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Abstract: The incorporation of stress tolerance indices (STIs) with the early estimation of grain yield
(GY) in an expeditious and nondestructive manner can enable breeders for ensuring the success
of genotype development for a wide range of environmental conditions. In this study, the relative
performance of GY for sixty-four spring wheat germplasm under the control and 15.0 dS m−1

NaCl were compared through different STIs, and the ability of a hyperspectral reflectance tool for
the early estimation of GY and STIs was assessed using twenty spectral reflectance indices (SRIs;
10 vegetation SRIs and 10 water SRIs). The results showed that salinity treatments, genotypes,
and their interactions had significant effects on the GY and nearly all SRIs. Significant genotypic
variations were also observed for all STIs. Based on the GY under the control (GYc) and salinity
(GYs) conditions and all STIs, the tested genotypes were classified into three salinity tolerance
groups (salt-tolerant, salt-sensitive, and moderately salt-tolerant groups). Most vegetation and water
SRIs showed strong relationships with the GYc, stress tolerance index (STI), and geometric mean
productivity (GMP); moderate relationships with GYs and sometimes with the tolerance index (TOL);
and weak relationships with the yield stability index (YSI) and stress susceptibility index (SSI).
Obvious differences in the spectral reflectance curves were found among the three salinity tolerance
groups under the control and salinity conditions. Stepwise multiple linear regressions identified three
SRIs from each vegetation and water SRI as the most influential indices that contributed the most
variation in the GY. These SRIs were much more effective in estimating the GYc (R2 = 0.64 − 0.79)
than GYs (R2 = 0.38 − 0.47). They also provided a much accurate estimation of the GYc and GYs
for the moderately salt-tolerant genotype group; YSI, SSI, and TOL for the salt-sensitive genotypes
group; and STI and GMP for all the three salinity tolerance groups. Overall, the results of this study
highlight the potential of using a hyperspectral reflectance tool in breeding programs for phenotyping
a sufficient number of genotypes under a wide range of environmental conditions in a cost-effective,
noninvasive, and expeditious manner. This will aid in accelerating the development of genotypes for
salinity conditions in breeding programs.

Keywords: breeding; grain yield; multiple linear regression; spectral reflectance indices; stress
tolerance indices; vegetation index; water index

1. Introduction

Insufficient freshwater supplies for the agriculture sector require a parallel increase in
the use of nonconventional water resources for the sustainable production of food crops.
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Since there are ample sources of saline water, several countries in arid and semiarid regions
have embraced the use of saline water in the agricultural sector to support the shortage
of freshwater resources and complement the irrigation water demand [1–3]. However,
continuously irrigating crops with saline waters may lead to a significant reduction in their
potential yield if the salinity levels exceed the plant tolerance limits. Salinity stress could
reduce the potential yield of major agricultural crops by more than 50% [2,4,5]. Since bread
wheat is moderately tolerant of salinity, this crop still loses more than 60% of its potential
yield due to significant adverse impacts of salinity stress on their growth and development
through ion toxicities, nutritional imbalance, and osmotic stress [6–8]. Therefore, when
irrigating a wheat crop with saline water, it will be urgent to apply some feasible strategies
in order to alleviate these adverse impacts of salinity stress.

Although there are numerous strategies are available for alleviating salinity stress,
including a strategy of the exogenous application of nanoparticles, microelements, plant
hormones, and growth regulators [9], the selection and development of new genotypes
with high salt tolerance and maintaining an economic grain yield is still recognized as
the most feasible and effective strategy for addressing this challenge [7,10]. The primary
steps to enhance the salt tolerance of genotypes in breeding programs are to generate a
large number of crossing lines and subsequently selecting within these lines during the
evaluation process using several morphophysiological and biochemical plant traits as the
screening criteria [11,12]. In the evaluation process, plant breeders often use the grain yield
(GY) as the main screening criterion. Since GY is characterized by a low heritability and
high environment by genotype interactions, the right decision for identifying superior lines
with high GY too often needs to evaluate them in different environments and for several
growing seasons. Small combine harvesters could be used to harvest experimental plots
and measure the GY efficiently, but this method still remains laborious and expensive in
terms of financial and time resources, particularly when it has to be done for a large number
of genotypes that are usually evaluated by plant breeders. Additionally, it is difficult to
use this method to measure the GY of crossing lines at the early generations of a breeding
program, where the lines still have a small number of plants. Moreover, it is difficult to
estimate the GY before the plants reach the physiological maturity stage. Thus, creating
selection tools that are able to indirectly assess the GY for a sufficient number of lines at
early growth stages in a rapid, routine, time- and cost-efficient, and nondestructive manner
is urgently required in breeding programs.

Interestingly, during the different phenological growth stages, the potential GY of a
crop under any growing conditions can be predicted through several integrative physio-
logical traits, such as the photosynthetic area of the canopy, photosynthetic efficiency (PE),
photosynthetically active radiation (PAR), leaf area index (LAI), vegetative vigor, crop dry
matter (CDM), and the contents of the chlorophyll and water [13,14]. Therefore, several
studies have reported that the characteristics of spectral reflectance by a crop canopy at
specific regions of the electromagnetic spectrum are closely associated with the changes that
take place in these physiological traits [15–22]. For example, a close relationship was found
between the spectral reflectance at 760–1300 nm and the changes in the CDM and LAI in a
winter wheat crop [23,24], between reflectance at 680 and 740 nm and the change in PE in a
sunflower crop [25], and between spectral reflectance at 970, 1200, 1240, 1400, 1730, 1950,
2100, and 2250 nm and the changes in the leaf water status in different field crops [26–28].
Thus, more recent studies have suggested that GY can be estimated during different phe-
nological growth stages using the spectral reflectance tool by simultaneously estimating
the relevant crop traits that contribute to the GY. This tool can evaluate a large number of
crossing lines or genotypes in a fast and nondestructive manner. Therefore, this tool can
serve as a promising indirect selection criterion for breeding programs. Several spectral
reflectance indices (SRIs), which are formulated using simple mathematical equations
(e.g., differences and ratios) and spectral reflectance data at given wavelengths, have been
developed for this purpose. In general, the different SRIs are usually developed based on
their close relationships with different plant physiological traits, such as the photosynthetic
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capacity, CDM, pigment contents, chlorophyll fluorescence, LAI, transpiration rate, canopy
water content, etc. [19,22,26,28–32]. For instance, the different normalized difference vege-
tation indices (NDVI, BNDVI, GNDVI, and RNDVI), which combine wavelengths from
visible (VIS) and near-infrared (NIR) regions, were developed based on their relationship
with the photosynthetic capacity, pigment content, and green biomass [22,33–35]. The
different normalized water indices (NWI-1–4), which combine wavelengths from the NIR
region [30] and water balance index (WABI), which combine wavelengths from VIS and
shortwave-infrared (SWIR) regions [28,32], were developed based on their relationship
with the water status of the canopy. The dry matter content index (DMCI) and normalized
difference moisture index (NDMI) were also developed based on their strong relationship
with the shoot dry weight, photosynthesis rate, and stomatal conductance of bread wheat
under salinity stress conditions [19]. The different SRIs have been developed for several
field crops under either normal or stress conditions. This reflects that there are several SRIs
that could be used instead of the destructive selection criteria for breeding purposes as indi-
rect selection criteria to differentiate genotypic differences in the GY at early phenological
growth stages.

To date, several attempts have been made to evaluate the ability of using different veg-
etation SRIs and water SRIs as rapid and nondestructive screening criteria to differentiate
genotypes for GYs under water-stressed and/or well-watered conditions in different field
crops [15,16,36–42]. Some studies have reported that the SRIs, especially water SRIs, were
effective at differentiating genotypes for the GY under water-stressed conditions, while
they showed weak relationships with the GY under well-watered conditions; the opposite
was true in other studies. Additionally, some studies have reported that the GY can be
estimated at early phenological growth stages by SRIs, while other studies have mentioned
that efficient SRIs for estimating the GY appeared at the late growth stages. Furthermore,
several studies have evaluated the potential of SRIs as screening criteria using a small
number of genotypes, which restricts the use of SRIs for breeding purposes [36]. This
discrepancy among the results of studies requires further research. Besides, no results have
been published until now to evaluate the potential of using different SRIs to indirectly
estimate the GY for a large number of spring wheat lines under salinity stress conditions.
Most of the studies regarding the use of SRIs as screening criteria for evaluating a large
number of genotypes have been performed under normal condition or water and tempera-
ture stresses conditions. However, for salinity studies, the use of SRIs as screening criteria
has been performed using a rather limited number of genotypes [19,22,26,35].

