray mold Strawberry 18–36 - [29]

Indonesia Aureobasidium
pullulans

Colletotrichum
acutatum Anthracnose Chili 32–45 - [30]

Saudi Arabia Pichia anomala Botryodiplodia
theobromae Fruit rot Guava - 39–50 [31]

EUROPE

Italy Wickerhamomyces
anomalus Botrytis cinerea Gray mold Strawberry 87 89 [32]

France Metschnikowia
pulcherrima

Penicillium
expansum Blue mold rot Apple 52–91 15–18 [33]

Spain Hanseniaspora
uvarum Botrytis cinerea Gray mold Strawberry 60–67 54–72 [22]

Poland Debaryomyces
hansenii Monilinia fructicola Brown rot Apple 69 70–85 [34]

Germany Rhodosporidium
paludigenum

Penicillium
expansum Blue mold rot Apple - 67–86 [35]

Portugal Metschnikowia
andauensis Penicillium italicum Blue mold rot Orange 62–70 90 [36]

AMERICA

Uruguay Candida sake Penicillium
expansum Blue mold rot Apple 25–74 25 [37]

Argentina Vishniacozyma
victoriae Botrytis cinerea Gray mold Pear - 70–100 [21]

Mexico Debaryomyces
hansenii

Colletotrichum
gloeosporioides Anthracnose Papaya 15–36 66–83 [20]
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Table 1. Cont.

Continent Yeast Pathogen Disease Fruit
Inhibition Range (%)

ReferenceIn Vitro In Vivo

Ecuador Candida inconspicua
and Pichia kluyveri Alternaria alternata Black rot Pitahaya - 7–20 [38]

Candida oleophila Botrytis cinerea Gray mold Apple [39]

Brazil Aureobasidium
pullulans

Penicillium
digitatum Green mold Citrus 30–41 - [40]

Chile Crptococcus
antarcticus

Botrytis cinerea,
Penicillium

expansum and
Geotrichum
candidum

- - 65–70 - [41]

AFRICA

Stellenbosch Pichia kluyveri Botrytis cinerea and
Monilinia laxa - Apple - 95–100 [42]

Tunisia Wickerhamomyces
anomalus

Penicillium
digitatum Green mold Orange 100 100 [43]

South Africa
Various yeasts
isolated from

surface citrus fruits

Penicillium
digitatum Green mold Citrus - 95 [44]

Morocco

Pichia anomala,
Debaryomyces
hansenii and

Hanseniaspora
guilliermondii

Penicillium
digitatum Green mold Citrus - 65–80 [45]

AUSTRALIA

Sidney Pichia guilliermondii

Botrytis cinerea,
Alternaria alternata

and Rhizopus
nigricans

Gray mold,
black spot

and Rhizopus
rot

Cherry
tomato fruit - 25–90 [46]

Sidney Pichia guilliermondii Colletotrichum
acutatum Anthracnose Loquat fruit - 100 [47]

Sidney Cryptococcus
laurentii Botrytis cinerea Gray mold Tomato fruit - 55–90 [48]

Brisbane Rhodotorula glutinis Penicillium
expansum Blue mold Pear - 90–95 [49]

3. Mechanisms of Action of Antagonistic Yeast towards Fruit Fungal Phytopathogens
3.1. Competition for Space and Nutrients

Competition for nutrients and space has been suggested to be the major mechanism
of action by which yeasts exert their antagonistic action in inhibiting pathogenic fungi.
Yeasts consume the necessary nutrients for their colonization and growth faster than the
pathogens resulting in inhibiting spore germination, reducing its growth and infection
level and, thus, decreasing infection and diseases development [50,51]. In addition, the
synthesis of inhibitory compounds in yeasts is increased by the absorption of nutrients in
situ or ex situ, improving their ability to biocontrol plant diseases [52].

The carbon sources that yeast consume include glucose, maltose, fructose, melezitose,
and lactose, among others [53]. The determination of the nutritional needs and adaptation
to the host of each yeast are important for their capacity as an antagonist [54].