Generally, the performance of all genotypes for the grain yield is often not consistent
across different levels of salinity stress [43]. Therefore, to select desirable genotypes that
perform well under a wide range of stress levels, several stress tolerance indices (STIs)
that are calculated in simple mathematical equations and reflect the performances of
genotypes in both non-stress and stress conditions have been proposed. A common STI
is the yield stability index (YSI), which assess the performances of genotypes for GYs
under stress conditions relative to GYs under non-stress conditions. Therefore, this index
indicates the amount of genetic resistance to stress where the genotypes with a high
value of YSI perform well in both conditions [44]. Therefore, this index is widespread
and has a broad relevance for evaluating the salt tolerance of genotypes [45,46]. The
stress tolerance index (STI) is useful in identifying genotypes with high stress tolerance
and high potential yields [47]. The absolute differences in the GY between stress and
nonstress conditions is called the tolerance index (TOL). The higher values of this index
indicate the susceptibility of a given genotype to stress [47]. The stress susceptibility
index (SSI), proposed by Singh et al. [48], estimates the relative tolerance for GY reduction
of a genotype relative to the average reduction of GY for all genotypes due to stress.
Previous studies have reported that genotypes with a value of SSI greater than the unit
are more tolerant to stress than those with SSI lower than the unit [49]. The geometric
mean productivity (GMP estimates the performance of GYs of genotypes under stress
and nonstress conditions, taking into consideration the variability in stress intensities over
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the years and in different environments [47]. Therefore, the different STIs can provide
reliable indications to evaluate the performance of a genotype for a GY under either stress
conditions, nonstress conditions, or both conditions. With the STIs, we can define the
genotypes that exhibited good or weak performances in both conditions and good only in
the stress condition or in nonstress condition [47].

As far as we are aware, this is the first report on spectrally evaluating the GYs and
STIs of a large number of wheat genotypes under control and salinity conditions using
SRIs. The main goal of this study was to evaluate the potential of using different SRIs as
an indirect screening tool to rapidly and nondestructively assess the salt tolerance of a
large number of wheat genotypes based on their relationships with the GY under control
and salinity conditions and different STIs. The specific objectives were to (1) evaluate the
impacts of two salinity levels on GY, STIs, and SRIs of advanced breeding wheat lines and
commercial wheat cultivars; (2) classify the salt tolerance levels of the evaluated lines and
cultivars based on GYs and STIs; (3) compare the spectral reflectance signatures of the
canopy for different salinity tolerance groups; and (4) assess the potential of SRIs as rapid
and nondestructive tools for detecting GYs and STIs of different salinity tolerance groups.

2. Results
2.1. Impact of Salinity Treatment, Genotype, Year, and Their Interactions on Grain Yield, Stress
Tolerance Indices, and Spectral Reflectance Indices

Mean squares from the ANOVA analysis (Table 1) revealed that the salinity treatment
(ST) main effect in each year and the combined analysis of two years was significant for the
GY and all SRIs, except for one and five out of the 10 vegetation SRIs, as well as one and
three out of the 10 water SRIs in the first year and second year, respectively. The genotype
(G) main effect in each year and the combined analysis was significant for the GY, all SRIs,
and all STIs. The ST by G interaction had a highly significant effect (p ≤ 0.001) on the
GY and all SRIs, except for two out of 10 water SRIs in the second year (Table 1). The
years’ (Y) main effect in the combined analysis was not significant for the GYs and all STIs,
except for the SSI but was significant for almost all SRIs. The Y by ST interaction was not
significant for the GY, two vegetation SRIs, and three water SRIs. The Y by G interaction
was highly significant for GYs, all SRIs, and all STI, except for the STI and GMP (Table 1).
The interaction effect between the ST, G, and Y was significant for all SRIs but not for
the GY (Table 1).

2.2. Genotypic Performance in Grain Yield, Stress Tolerance Indices, and Spectral Reflectance
Indices under Control and Salinity Conditions

Table 2 displays the minimum, maximum, and mean values across all genotypes for
the GY, SRIs, and STIs under the control and salinity conditions in both years. There was
a wide range between the minimum and maximum values for the GY, all SRIs (except
the BNDVI and WI), and all STIs under the control and salinity conditions in both years.
In general, the maximum values were two–five times higher than the minimum values for
the GY and all indices, which indicated broad genotypic differences for these traits under
the control and salinity conditions (Table 2). For instance, the GYs across all genotypes
ranged from 3.92 to 7.24 tons ha−1 and from 4.24 to 7.81 tons ha−1 under the control
treatment and from 2.51 to 4.81 tons ha−1 and from 2.27 to 5.21 tons ha−1 under the salinity
treatment in the first and second years, respectively (Table 2). Additionally, the histogram
analysis for the GY as the average values of two years under the control and salinity
conditions provided a very general view for the distribution of GY of the tested genotypes,
which showed continuous variations for the GY under both conditions (Figure 1). Generally,
the tested genotypes were normally distributed under both conditions. Regarding the SRIs,
the mean values of the vegetation SRIs were, in general, higher for the control treatment
than those for the salinity treatment, particularly in the first year. Similar trends were also
observed for four out of the 10 water SRIs (WI, NDWI, NDMI, and SWSI-1) in both years;
the opposite was true for the other water SRIs (Table 2).
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2.3. Association of Grain Yield and Stress Tolerance Indices with Spectral Reflectance Indices across
All Genotypes

The correlations of GYs and STIs with different SRIs that were calculated from spectral
measurements taken under the control and salinity treatments for each year and combined
two years are presented in Figure 2. In general, the different SRIs from both treatments did
not show any significant correlations with the YSI and SSI, with only a few SRIs from the
salinity treatment exhibiting a weak correlation (r = −0.36 − 0.36) with both indices at the
second year (Figure 2). Seven out of the 10 vegetation SRIs from either the control or salinity
treatments (BNDVI, GNDVI, RNDVI, Chlgreen, EVI, MTVI, and OSAVI) exhibited strong
correlations with the GYc, STI, and GMP (r = 0.70 − 0.90); weak-to-moderate correlations
with the GYs (r = 0.28 − 0.70); and weak correlations with the TOI (r = 0.25 − 0.49) in each
year and combined two years. Five out of the 10 water SRIs (NDWI, NDMI, NMDI, SWSI-1,
and SWSI-2) from the control treatment exhibited strong correlations with the GYc, STI,
and GMP (r = 0.70 − 0.89), whereas they exhibited moderate-to-strong correlations with
the same three traits (r = 0.50 − 0.90) when they calculated from the salinity treatment. At
the first year and combined two years, the following water SRIs: WI, NWI-1, NWI-2, and
WBI from the salinity treatment correlated better with the GYc, GYs, STI, and GMP than
those calculated from the control treatment (Figure 2).

Table 1. Mean squares for the effects of the salinity treatment (ST), genotypes (G), year (Y), and their possible interactions
by ANOVA on the grain yield (GY), different spectral reflectance indices (SRIs), and stress tolerance indices (STIs) for each
growing year and combined two years.

2019–2020 2020–2021 Combined Two Years

Effect ST G ST × G ST G ST × G Y ST ST × Y G G × Y ST × G ST × G × Y

DF 1 63 63 1 63 63 1 1 1 63 63 63 63

GY 333.5 *** 1.01 *** 0.605 *** 333.2 *** 1.05 *** 0.526 *** 14.09 ns 666.7 *** 0.002 ns 1.85 *** 0.219 ** 1.05 *** 0.082 ns

Vegetation SRIs

NDVI-1 0.864 *** 0.013 *** 0.012 *** 0.117 * 0.015 *** 0.008 *** 0.693 * 0.808 *** 0.173 *** 0.018 *** 0.010 *** 0.010 *** 0.011 ***
NDVI-2 0.686 *** 0.010 *** 0.010 *** 0.056 ns 0.013 *** 0.008 *** 0.314 * 0.566 *** 0.175 ** 0.014 *** 0.009 *** 0.008 *** 0.010 ***
BNDVI 0.004 ns 0.010 *** 0.009 *** 0.021 * 0.012 *** 0.001 *** 0.022 * 0.003 * 0.022 *** 0.021 *** 0.001 *** 0.009 *** 0.001 ***
GNDVI 0.034 * 0.040 *** 0.002 *** 0.009 ns 0.037 *** 0.003 *** 0.007 ns 0.040 ** 0.004 ns 0.074 *** 0.003 *** 0.002 *** 0.002 ***
RNDVI 0.384 ** 0.045 *** 0.004 *** 0.143 ** 0.024 *** 0.004 *** 0.726 *** 0.498 *** 0.029 * 0.064 *** 0.005 *** 0.005 *** 0.003 ***

Chlgreen 60.6 ** 33.4 *** 1.25 *** 42.6 * 42.8 *** 4.17 *** 115.5 ** 102.4 *** 0.794 ns 73.6 *** 2.56 *** 2.97 *** 2.45 ***
Chlred-edge 90.7 *** 1.27 *** 1.26 *** 8.16 ns 2.10 *** 1.12 *** 71.91 * 76.62 *** 22.22 ** 1.97 *** 1.39 *** 1.11 *** 1.27 ***

EVI 2.47 ** 0.090 *** 0.010 *** 0.052 ns 0.050 *** 0.009 *** 0.572 ** 0.905 *** 1.62 *** 0.130 *** 0.010 *** 0.011 *** 0.007 ***
MTVI 2.61 ** 0.084 *** 0.010 *** 0.234 * 0.048 *** 0.008 ** 0.037 ns 0.640 *** 2.20 *** 0.122 *** 0.009 *** 0.011 *** 0.007 ***
OSAVI 0.714 ** 0.051 *** 0.004 *** 0.021 ns 0.027 *** 0.004 *** 0.410 ** 0.490 *** 0.245 *** 0.074 *** 0.005 *** 0.005 *** 0.003 ***

Water SRIs

WI 0.194 *** 0.003 *** 0.003 *** 0.383 ** 0.003 *** 0.003 *** 0.518 ** 0.562 *** 0.016 * 0.004 *** 0.002 *** 0.003 *** 0.003 ***
NWI-1 0.063 ** 0.002 *** 0.002 *** 0.147 ** 0.009 *** 0.007 *** 0.397 *** 0.202 *** 0.009 * 0.002 *** 0.001 *** 0.001 *** 0.001 ***
NWI-2 0.037 *** 0.006 *** 0.006 *** 0.066 ** 0.005 *** 0.005 *** 0.093 ** 0.101 *** 0.002 ns 0.007 *** 0.004 *** 0.006 *** 0.003 ***

WBI 1.32 ** 0.031 *** 0.024 *** 0.226 ns 0.022 * 0.017 ns 3.12 ** 1.32 *** 0.226 * 0.035 *** 0.018 ** 0.021 *** 0.021 ***
NDWI 0.465 ** 0.023 *** 0.008 *** 0.080 * 0.019 *** 0.005 *** 0.909 ** 0.465 *** 0.080 ** 0.038 *** 0.004 *** 0.008 *** 0.005 ***
NDMI 0.470 ** 0.022 *** 0.008 *** 0.049 * 0.021 *** 0.006 *** 0.680 ** 0.411 *** 0.108 ** 0.038 *** 0.004 *** 0.008 *** 0.006 ***
DMCI 0.015 * 0.001 *** 0.002 *** 0.077 ns 0.005 *** 0.005 *** 0.087 * 0.079 * 0.012 ns 0.004 *** 0.003 *** 0.004 *** 0.003 ***
NMDI 0.087 * 0.027 *** 0.005 *** 0.145 ** 0.030 *** 0.007 *** 0.213 * 0.229 *** 0.004 ns 0.052 *** 0.005 *** 0.005 *** 0.007 ***
SWSI-1 1.55 * 0.243 *** 0.022 *** 0.048 ns 0.194 *** 0.023 ns 0.796 * 1.07 *** 0.529 ** 0.415 *** 0.022 *** 0.024 *** 0.021 ***
SWSI-2 0.036 ns 0.211 *** 0.054 *** 6.04 ** 0.105 *** 0.048 *** 2.82 * 2.57 *** 3.51 *** 0.264 *** 0.052 *** 0.051 *** 0.051 ***

Stress tolerance indices (STIs)

YSI 0.023 *** 0.021 *** 0.017 ns 0.040 *** 0.004 ***
SSI 0.199 *** 0.206 *** 0.005 * 0.372 *** 0.033 **
STI 0.040 *** 0.045 *** 0.028 ns 0.075 *** 0.009 ns

TOL 1.21 *** 1.05 *** 0.005 ns 2.10 *** 0.164 *
GMP 0.460 *** 0.540 *** 7.28 ns 0.885 *** 0.115 ns

*, **, and *** indicate significance at p ≤ 0.05, 0.01, and 0.001, respectively, and ns indicates not significant. The full names of the different
SRIs and STIs are listed in Table 6.

2.4. Grouping Genotypes Based on Their Salt Tolerance Level

Based on grain yields of genotypes under the control (GYc) and salinity (GYs) condi-
tions and four STIs (YSI, SSI, TOL, STI, and GMP) across two years, the genotypes were
grouped into three distinct salinity tolerance groups (Figure 3). The first group contained
four commercial cultivars (Kawz, Misr-1, Shandawel-1, and Gemiza-9) and 21 RILs. The
genotypes of this group attained higher values for the GYc, GYs, STI, TOL, and GMP
(Table 3). The second group included a salt-sensitive genotype (Sakha 61), moderately
salt-tolerant genotype (Sids 1), and 17 RILs. These genotypes attained a lower value for
the GYs, YSI, STI, and GMP and a higher value for the SSI. The genotypes in the third
group, containing the two salt-tolerant genotypes (Kharchia 65 and Sakha 93) and 18 RILs,
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attained a higher value for the YSI; a lower value for the SSI and TOL; and a medium value
for the GYs, STI, and GMP (Table 3). Based on these results, the genotypes in the first,
second, and third groups could be classified as salt-tolerant, salt-sensitive, and moderately
salt-tolerant genotypes, respectively (Figure 4).

Table 2. Statistical parameters (minimum (Min), maximum (Max), and mean values) of all the tested genotypes for the grain yield
(GY), different spectral reflectance indices (SRIs), and stress tolerance indices (STIs) under the, control and salinity treatments during
two growing years. Data is the average of three replications.

Traits

2019–2020 2020–2021

Control Salinity Control Salinity

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

GY
(ton ha−1) 3.92 7.24 5.54 2.51 4.81 3.67 4.24 7.81 5.81 2.27 5.21 3.94

Vegetation SRIs

NDVI-1 0.496 0.769 0.633 0.276 0.727 0.538 0.387 0.776 0.663 0.340 0.767 0.628
NDVI-2 0.429 0.706 0.563 0.271 0.650 0.478 0.320 0.698 0.573 0.305 0.698 0.549
BNDVI 0.720 0.945 0.871 0.711 0.960 0.878 0.704 0.947 0.871 0.658 0.944 0.856
GNDVI 0.485 0.901 0.747 0.412 0.876 0.728 0.532 0.906 0.749 0.467 0.885 0.739
RNDVI 0.487 0.931 0.803 0.391 0.900 0.740 0.666 0.950 0.852 0.542 0.936 0.813
Chlgreen 1.297 16.867 6.023 0.926 13.152 5.228 2.088 17.532 6.734 1.357 14.048 6.068

Chlred-edge 1.828 5.874 3.202 0.752 4.650 2.230 1.099 5.860 3.474 0.958 5.866 3.182
EVI 0.321 0.972 0.751 0.187 0.920 0.591 0.507 0.917 0.714 0.385 1.007 0.737

MTVI 0.317 0.962 0.725 0.151 0.898 0.560 0.430 0.861 0.632 0.339 0.983 0.681
OSAVI 0.415 0.887 0.742 0.292 0.849 0.655 0.558 0.873 0.752 0.463 0.879 0.737

Water SRIs

WI 1.071 1.300 1.167 1.016 1.202 1.122 1.126 1.321 1.228 1.054 1.258 1.164
NWI-1 −0.116 0.043 −0.039 −0.070 0.081 −0.013 −0.132 −0.040 −0.091 −0.094 0.014 −0.052
NWI-2 −0.130 −0.034 −0.077 −0.092 −0.008 −0.057 −0.138 −0.059 −0.102 −0.114 −0.026 −0.076

WBI −0.095 0.514 0.207 −0.001 0.628 0.324 −0.246 0.374 0.114 −0.189 0.566 0.163
NDWI 0.484 0.887 0.750 0.460 0.837 0.681 0.534 0.936 0.799 0.514 0.910 0.770
NDMI −0.872 −0.464 −0.726 −0.810 −0.446 −0.656 −0.917 −0.535 −0.762 −0.882 −0.455 −0.739
DMCI −0.263 −0.088 −0.187 −0.326 −0.112 −0.200 −0.388 −0.035 −0.201 −0.484 −0.109 −0.229
NMDI 0.314 0.816 0.645 0.443 0.795 0.615 0.442 0.835 0.683 0.091 0.828 0.644
SWSI-1 0.363 1.474 0.980 0.308 1.463 0.853 0.525 1.571 0.992 0.419 1.654 0.970
SWSI-2 0.854 2.242 1.681 0.884 2.280 1.662 1.078 1.760 1.425 1.127 2.439 1.676

Stress tolerance indices (STIs)

2019–2020 2020–2021

YSI 0.446 0.869 0.670 0.429 0.857 0.683
SSI 0.399 1.621 0.979 0.439 1.790 0.987
STI 0.395 1.054 0.667 0.319 1.193 0.684

TOL 0.593 3.437 1.864 0.707 3.728 1.863
GMP 3.481 5.696 4.497 3.196 6.376 4.772

The full names of the different SRIs and STIs are listed in Table 6.