3.2. Killer Toxin

Killer toxins are often glycosylated proteins produced by yeast of different species and
can disrupt specific cell wall components (β-1,3-D-glucans, β-1,6-D-glucans, mannoproteins,
and chitin), which result in fungal cell death (Table 2) [55,56]. Killer toxins attach to the
cell membrane where they interact with a secondary receptor that result in changes in cell
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membrane permeabilization, DNA synthesis inhibition, cell cycle disruption, and RNA
fragmentation [57,58].

Table 2. Inhibition of phytopathogens cause of postharvest disease of fruits by yeasts producing killer toxins.

Killer Yeast Phytopathogen Fruit Control (%) Reference

Debaryomyces hansenii
Alternaria brassicicola,
Alternaria citri, Aspergillus
niger and Rhizopus stolonifer

Apple, tomato, and lemon 80–100 [59]

Wickerhamomyces anomalus Colletotrichum gloeosporioides Papaya 100 [60]

Debaryomyces hansenii Monilinia fructigena and
M. fructicola Peach and plum 33–86 [61]

Debaryomyces hansenii Aspergillus niger - 80 [62]

Pichia fermentans Penicillium digitatum and
P. italicum Lemon 40 [63]

Wickerhamomyces anomalus
and Meyerozyma
guilliermondii

Colletotrichum gloeosporioides Papaya 20–24 [64]

Saccharomyces cerevisiae and
Wickerhamomyces anomalus Penicillium digitatum Orange 87 [65]

Genetic studies in Saccharomyces cerevisiae have shown that the ability to produce killer
toxins is cytoplasmically inherited and related to the presence of double-stranded linear
RNA (dsRNA) plasmids, which are then encapsulated, forming non-infectious virus-like
particles (VLP) within the cell cytoplasm [66]. All killer toxins are produced under acidic
conditions, and their activity decrease with the increase in pH and temperature of the
medium in which they are found—an increase in these variables is sufficient for the yeasts
to stop producing them [67,68].

3.3. Lytic Enzymes

One of the antagonistic mechanisms of yeasts against phytopathogens is the produc-
tion of lytic enzymes, such as glucanases, chitinases, and proteases, which act on different
sites of the fungal cell wall, causing cell lysis and death (Figure 1) [69,70].

β-glucanases are enzymes that hydrolyze the β-glucosidic bond of β-glucans. There
are two types of glucanases: those that randomly hydrolyze intra-chain bonds giving
rise to oligosaccharides (endoglucanases) and those that release glucose molecules by
hydrolyzing bonds at the non-reducing end of the chain (exoglucanase). There are also
yeasts that can produce both types of enzymes [71,72]. Different mechanisms for glucanase
synthesis and secretion have been suggested, but the most important one involves a
synthesis regulated by repression in glucose when it is not found in sufficient quantities
in the medium [73]. In relation to chitinases, these enzymes hydrolyze β-1,4 bonds of
chitin N-acetyl-β-D-glycosamide, which is one of its main cellular fungus components,
breaking it into oligomers and monomers of N-acetyl-β-D-glucosaminidase and causing
cell death [74,75].

Five types of chitinases have been identified, of which the most common is type I
with a molecular weight of around 30 kDa. In its sequence, it has an N-terminal domain
similar to hevein and type II, which possess a lower molecular weight of 25 kDa and
lack the N-terminal hevein domain [76,77]. Finally, proteases have a molecular weight of
approximately 35 kDa, stability at a pH from 2 to 5, a low isoelectric point, are insensitive
to metal and heavy metal chelators, and have a high capacity to hydrolyze a wide range of
peptide bonds of the mannoproteins that make up the fungus cell wall [51,78].
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3.4. Induction of Host Resistance

Yeasts can induce resistance in the host as an indirect mechanism to prevent infections
caused by fungi [79]. At the initial stages of fungus invasion into the tissue, the fruit or
plant cells begin with a hypersensitivity reaction (HR), which necrotizes the tissue invaded
by the fungus to isolate the infection, to prevent, or to slow the advance towards healthy
cells [80]. HR can be activated by many agents called inducers, such as synthetic products,
phytopathogens, non-pathogenic microorganisms (such as yeasts, fungi, and bacteria),
ultraviolet light, and insects, among others [81,82]. This reaction in the host can be systemic;
due to this characteristic, induction is defined as systemic acquired resistance (SAR) [83].