2.5. Spectral Signatures of the Three Salinity Tolerance Groups under Control and
Salinity Conditions

Figure 5 shows how the spectral signatures of a canopy depend on the salt tolerance
level of wheat genotypes under control and salinity conditions. Generally, the reflectance
curves of the three salinity tolerance groups are well-separated from each other at the three
main spectrum regions. Within the visible region (VIS, 400–700 nm), the spectral reflectance
of the salt-tolerant group under the control and salinity conditions was lower than that of
the salt-sensitive and moderately salt-tolerant groups, with an obvious green peak and
red valley for the three groups under both conditions (Figure 5). Within the near-infrared
region (NIR, 700–1300 nm), the salt-tolerant group showed the highest reflectance values
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under both conditions, whereas a lower canopy reflectance in this region was found for
the salt-sensitive group under salinity conditions. In addition, there was obvious valleys
around 960 and 1170 nm for the three groups under both conditions (Figure 5). Within the
shortwave-infrared region (SWIR, 1300–2500 nm), the salt-tolerant group under the control
condition had a lower canopy reflectance; the opposite held true for salt-sensitive and
moderately salt-tolerant groups under the salinity conditions. In addition, the three groups
had obvious peaks around 1640 and 2200 nm under the control and salinity conditions
(Figure 5). These obvious differences in the spectral signatures between the three groups of
salinity tolerance at the three parts of the spectrum provided an optical basis for analyzing
and constructing the relationship between the salinity tolerance level of the genotypes and
spectral reflectance indices in this study.

2.6. Prediction of Grain Yield of the Three Salinity Tolerance Groups under Control and Salinity
Conditions by Spectral Reflectance Indices

The relationships between the grain yield and different vegetation and water SRIs
were first analyzed by the stepwise multiple linear regression (SMLR) method in order to
determine the most effective SRIs that contributed the most variations in the GY under the
control and salinity conditions. In general, the vegetation SRIs or water SRIs measured
under the control or salinity conditions fitted better with the GYc (R2 = 0.64 − 0.79) than
GYs (R2 = 0.38 − 0.47) (Table 4). The GNDVI, RNDVI, and Chlgreen from the vegetation
SRIs and WI, NMDI, and SWSI-1 from the water SRIs were detected by SMLR as the most
important indices and explained most of the variations in the GYc and GYs. The Chlgreen
and GNDVI measured under control conditions explained 79.0% and 38.0% of the variations
in the GYc and GYs, respectively, while, when measured under salinity conditions, they
explained 69.0% and 47.0% of the variations in the GYc and GYs, respectively (Table 4). The
SWSI-1 measured under salinity conditions explained 64.0% and 42.0% of the variations
in the GYc and GYs, respectively, while, when combined with the WI and NDMI and
measured under control conditions, it explained 77.0% of the variations in the GYc.
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Figure 1. Distribution of the grain yield under the control and salinity conditions.
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Figure 2. Correlation coefficients (r) of the relationships between different vegetation SRIs and water SRIs that were
calculated from spectral measurements taken under both the control and salinity conditions and grain yield under the
control (GYc), grain yield under salinity (GYs), and five stress tolerance indices (STIs) for each year and across two years.
The r is significant at alpha = 0.05 when their values ≤−0.25 or ≥0.25. The full names of the abbreviations of five stress
tolerance indices and different spectral reflectance indices are mentioned in Table 6.
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Table 3. Mean values of the grain yield under the control and salinity conditions, and different stress tolerance indices of
the three clusters group. The values averaged over the two years.

Traits Salt-Tolerant Group Salt-Sensitive Group Moderately Salt-Tolerant Group

Number of genotypes in each cluster 25 19 20
Grain yield under control condition

(GYc, ton ha−1) 6.23 5.45 5.18

Grain yield under salinity condition
(GYs, ton ha−1) 4.01 3.41 3.93

Yield stability index (YSI) 0.65 0.63 0.76
Stress susceptibility index (SSI) 1.07 1.13 0.73

Stress tolerance index (STI) 0.78 0.58 0.64
Tolerance index (TOL) 2.22 2.04 1.25

Geometric mean productivity (GMP) 4.99 4.30 4.51

The three vegetation SRIs (GNDVI, RNDVI, and Chlgreen) from either the control or
salinity treatment showed a strong relationship with GYc (R2 = 0.76 − 0.89) and moderate-
to-strong relationship with the GYs (R2 = 0.56 − 0.71) for the moderately salt-tolerant
genotypes group (Figure 6). The three vegetation SRIs from the control treatment showed a
strong relationship with the GYc for the salt-tolerant genotypes group (R2 = 0.66− 0.72) and
moderate relationship with the GYs for salt-sensitive genotypes group (R2 = 0.57 − 0.63);
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however, when calculated from the salinity treatment, they exhibited moderate relation-
ships with the GYc for the salt-sensitive genotypes group (R2 = 0.45− 0.52), as well as mod-
erate relationships with the GYs for the salt-tolerant genotypes group (R2 = 0.43 − 0.50)
(Figure 6). The three water SRIs (WI, NDMI, and SWSI-1) from the control treatment
showed strong relationships with the GYc (R2 = 0.63 − 0.86) and a moderate-to-strong rela-
tionship with the GYs (R2 = 0.58 − 0.72) for the moderately salt-tolerant genotypes group,
whereas they exhibited moderate relationships with the GYc and GYs for the salt-sensitive
genotypes group (R2 = 0.44 − 0.58) (Figure 7). The SWSI-1 calculated from the salinity
treatment was the only index that exhibited a strong relationship with the GYc (R2 = 0.82)
and GYs (R2 = 0.63) for the moderately salt-tolerant genotypes group. The NDMI and
SWSI-1 calculated from the salinity treatment showed a moderate relationship with the
GYc for the salt-sensitive genotypes group (R2 = 0.57 and 0.58) and with the GYs for the
salt-tolerant genotypes group (R2 = 0.52 and 0.54), respectively (Figure 7).
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Table 4. Selection of the most important spectral reflectance indices (SRIs) for assessment of the
grain yield under the control (GYc) and salinity (GYs) conditions based on a stepwise multiple linear
regression analysis. The estimates were calculated across two years.

Treatments Equation R2 RMSE

Vegetation SRIs

Control
GYC = 4.456 + 0.190(Chlgreen) 0.79 0.266
GYS = 1.446 + 3.155(GNDVI) 0.38 0.317

Salinity GYC = 3.167 + 2.372(RNDVI) + 0.117(Chlgreen) 0.69 0.321
GYS = 1.355 + 3.341(GNDVI) 0.47 0.292

Water SRIs

Control
GYC = 6.037 − 4.07(WI) − 3.91(NDMI) + 1.62(SWSI-1) 0.77 0.279

GYS = 1.457 + 3.539(NMDI) 0.38 0.316

Salinity GYC = 3.574 + 2.299(SWSI-1) 0.64 0.345
GYS = 2.616 + 1.307(SWSI-1) 0.42 0.305

R2 and RMSE indicate coefficients of determination and root mean squared errors, respectively. The full names of
the SRIs are mentioned in Table 6.
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Figure 6. Functional relationship between the selected vegetation SRIs measured under the control and salinity conditions
and grain yield under the control (GYc) and salinity (GYc) conditions for the salt-tolerant (T), salt-sensitive (S), and
moderately salt-tolerant (MT) genotypes groups. *, **, and *** indicate significance at the 0.05, 0.01, and 0.001 probability
levels, respectively, and ns: not significant. The full names of the SRIs are mentioned in Table 6.
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Figure 7. Functional relationship between the selected water SRIs measured under the control and salinity conditions and
grain yield under the control (GYc) and salinity (GYc) conditions for the salt-tolerant (T), salt-sensitive (S), and moderately
salt-tolerant (MT) genotypes groups. *, **, and *** indicate significance at the 0.05, 0.01, and 0.001 probability levels,
respectively, and ns: not significant. The full names of the SRIs are mentioned in Table 6.
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2.7. Prediction of Stress Tolerance Indices of the Three Salinity Tolerance Groups under Control and
Salinity Conditions by Spectral Reflectance Indices

Across two salinity treatments and two years, the three vegetation SRIs exhibited
a strong relationship with the STI and GMP (R2 = 0.61 − 0.89) and a weak-to-moderate
relationship with the YSI, SSI, and TOL (R2 = 0.13 − 0.51) for the three salinity tolerance
groups (Table 5). SWSI-1 was the only index from water SRIs that exhibited a strong
relationship with the STI and GMP (R2 = 0.63 − 0.91) for the three salt tolerance groups.
The NDMI showed the strongest relationships with the STI and GMP (R2 = 0.65 − 0.69) for
the salt-tolerant and moderately salt-tolerant genotypes groups, whereas the WI showed
the strongest relationships with both indices (R2 = 0.65 to 0.66) for only the moderately salt-
tolerant genotypes group. Three vegetation SRIs and three water SRIs exhibited a weak and
nonsignificant relationship with the YSI and SSI for only the moderately salt-tolerant geno-
types group, whereas they exhibited weak-to-moderate relationships (R2 = 0.25 − 0.51)
with both indices for the salt-tolerant and salt-sensitive genotypes groups (Table 5).

Table 5. The best models of the regression and determination coefficients (R2) for the relationships between the selected
vegetation SRIs and water SRIs and different stress tolerance indices (STIs) across two salinity treatments and two years for
the three salinity tolerance groups. L and Q indicate linear and quadratic fitting models, respectively.

STIs Salt Tolerance Groups
Vegetation SRIs Water SRIs

GNDVI RNDVI Chlgreen WI NDMI SWSI-1

YSI
Salt-tolerant group 0.25 * Q 0.30 * Q 0.17 ns Q 0.14 ns Q 0.43 ** Q 0.33 * Q
Salt-sensitive group 0.49 ** Q 0.51 ** Q 0.41 ** Q 0.29 * Q 0.48 ** Q 0.47 ** Q

Moderately salt-tolerant group 0.13 ns Q 0.21 ns Q 0.13 ns Q 0.09 ns Q 0.09 ns Q 0.16 ns Q

SSI
Salt-tolerant group 0.25 * Q 0.30 * Q 0.17 ns Q 0.14 ns Q 0.43 ** Q 0.33 * Q
Salt-sensitive group 0.49 ** Q 0.51 ** Q 0.41 ** Q 0.29 * Q 0.48 ** Q 0.47 ** Q

Moderately salt-tolerant group 0.13 ns Q 0.21 ns Q 0.13 ns Q 0.09 ns Q 0.09 ns Q 0.16 ns Q

STI
Salt-tolerant group 0.61 *** Q 0.65 *** Q 0.65 *** Q 0.33 * Q 0.65 *** Q 0.71 *** Q
Salt-sensitive group 0.75 *** Q 0.78 *** Q 0.78 *** Q 0.15 ns L 0.41 ** Q 0.66 *** Q

Moderately salt-tolerant group 0.88 *** L 0.88 *** Q 0.88 *** Q 0.65 *** L 0.69 *** Q 0.90 *** Q

TOL
Salt-tolerant group 0.27 * Q 0.31 * Q 0.19 ns Q 0.14 ns Q 0.34 * Q 0.30 * Q
Salt-sensitive group 0.46 ** Q 0.46 ** Q 0.41 ** Q 0.32 * Q 0.50 ** Q 0.49 ** Q

Moderately salt-tolerant group 0.32 * Q 0.39 * Q 0.32 * Q 0.19 ns Q 0.25 * L 0.36 * Q

GMP
Salt-tolerant group 0.62 *** Q 0.67 *** Q 0.65 *** Q 0.33 * Q 0.67 *** Q 0.72 *** Q
Salt-sensitive group 0.71 *** Q 0.75 *** Q 0.75 *** Q 0.15 ns Q 0.41 ** Q 0.63 *** Q

Moderately salt-tolerant group 0.89 *** L 0.89 *** Q 0.89 *** Q 0.66 *** Q 0.69 *** Q 0.91 *** Q

*, **, and *** indicate significance at the 0.05, 0.01, and 0.001 probability levels, respectively, and ns: not significant. The full names of the
SRIs and STIs are mentioned in Table 6.

3. Discussion

In general, the final GY is closely correlated to multiple plant parameters, particularly
those related to biomass allocation, as well as the interception and conversion of sunlight.
Additionally, almost all of these parameters are formed at key growth stages along the
crop growth cycle, so GY represents the entire life of the plants and reflects the extent and
magnitude of the negative impacts of environmental stresses to which the plants have
been exposed [50–52]. Therefore, the GY is considered one of the most targeted traits for
evaluating and improving genotypes under both normal and stress conditions in breeding
programs. In this study, the mean squares from the ANOVA analysis revealed that there are
highly significant differences between the ST and G for the GY in the two years (Table 1),
with a wide range between the minimum and maximum values for this trait under the
control and salinity conditions (Table 2), which confirms the importance of the GY as an
effective screening criterion for evaluating genotypes under both normal and stress condi-
tions. However, because the performances of the genotypes for the GY are not consistent
across the normal and stress conditions, several STIs have been proposed as valuable tools
for helping breeders to select appropriate genotypes for different environments based on
the GY. For instance, high values of the STI indicate a high tolerance to stress with a high
yield potential for a given genotype [47]. The YSI was able to identify genotypes that
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have better GYs under both stress and normal conditions, while the YI was able to select
genotypes with a high GY under only stress conditions [44]. The SSI may be useful for
isolating susceptible genotypes where the genotypes with high values for this index are
more sensitive to stress and vice versa [49]. To identify the genotypes that have the least
reduction in GY under stress conditions compared to normal conditions, the TOL may be
appropriate in achieving this goal [53]. The GMP is another index with the potential for
selecting genotypes that yield well under normal conditions and yield reasonably well
under stress conditions [47]. Therefore, these indices provide better opportunities for
breeders to select genotypes that do well under a wide range of environmental conditions.
In this study, the results of the ANOVA showed highly significant differences between
the G for all STIs in the tested years (Table 1), with a wide range between the minimum
and maximum values for these indices (Table 2). Importantly, these STIs, along with the
GY under both conditions across two years, succeeded in classifying the tested genotypes
into three distinct groups according to their level of salt tolerance (Figure 3 and Table 3).
These results indicated that the different STIs based on GY can be considered as effective
screening criteria when evaluating the salt tolerance of wheat genotypes and could help
breeders in identifying genotypes with superior performances under either normal or salin-
ity conditions, as well under both conditions. Similar findings were reported by several
studies for several crops under different stressful environments [54–59].

However, GY as a screening criterion has a high genotype-by-environment interaction.
The yield potential of wheat is very sensitive to various meteorological variables that
occur from anthesis to grain filling, which differ from year to year and one environment to
another [60,61]. Therefore, repetitive evaluations of genotypes based on GY in different
locations for several years are necessary for selecting genotypes that do well under all
conditions. Additionally, calculating the different STIs based on the GY requires waiting
until the plants reach their maturity stage, as well as evaluating the yield performances of
genotypes under both normal and stress conditions. This routine work is time-consuming,
cost-inefficient, and labor-intensive, so it makes the evaluation of a large number of geno-
types based on the GY and different STIs impractical. Therefore, rapid and cost- and
time-efficient tools with early estimations of the GY and STIs are urgently needed, which is
of significant importance not only for plant breeders when they evaluate a large number
of genotypes under a wide range of environmental conditions but, also, for farmers to
manage wheat production under salinity conditions.

3.1. Interpreting Canopy Hyperspectral Behavior of Salinity Tolerance Groups under Control and
Salinity Conditions

The results of Figure 5 demonstrated that there are clear differences in the shape of
canopy spectral reflectance between contrasting salinity tolerance groups under control
and salinity conditions in the three main parts of the spectrum (VIS, NIR, and SWIR),
which indicate that it is possible to estimate the GY and STIs in terms of their spectral
behavior early in a rapid and cost-efficient manner. The salt-tolerant genotypes group,
which attained higher values for the GYc, GYs, STI, TOL, and GMP (Table 3), showed lower
canopy reflectance in the VIS spectrum and higher canopy reflectance in the NIR spectrum
under both conditions, whereas the opposite trend was observed for the salt-sensitive
genotypes group, which attained a lower value for the GYs, YSI, STI, and GMP (Table 3),
followed by the moderately salt-tolerant genotypes group under salinity conditions. The
latter two groups under salinity conditions reflected a higher amount of radiation in the
SWIR spectrum, while the opposite trend was observed for the former group under the
control conditions (Figure 5). Indeed, the canopy reflectance in the three portions of the VIS
spectrum (blue, green, and red) depends mainly on the photosynthetic capacity and content
of the different leaf pigments, mainly chlorophyll, carotenoids, flavonoids, and anthocyanin,
while canopy reflectance in the NIR region is influenced mainly by the characteristics of
the leaf structure, biomass accumulation, and leaf area index, which induce a direct effect
on the scattering of light at this region [35,62–64]. The canopy reflectance at weak and
strong water absorption bands located in NIR and SWIR regions, respectively, are strongly
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related to the canopy’s water content [28,30,65]. Higher reflectance in the VIS and SWIR
regions and lower reflectance in the NIR region for the salt-sensitive genotypes group under
salinity condition, suggesting a low amount of leaf pigment contents and photosynthetic
capacity, a decrease in plant water content, and significant changes in leaf mesophyll
structure and biomass accumulation for genotypes of this group, respectively, and vice-
versa for genotypes of salt-tolerant group. These substantial variations in the shape of
canopy spectral reflectance in the full-range of the spectrum (VIS, NIR, and SWIR) between
contrasting salinity tolerance groups may be attributable to the various effects of different
components of salinity stress (osmotic stress, ion toxicities, and ion imbalance) on the
different characteristics of canopy such as leaf pigments, leaf structure, dry matter, and
plant water status. For example, the buildup of toxic ions (Na+ and Cl−) in the leaf blade
under salinity conditions result in a decrease in contents of chlorophyll and carotenoid and
thus more leaf senescence and necrosis which eventually lead to an increase in reflectance
in the VIS region, mainly in blue and red regions [62,64,66]. Because K+ ion plays a
vital role in maintains cell turgor pressure and thereby maintains mesophyll structure
and thickness, lower concentrations of K+ in the leaf blade under salinity conditions
cause changes in leaf mesophyll structure and therefore increase the scattering of light
in the NIR region. Additionally, the low water content of the canopy under salinity
conditions, which is induced by the osmotic potential of the soil solution due to excess
salt concentrations, causes a parallel increase in reflectance at strong water absorption
bands located in the SWIR region [30,65]. Because the salt-tolerant genotypes can generate
distinct salt tolerance mechanisms to overcome the negative impacts of salinity stress on
their different characteristics of canopy compared to salt-sensitive genotypes, this may
explain why there are clear differences in the shape of canopy spectral reflectance between
the salt-tolerant and salt-sensitive groups in the three parts of the spectrum. Overall, these
findings highlight the importance of analyzing the canopy hyperspectral signatures as a
rough screening tool for evaluating salinity tolerance of a large number of wheat genotypes
in breeding programs. Therefore, in this study, we continued to study the potential of using
different SRIs, which incorporate specific wavelengths selected from the three parts of the
spectrum, as a proxy tool for the early assessment of GY and STIs.