In response to any inducer, the plant overexpresses genes and enzymes related to
plant defense by increasing the production of substances. For example, these substances
include proteins related to pathogenesis (PR-proteins, classified in 14 families) [84] and
phytoalexins (characterized around 300, including coumarins, flavonoids, diterpenes,
and benzofuran, among others) [85] and/or lytic enzymes (proteases, glucanases, and
chitinases) [86] and reactive oxygen species (ROS) [87], among others, which have resulted
in inhibition effects and/or cell lysis or disruption of the phytopathogenic fungus.

PR proteins are defined as proteins that are absent or detected at a low basal level
in healthy tissues but significantly accumulate during pathological conditions in both
compatible and incompatible host–pathogen interactions [88]. Research studies involved
PR-proteins following yeast treatment of fruit, i.e., Pichia membranaefaciens induced PR-9
and PR-10 in peach fruit [89]. However, PR-protein responses are too variable in relation
to specific host tissue as well as microbial stimuli. The gene expression of PR-5 and PR-8
was characterized in apple fruit after treatment with Candida oleophila as a biocontrol agent
against Botrytis cinerea. As a result, PR-8 was significantly overexpressed in response
to both microorganisms while neither B. cinerea nor C. oleophila treatment significantly
overexpressed the PR-5 gene [39].

Phytoalexin and lytic enzyme production by yeast resistance induction was demon-
strated by Nantawanit et al. [90], who concluded that resistance induction in chili fruit
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treated with Pichia guilliermondii significantly enhanced the activities of phenylalanine
ammonia-lyase (PAL), chitinase, and β-1,3-glucanase, and capsidiol phytoalexin accumu-
lation in chili tissue. PAL is a fundamental enzyme during the first steps of the phenyl-
propanoid pathway to synthetize lignin, phenols, phytoalexins, and other compounds
related to the plant resistance process [91].

Moreover, biocontrol yeast agents can enhance antioxidant enzyme activity to alleviate
the oxidative damage caused by ROS produced in response to pathogen infection [65].
After cherry treatment with P. membranaefaciens at 5 × 107 cells mL−1, peroxidase (POD)
activity was enhanced, but catalase (CAT) and superoxide dismutase (SOD) decreased [92].
Many mechanisms related to resistance induction are simultaneously promoted by yeast an-
tagonists. For example, Rodosporidium spp., Pichia spp., and Cryptococcus laurentii enhanced
the activity of antioxidant enzymes and enzymes related to defense [93,94].

4. Antagonistic Yeasts and OMIC Sciences

Conventionally, the study of the mechanisms of action is related to the evaluation of
the production of antibiotics, lytic enzymes, or other metabolites in vitro or in co-culture
against the phytopathogen [95]. Information of the antagonistic mechanisms of antagonist
yeasts is crucial for improving their efficiency against phytopathogens. Therefore, OMIC
approaches, such as genomic, transcriptomic, and proteomic, are modern molecular tech-
nologies that help in their characterization [96]. Information on efficacy and consistency of
an antagonist yeast helps to select the best antagonist against a specific phytopathogen [39].
The study of the microbial antagonist genome helps to understand the potential genes
involved in biocontrol activity, characterizes groups of genes with unknown functions,
compares the genome with other biological control agents, and, finally, helps in study gene
transcription [97].