3.2. The Ability of SRIs for Assessment of GY and STIs

Early and accurate estimation of the GY would be useful for plant breeders to reduce
the number of crosses in breeding programs as well as for farmers to provide them with a
more integrative tool to manage wheat production under a wide range of environmental
conditions. The SRIs, which, based on few and specific wavelengths selected from the
three parts of the spectrum, offer a simple approach for early estimating the GY, and thus
could be used as a fast and cheap screening tool for evaluating genotypes under normal
and stress conditions. In this study, we observed significant differences between ST, G, and
their interaction for most vegetation and water SRIs (Table 1), with a wide range between
the minimum and maximum values for these indices under control and salinity conditions
(Table 2). These results confirm that it is possible to estimate the genotypic differences in
GY and STIs under control and salinity conditions by the SRIs that combine wavelengths
sufficiently sensitive to detect changes in the growth health of plants (i.e., chlorophyll
and other pigments content, photosynthetic capacity, leaf structure, leaf area index, and
biomass) and/or plant water status (i.e., relative water content, equivalent water thickness,
fuel moisture content, and gravimetric water content). This could be due to the fact that,
when a large number of genotypes are being evaluated, the wide range of genotypic
variability in growth health and/or water status is a logical consideration under both the
control and salinity conditions, and thus sufficient genotypic variation in spectral properties
at specific wavelengths from VIS, red-edge, NIR, and SWIR regions may exist too under
both conditions as confirmed by Figure 5. Previous studies also reported that a large part of
the variation in GY and many plant traits related to the growth of plants in different crops
under diverse environmental conditions could be explained by several SRIs, which either
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informing on the growth and/or water status of the plants [15,26,40–42,63,67–70]. However,
the potential validity of SRIs in estimating genotypic differences in GY and other plant traits
depended on the types of these SRIs (vegetation and water SRIs), phenological growth
stages, crop types, and levels of environmental stress. For instance, the SRIs measure the
water status of plant and based on wavelengths from red-edge and NIR regions explained a
higher proportion of the variability for GY in winter wheat at any individual phenological
growth stage compared with the SRIs measure the growth health and based on wavelengths
from VIS region [39]. Gutierrez et al. [30] found that the water SRIs performed better than
vegetation SRIs in selecting the top-yielding genotypes for GY of wheat under diverse
environmental conditions. However, El-Hendawy et al. [42] reported that the vegetation
SRIs exhibited strong phenotypic correlation, while the water SRIs exhibited moderate
phenotypic correlations with GY of spring wheat under water deficit stress conditions.
Most importantly, the ability of SRIs for estimating genotypic differences in GY depended
also on the conditions of spectral measurements. For instance, El-Hendawy et al. [68]
found that the vegetation SRIs and water SRIs that were calculated from the spectral
measurements taken under control conditions exhibited a week relationship with the GY of
wheat genotypes for both the control and drought conditions, while they exhibited a strong
relationship with the GY of both conditions when they were calculated from the spectral
measurements taken under drought condition. The results of this study showed that, in
general, seven out of the 10 vegetation SRIs and five out of the 10 water SRIs that were
calculated from the spectral measurements taken under control and salinity conditions
exhibited strong correlation with GYc, STI, and GMP, moderate correlation with GYs, and
weak correlation with TOL, while they failed to correlate with YSI and SSI (Figure 2). These
results indicate that it is indeed possible by SRIs to early selecting the genotypes that
yielded well under both conditions as well as the genotypes that have yield reasonably
well under salinity condition. Additionally, the both vegetation and water SRIs that were
calculated from the spectral measurements taken under either control or salinity conditions
seem to be effective for estimating genotypic differences in GY of both the control and
salinity conditions. Together, these findings indicate that the SRIs are of great practical
screening tool for early detecting genotypic differences in GY under both control and
salinity conditions. Sufficient differences in morphological characteristics and agronomic
traits (i.e., yield components) between genotypes under control conditions, particularly
a large number of genotypes were evaluated in this study, might be the primary reasons
why the SRIs that were calculated from the spectral measurements taken under control
conditions successfully estimated GY. However, the efficiency of SRIs that were calculated
from the spectral measurements taken under salinity conditions in estimating GY may
be related to genotypic differences in the degree of changes in chlorophyll degradation,
anatomical structures of leaf, and water status of leaf induced by different components of
salinity stress.

3.3. Assessment of GY and STIs for Each Salinity Tolerance Group

The results of SMLR model, which identify the most effective SRIs that explained the
most variation in GY across genotypes, reveal that the most efficient SRIs that were selected
from either vegetation SRIs or water SRIs and calculated from the spectral measurements
taken under control or salinity conditions were much more effective in estimating GY
under control conditions (R2 = 0.64− 0.79) than under salinity conditions (R2 = 0.38 − 0.47)
(Table 4). This finding indicates that the capacity of SRIs to estimate GY were not only
highly genotype-dependent but also highly environmental conditions-dependent. In this
study, the ability of vegetation and water SRIs that were calculated from the spectral
measurements taken under control or salinity conditions to estimate GY was higher in
control conditions where genotypes expressed their yield potentiality. This result could be
attributed to the wide variation in GY among genotypes under control conditions (GYc
ranging from 3.92 to 7.24 in the first year and from 4.24 to 7.81 in the second year; Table 2)
compared with those under salinity conditions (GYs ranging from 2.51 to 4.81 in the first
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year and from 2.27 to 5.21 in the second year; Table 2), which could reflect also a wide
variation in morphological diversity among genotypes under control conditions to which
the canopy spectral reflectance was captured. Similarly, Royo et al. [71] reported that the
capability of some SRIs to estimate the GY of durum wheat increased in the environments
that allow genotypes to express their yield potentiality. This is because the wide genotypic
differences in GY and other traits related to the growth of plants are usually occurred
under favorable conditions and are very limited under severe environmental stress. Ferrio
et al. [72] also reported that the ability of SRIs that measured at milk-grain stage to estimate
GY of durum wheat was higher in high and medium-yield environmental conditions, but
not in low productivity environments.

The results in Table 4 also revealed that the SMLR model identified GNDVI(940 and 550),
RNDVI(990 and 680), and Chlgreen(760 and 550) from vegetation SRIs and WI(900 and 970);
NMDI(860, 1640, and 2130); NDMI(2200 and 1100); and SWSI-1(803, 681, 1326, and 1507) from water SRIs
as the most efficient SRIs that explained most of the variation in GY among genotypes
for both the control and salinity conditions. These results indicate that the SRIs that the
wavelengths incorporated within them are effective to detect the alterations that take place
in the leaf chlorophyll and other photosynthetic pigment contents, internal leaf structure,
biomass accumulation, leaf area index, green area index, and leaf water content can be used
as a rapid and non-destructive way for early estimating genotypic differences in GY under
control and salinity conditions. Christenson et al. [73] reported that there are some effective
wavelengths within the VIS, red-edge, and NIR regions explained much of the variation in
GY among soybean genotypes under well-watered and water-stressed conditions, and the
green region around 550 nm, the red region around 675 to 695 nm, and the red-edge region
from 705 to 745 nm were the best of these wavelengths to estimate GY. Royo et al. [71]
also reported that 92% of the variability in the GY among durum wheat genotypes under
contrasting Mediterranean conditions being explained by 550 nm. Kawamura et al. [70]
found highly significant correlation between GY of six rice cultivars and the reflectance
values at 550 nm and 709–711 nm under different transplanting dates. Weber et al. [40]
also found that the SRIs that incorporated wavelengths from blue to red regions (495 to
680 nm), from red to red-edge regions (680 to 780 nm), and NIR region (particularly at 900,
970, and 1450 nm) explained most of the variation in GY among maize genotypes under
different irrigation water regimes. El-Hendawy et al. [64], reported that about 62%, 74%,
44%, 50%, and 51% of the variability in shoot dry weight of two bread wheat genotypes
evaluated under salinity conditions explained by 488 nm, 716 nm, combined 1136 and
1142 nm, 1883 nm, and 2024 nm, respectively. El-Hendawy et al. [22] also reported that the
SRIs that incorporated a combination of wavelengths within the green (550 nm), red (650,
670, and 675 nm), red-edge (700, 710, 715, 720, 740, 750, and 780 nm), and NIR (800 and
1100 nm) regions explained 60–81% of the total variability in the content of chlorophyll
a, b, and total chlorophyll as well as shoot dry weight of two bread wheat genotypes
evaluated under salinity conditions. These findings and our results are an indication of
the efficiency of the SRIs that incorporated a combination of wavelengths within the green,
red, red-edge, NIR, and SWIR regions for estimating genotypic differences in GY of several
field crops under a wide range of environments. Because the degradation of chlorophyll,
reduction in biomass, and the alterations in internal leaf structure and leaf water status
are real phenomena of osmotic and ion toxicity stresses of salinity, this may be a logical
reason explaining why the SRIs that were calculated from the spectral measurements
taken under salinity conditions and incorporated a combination of wavelengths within
the green, red, red-edge, NIR, and SWIR regions explained most of the variation in GY
among genotypes for both the control and salinity conditions. However, the efficiency of
SRIs that were calculated from the spectral measurements taken under control conditions
could be attributed to the large variability in the photosynthetic and transpiration area of
the plant, rate and duration of biomass production, green leaf area duration, and canopy
structure and architecture between genotypes that may be sufficient enough to exhibited
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strong relationships between GY and SRIs that incorporated a combination of wavelengths
within the green, red, red-edge, NIR, and SWIR.

The SRIs selected by the SMLR model were used to show the ability of these in-
dices to properly discriminate the three salinity tolerance groups for GY. The results in
Figures 6 and 7 reveal that, (1) the vegetation SRIs that were calculated from the spectral
measurements taken either under control or salinity conditions performed better than the
water SRIs for estimating the GY of both conditions; (2) the relationship between SRIs
(either vegetation or water SRIs and either calculated from the spectral measurements
taken under control or salinity conditions) and GY of both conditions was higher for the
moderately salt-tolerant genotypes group than it was for the salt-tolerant genotypes group
and salt-sensitive genotypes group; (3) the SRIs that were calculated from the spectral
measurements taken under control conditions enabled an accurate estimation of the GYc
of the salt-tolerant genotypes group compared with those calculated from the spectral mea-
surements taken under salinity conditions, while the opposite trend was found for the GYs
of the same group; and (4) the SRIs that were calculated from the spectral measurements
taken under both control and salinity conditions were comparable in estimating the GYc of
the salt-sensitive genotypes group, while the SRIs that were calculated from the spectral
measurements taken under salinity conditions enabled an accurate estimation of the GYs
of the same group compared with those calculated from the spectral measurements taken
under control conditions. All these findings indicate that the efficiency of SRIs for early
estimating the GY depend on the type of SRIs, the conditions of spectral measurements,
the degree of salt tolerance of genotypes, and the degree of genetic variability in plant
characteristics within the genotypes under both control and stress conditions.

Regarding the relationships between SRIs and STIs, the results in Table 5 reveal that,
(1) the three vegetation SRIs and SWSI-1 from water SRIs exhibited a strong relationship
with STI and GMP for the three salt tolerance groups, and this was evident for the moder-
ately salt-tolerant genotypes group followed by salt-sensitive genotypes group; and (2) the
relationship between the three vegetation and water SRIs and the YSI, SSI, and TOL was
higher for the salt-sensitive genotypes group than it was for the salt-tolerant genotypes
group and the moderately salt-tolerant genotypes group. These findings reveal that it
is indeed possible by SRIs to early and properly discriminate the genotypes that have
high yield potential accompanied by high tolerance to salt stress and the genotypes that
yield well under normal condition and yield reasonably well under salt stress condition,
as well as the genotypes that have low yield potential accompanied by a high sensitivity to
salt stress. These findings also confirm that the significant variability in plant variables,
especially the variables that are sensitive to environmental stress as well as those that show
a wide genotypic variability among genotypes under both control and salinity conditions,
play a vital role in the ability of SRIs to discriminate the genotypes based on their GY under
a wide range of environmental conditions.

4. Materials and Methods
4.1. Plant Materials and Experimental Setup

A collection of 64 recombinant inbred lines (RILs) and cultivars of spring wheat
were used as plant materials in this study. This collection comprised 56 F8-RILs and their
three parents and five commercial cultivars (Kawz, Gemiza-9, Misr-1, Shandawel-1, and
Kharchia 65). The three parents (Sakha 93, Sakha 61, and Sids 1) were previously evaluated
and have been identified as salt-tolerant, salt-sensitive, and moderately salt-tolerant culti-
vars, respectively [43]. The first group of RILs (28 RILs) developed from a cross between
Sakha 93 and Sakha 61, while the second one (28 RILs) developed from a cross between
Sakha 93 and Sids 1. Gemiza-9, Misr-1, and Shandawel-1 were also previously evaluated
under actual saline field conditions and have been ranked as moderately salt-tolerant,
moderately salt-sensitive, and salt-sensitive cultivars, respectively [2]. Kharchia 65, which
has been used as a standard for the salt tolerance test in several salinity experiments [43,74],
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was also used as a check cultivar in this study. Therefore, the plant materials used in this
study reflected a wide range of genetic variability.

All plant materials were evaluated under control (≈0.35 dS m−1) and high salinity
levels (15.0 dS m−1) during the 2019/2020 and 2020/2021 winter growing seasons at the
Experimental Research Station belonging to the College of Food and Agriculture Sciences of
the King Saud University, Riyadh, Saudi Arabia (24◦25′ N, 46◦34′ E; elevation 400 m). The
weather at the experimental research station is mostly sunny during the winter growing
cycles of wheat (middle of November to the end of April), with the mean precipitation
and temperature varying from 4.0 to 20.0 mm and 12.9 to 32.2 ◦C, respectively. The soil
texture is a sandy loam with organic matter; pH; calcium carbonate; and available N,
P2O5, and K2O of 0.46%, 7.85, 29.42%, 35.4 ppm, 14.8 ppm, and 243.5 ppm, respectively.
Additionally, the soil had a bulk density of 1.48 g cm−3, a field capacity of 0.101 m3 m−3,
and water-holding capacity of 0.066 m3 m−3 [75].

In both years, the experiments were laid out in a randomized complete block design
with a split-plot arrangement and three replications. The salinity levels were arranged in
the main plots, while the wheat genotypes were randomly arranged in the subplots. Each
subplot consisted of five rows 1.5 m long, with a separation of 0.2 m between rows (1.5 m2

in total area). Seeds of genotypes were sown on 25 November 2019 and 17 November 2020
at a seeding rate of 15 g m−2. Before sowing, the soil was fertilized with 50-kg N ha−1,
120-kg P ha−1, and 100-kg K ha−1. The plants were fertilized again at late tillering, Zadoks
stage 28 with 50-kg N ha−1 and at late booting, Zadoks stage 47 [76] with 50-kg N ha−1 and
50-kg K ha−1. The N, P, and K were applied as ammonium nitrate (33.5% N), monocalcium
phosphate (15.5% P2O5), and potassium chloride (60% K2O), respectively. Protecting plants
from diseases and weeds was done in a timely manner. The genotypes were harvested
during the third week of April in both years.

To avoid adverse salinity impacts on the germination and seedling establishment,
the salinity treatment was started three weeks after sowing. The genotypes in the salinity
treatment were irrigated with artificial saline water containing 8.8-g NaCl L−1. In the
salinity treatment, the build-up of salt in the root zone was monitored during the growing
season through collected soil samples at a depth of 0–60 cm from different places of the
main plot. Soil samples were collected four times during the growing cycles of wheat.
Based on the average value of the electrical conductivity (EC) analysis for these samples,
the EC for the salinity treatment did not exceed 16.3 dS m−1 in both years. In the second
year, all plots of salinity treatments were irrigated before sowing by freshwater several
times to flush the salt from the root zone that accumulated during the first year.