Proteomic approaches provide information on changes in metabolic/physiological
functions within the cell. Additionally, any biotic or abiotic factors that induce changes
during microbial growth can be studied by this molecular tool [98]. Proteomic analysis
plays a key role in host–phytopathogen interactions, and this technique can help identify
key proteins involved in antagonist–phytopathogen–host interaction [71].

Metabolomics analyses allow an understanding of cell physiology in real time. The
production of secondary metabolites, antibiotics, and lytic enzymes is one of the main
mechanisms of action for the control of phytopathogens [99]. The interaction of microbial
antagonists with phytopathogens can change the proteome and transcriptome of plants
or fruit, as well as their response to biotic stress through the induction of defense-related
metabolic pathways [100].

Transcriptomic studies of biological control agents provide useful information on the
genes involved in the production of secondary metabolites mostly studied in bacteria and
yeasts [101]. In the case of fungal biocontrol agents, studies have focused on the genes
involved in the influence of lytic enzymes, such as glucanases, proteases, and chitinases
on fungal cell wall [102]. Transcriptomic analysis is not limited to the study of biological
control agents; the study of phytopathogens also provides useful knowledge associated
with its virulence [103].

Another important aspect is microbial interaction on the fruit’s surface with antago-
nistic microorganisms since they are an integral part of the host’s composition. The study
of the microbiome is important to understand the key role of the microorganisms present
and their role in fruit health and physiology, as well as their possible positive or negative
interactions with artificially applied antagonists [104,105].

5. Patents on Yeast-Based Products for Plant and Fruit Disease Biocontrol

A patent, understood as the title that the state grants for the exclusive exploitation
of an invention for a specified period [106,107], is a method used to protect intellectual
property and, in many cases, is required to advance on the development of a biological
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product for the control of plant diseases. The first yeast-related patents date from 1842 in
Finland [108] and 1873 in the United States by Luis Pasteur (US141972) [109].

Globally, from 2009 to 2021, 163 patents were reported in the Derwent Innovation
database related to yeasts as biological control agents for plants or parts of them (Figure 2).
Germany, USA, Australia, and China account for 53% of all patents with yeasts worldwide.
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or plant parts.

Of the 163 patents, 73.68% of the records have the name of the genus or genus and
species of the yeast contained in the patented product, and 26.31% only indicated the
word “yeast” among its components. Generally, the products contain yeasts and other
microorganisms. Related to these products, 32.89% contained Metschnikowia fructicola;
11.18% contained Candida sp.; 11.18% contained a mixture of Candida oleophila, Metschnikovia
fructicola, and Pichia anomala; 9.86% contained Pichia sp.; 7.89% contained Rhodotorula sp.;
5.92% contained Cryptococcus alone or mixed with Rhodotorula sp.; and 1.97% contained
Debaryomyces sp.

Moreover, 84.21% of the patents belong to companies, where Bayer® is the predomi-
nant one. A low percentage is occupied by academic institutions (15.78%). This analysis
reflects little participation of academics belonging to higher education institutions such
as universities or public research centers in intellectual property registries. Much of the
valuable information generated in universities has not been recorded, probably because
the main objective is teaching and in addition to the lack of equipment to carry out mass
formulations of the new product or an entity dedicated to marketing within these institu-
tions. The development of biocontrol products containing yeasts for use in the post-harvest
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period is in high demand by entrepreneurs related to post-harvest and end consumer
because it is a harmless product.

6. Conclusions

The use of yeasts as a post-harvest treatment to reduce decay caused by various phy-
topathogenic fungi in fruit of commercial interest is a sustainable and efficient alternative
to the utilization of synthetic fungicides. The application of yeasts will be able to reduce
the levels of fruit losses caused by phytopathogens, which will increase economic gains
because of a greater volume of production for commercialization. Its implementation in
postharvest will improve shelf life of the fruit and may lower crop costs by reducing the
use of synthetic products. The acceptance of the consumer for product acquisition—not
treated with any chemical—allowed opening new markets since it is a fruit not treated
with synthetic fungicides.
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