A low-pressure surface irrigation system was used to apply irrigation water for both
treatments. This system consists of a main irrigation line (76 mm in diameter). This line,
which delivered saline irrigation water from plastic water tanks (5.0 m3) in the salinity
treatment (Figure 8) or fresh water from the source of normal water in the control treatment
to the subplots, was branched off to the submain hoses at each subplot and equipped with
manual control valves to enable controlling the amount of irrigation water delivered to
each subplot. In each year, the surface irrigation was applied 10 times for each treatment,
with the amount of water totaling 4800 m3 ha−1.

4.2. Grain Yield Measurement and Calculation of Salt Tolerance Indices

Upon reaching maturity, the center two rows of each subplot harvested by hand,
threshed, and GY were recorded and expressed as ton per hectare after being adjusted to a
14% moisture content. Based on the GY of the control (GYc) and salinity (GYs) treatments
for each genotype, different STIs were calculated. The equations of these indices are listed
with their references in Table 6.

4.3. Spectroradiometric Data and Processing

The data of the field spectrum reflected from the canopy of each genotype under
both the control and salinity treatments were collected at the mid-anthesis growth stage,
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Zadoks stage 65, using the ASD Field Spec 4 Standard-Res portable spectroradiometer
(Analytical Spectral Devices Inc., Boulder, Colorado, CO, USA). This device detects the
light scattered by a canopy in the optical range between 350 and 2500 nm, with spectral
intervals of 3 nm and 10 nm within spectral regions 350–1000 nm (VIS-NIR region) and
1000–2500 nm (NIR-SWIR region), respectively. However, the spectral intervals in the full
spectrum range were finally calculated automatically to achieve 1.0-nm-width continuous
bands (2150 continuous bands). The light reflected from the canopy is captured by a fiber
optic cable, which was constrained in this study by a 25◦ field of view.
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Blue normalized difference vegetation index (BNDVI) (R970 − R420)/(R970 + R420) [19] 
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Water SRIs 

Figure 8. Shown is the overview of the field experiment for the control and salinity treatments.

(FOV) fore-optic. To minimize the impacts of the canopy shadow and sun angle on
spectral measurements, the fore-optic was held approximately 1.0 m above the canopy in
the nadir direction, and the measurements were made on a sunny day between 11:00 and
15:00 h and calibrated using a Spectralon (Spectralon Labs, ASD) white reference panel
(white barium sulfate), which was made immediately before canopy spectral measurements
for each subplot. The final reflectance spectrum was calculated as the ratio between the
reflected light from the canopy against the total radiance reflectance from the surface
of the white reference panel. Two sequential spectral measurements were taken per
subplot with a scanning area of approximately 0.20 m2 in the center of each measurement.
An average of two measurements and 10 scans for each was recorded as the measured
spectrum per subplot and used to calculate different SRIs. These SRIs were selected to cover
10 vegetation SRIs, which related directly to the status of the growth vigor and to changes
in the photosynthetic efficiency, pigment contents, and aboveground biomass, and 10 water
SRIs, which related to changes in the internal leaf structure, leaf biochemical compounds,
and canopy water status. All of these plant characteristics are already influenced by salinity
stress. The names, abbreviations, and equations of these SRIs are listed with their references
in Table 6.

Due to strong absorption/scatter wavebands not related to the canopy reflectance
and strongly affected by the atmospheric vapor and carbon dioxide, the wavebands from
1825 to 1915 nm and 2470 to 2500 nm were omitted in this study before calculating the
different SRIs.
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4.4. Data Analysis

The impacts of the salinity treatments (ST), genotypes (G), and their interactions on
the GY, STIs, and SRIs were examined in each individual year and combined two years
using an appropriate analysis of variance (ANOVA). The data of the GY and SRIs were
subjected to ANOVA appropriate for a randomized complete block split-plot design, while
the data of calculated STIs for the genotypes were subjected to ANOVA appropriate for
a randomized complete block design. The ST, G, and their interactions were considered
as fixed effects, whereas years, replications, and their interactions were considered as
random effects.

Table 6. The full names, abbreviations, equations, and references of the stress tolerance indices (STIs) and spectral reflectance
indices (SRIs) used in this study.

Different Indices Equation Ref.

STIs
Yield stability index (YSI) YSI = GYs/GYc [77]

Stress susceptibility index (SSI) SSI = (1− GYs/GYc)/(1 − GÝs/ GÝc) [49]
Stress tolerance index (STI) STI = (GYc × GYs)/(GYs) [47]

Tolerance index (TOL) TOL = GYc − GYs [47]
Geometric mean productivity (GMP) GMP = (GYc × GYs) [47]

Vegetation SRIs
Normalized difference vegetation index (NDVI-1) (R750 − R705)/(R750 + R705) [78]
Normalized difference vegetation index (NDVI-2) (R780 − R715)/(R780 + R715) [19]

Blue normalized difference vegetation index (BNDVI) (R970 − R420)/(R970 + R420) [19]
Green normalized difference vegetation index (GNDVI) (R940 − R550)/(R940 + R550) [73]

Red normalized difference vegetation index (RNDVI) (R990 − R680)/(R990 + R680) [79]
Green chlorophyll index (Chlgreen) (R760/R550) − 1 [79]

Red edge chlorophyll index (Chlred-edge) (R760/R710) − 1 [19]
Enhanced vegetation index (EVI) 2.5 [(R782 − R675)/(R782 + 6 × R675 − 7.5 × R445 + 1)] [80]

Modified Transformed Vegetation Index (MTVI) 1.2 × [(1.2 × (R800 − R550) − 2.5 × (R670 − R550)] [81]
Optimized soil adjusted vegetation index (OSAVI) 1.16 × (R800 − R670)/(R800 + R670 + 0.16) [82]

Water SRIs
Water index (WI) (R900/R970) [83]

Normalized water index -1 (NWI-1) (R970 − R880)/(R970 + R880) [37]
Normalized water index -2 (NWI-2) (R970 − R900)/(R970 + R900) [39]

Water balance index (WBI) (R1500 − R531)/(R1500 + R531) [32]
Normalized difference water index (NDWI) (R860 − R2270)/(R860 + R2270) [19]

Normalized difference moisture index (NDMI) (R2200 − R1100)/(R2200 + R1100) [84]
Dry matter content index (DMCI) (R2305 − R1495)/(R2305 + R1495) [85]

Normalized multi-band drought index (NMDI) 860 − (R1640 − R2130)/860 + (R1640 − R2130) [86]
Salinity and water stress index-1 (SWSI-1) (R803 − R681)/

√
(R1326 − R1507) [87]

Salinity and water stress index-2 (SWSI-2) (R803 − R681)/
√

(R905 − R972) [87]

GYc and GYs are the grain yields of wheat genotypes grown under the control and salinity conditions, respectively. GÝc and GÝs are the
mean grain yields of all wheat genotypes under the control and salinity conditions, respectively.

PROC MIXED following the type 1 method was used to obtain mean squares of
the combined analysis. Pearson’s correlation coefficients (r) were used to estimate the
relationships of the GY and STIs with different SRIs that were calculated from the spectral
measurements taken under both the control and salinity treatments for each year and
across two years.

The different genotypes were clustered into three salinity tolerance groups (salt-tolerant,
salt-sensitive, and moderately tolerant groups) based on the GYc, GYs, and the five STIs
across two years using Ward’s minimum variance cluster method.

To identify the most important SRIs accounting the most variability in the GY and
STIs, the different vegetation SRIs and water SRIs were further analyzed using the stepwise
multiple linear regression (SMLR) method, with the GY and STIs were considered as
dependent variables and different SRIs as independent variables. The different models
of the best SRIs of each vegetation SRI and water SRI were used to predict the GY and
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STIs for each salinity tolerance group. The model with the highest values of coefficients of
determination (R2) was designated the model with the higher prediction accuracy.

5. Conclusions

The results of this study found that it is possible to identify genotypes that have a
high yield potential accompanied by a high tolerance to salt stress or vice versa, as well as
genotypes that produce a desirable yield in both the control and salinity conditions through
different STIs. These STIs, along with the GY under the control and salinity conditions,
succeeded in classifying the tested genotypes into three distinct groups according to their
level of salt tolerance, which indicated the potential use of these indices and GYs as effective
screening criteria for discriminating the salt tolerance among wheat genotypes. However,
there is a pressing need to early estimates of these screening criteria for a large number of
genotypes in a fast and nondestructive manner to accelerate the development of genotypes
for salinity stress conditions. The results of this study clearly demonstrated the potential of
using SRIs as a fast and cheap screening tool in breeding programs for early estimating
of the GYs and STIs. However, the efficiency of these SRIs for simultaneously assessing
the production and salinity tolerance of genotypes under a wide range of environmental
conditions depends on the type of SRIs, the conditions of the spectral measurements, the
degree of salt tolerance of the genotypes, and the degree of genetic variability in the plant
characteristics within the genotypes.
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