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Abstract: In the agricultural field, blanching is a technique used to obtain tender, sweet, and deli-
cious water dropwort stems by blocking sunlight. The physiological and nutritional parameters of
blanched water dropwort have been previously investigated. However, the molecular mechanism
of blanching remains unclear. In the present study, we investigated transcriptomic variations for
different blanching periods in the stem of water dropwort (pre, mid, post-blanching, and control).
The results showed that many genes in pathways, such as photosynthesis, carbon fixation, and
phytohormone signal transduction as well as transcription factors (TFs) were significantly dysreg-
ulated. Blanched stems of water dropwort showed the higher number of downregulated genes in
pathways, such as photosynthesis, antenna protein, carbon fixation in photosynthetic organisms, and
porphyrin and chlorophyll metabolism, which ultimately affect the photosynthesis in water dropwort.
The genes of hormone signal transduction pathways (ethylene, jasmonic acid, brassinosteroid, and
indole-3-acetic acid) showed upregulation in the post-blanched water dropwort plants. Overall, a
higher number of genes coding for TFs, such as ERF, BHLH, MYB, zinc-finger, bZIP, and WRKY
were overexpressed in blanched samples in comparison with the control. These genes and pathways
participate in inducing the length, developmental processes, pale color, and stress tolerance of the
blanched stem. Overall, the genes responsive to blanching, which were identified in this study,
provide an effective foundation for further studies on the molecular mechanisms of blanching and
photosynthesis regulations in water dropwort and other species.

Keywords: blanching; transcriptome; photosynthesis; plant hormones; transcription factors

1. Introduction

Oenanthe javanica, commonly known as water dropwort belongs to the family Apiaceae.
It is a perennial aquatic vegetable mostly cultivated in several countries, including China,
Japan, Korea, and Thailand [1–3]. It is a rich source of several vitamins, minerals, dietary
fiber, phenolics, and flavonoids. Traditionally, it is also used to treat fever, mumps, jaun-
dice, hypertension, leucorrhea, haematuria, and abdominal pain [1,2,4]. Phytochemicals
present in water dropwort, such as persicarin, apigenin, isorhamnetin, quercetin, and
hyperoside have different pharmacological activities, such as anticancer, anti-hepatitis
B virus (HBV), anti-inflammatory, neuroprotective, hepatoprotective, and antioxidant
activities. These nutritional and medicinal properties made water dropwort popular in
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various countries [1,2,4,5]. It is commonly used in different dishes in East Asian countries
because of its distinctive aroma and flavor. In China, people use the steamed stem of water
dropwort with boiled rice, and the fried stem of blanched water dropwort is also very
popular in China [4,6–8].

Blanching is a method used in water dropwort to obtain pale, tender, juicy, and sweet
water dropwort stems. This method is used to block sunlight, which ultimately inhibits the
chlorophyll production. Consequently, the stem of the water dropwort becomes pale, ten-
der, sweet, and delicious [7,9,10]. The entire water dropwort or its parts are covered in the
soil. Different blanching techniques, such as deep planting method, deep water softening
method, and soil molding method, are used in processing water dropwort [6,8,10]. The
deep planting technique is the most suitable method for water dropwort blanching [11].
Kumar et al. (2021) reported that blanching has a positive effect on the nutritional value and
antioxidant capability of the stems of different water dropwort cultivars [7]. Furthermore,
water dropwort variety V11E0012 (Jianglingye shuiqin) is best for blanching [7]. However,
the basic molecular mechanisms involved in blanching remain unclear. Therefore, the
current study’s objective was to reveal the theoretical basis for the molecular mechanisms
underlying the photosynthesis related pathways, signal transduction pathway, and tran-
scription factors (TFs) in blanching. For this purpose, we compared the transcriptomes
of stem samples of water dropwort at different periods (pre-blanching, mid-blanching,
and post-blanching) and control (grown under normal condition in the field) using RNA-
sequencing technology. We screened out the pathways and genes that might participate
in blanching, tenderness, and photosynthesis regulation. The differential expression of
the genes in response to the blanching of water dropwort stem was analyzed, and the
potential roles of these transcripts are discussed. This study provides reference data for
future research work on water dropwort.

2. Results
2.1. Transcriptome Sequencing and Assembly

A comparative analysis of water dropwort cultivar V11E0012 (Jianglingye shuiqin)
under pre, mid, and post-blanching, as well as control samples was performed. High-
quality paired end reads were obtained from the pre-blanching, mid-blanching, post-
blanching, and control samples. The percentage of high-quality score (Q30) was >93.50%,
GC content was >44.2%, and the mapped ratio was >78.6%. A total of 62,336 unigenes and
224,926 transcripts were generated from de novo transcriptome assembly (Table S2).

2.2. Unigene Annotation and Classification

Sequences were subject to the BLAST search against available public databases. The
total number of annotated unigenes was 30,666 (Table S2). Nr homologous organism
distribution showed that the annotated unigenes hit a range of plant species with sequence
identity. Daucus carota (82.47%) had the highest identity, and the reason for this high
identity was that both plants belonged to the family Apiaceae.

2.3. Differentially Expressed Genes (DEG) in Water Dropwort Plant in Blanching Conditions

DEGs in the V11E0012 (cultivar of water dropwort) stem samples under pre-, mid-,
and post-blanching, as well as those in the control samples, were evaluated. Pre-blanched
plants are the reference point for all analyzed samples; mid-blanched, post-blanched,
and control. Data revealed that mid-blanched samples have 1777 DEGs compared with
pre-blanching samples, in which 734 were upregulated, and 1043 were downregulated.
Similarly, post-blanched samples showed 3268 DEGs, including 1596 upregulated and
1672 downregulated DEGs in comparison with pre-blanching samples. Whereas, the control
samples have 1598 DEGs, in which 608 were upregulated and 990 were downregulated
(Figure S1; Table S3). In the transcriptome analysis, 136 identical DEGs were found in
mid-blanching, post-blanching, and control samples. The distribution of upregulated DEGs
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showed that 30 DEGs were the same in all conditions. A total of 80 downregulated genes
were the same in all conditions (Figure 1).

Figure 1. Distribution of differentially expressed genes (DEGs) in the stem of O. javanica under
blanching treatment. Pre-blanched plants are the reference point for all analyzed samples: mid-
blanched, post-blanched plants, and control samples. Blue color represents ‘pre vs. mid-blanching’,
yellow represents ‘pre vs. post-blanching’, and green represents ‘pre vs. control’ samples. (A) All
DEGs, (B) upregulated DEGs, and (C) downregulated DEGs.

2.4. DEGs Functional Annotation

The DEGs were subjected to BLAST search against public databases for functional
interpretation. A total of 1662, 2985, and 1493 DEGs were annotated in mid-blanching,
post-blanching, and control samples, respectively (Figure S2).

2.5. Gene Ontology (GO) Enrichment Analysis

The GO enrichment analysis of the DEGs revealed that post-blanching samples have
highest enriched biological process terms. Pre-blanched plants are the reference point
to analyzed mid-blanched, post-blanched, and control samples. A higher number of
downregulated biological processes terms were found in post-blanched samples, followed
by mid-blanched samples. Metabolic process, cellular process, oxidation-reduction pro-
cess, and transport were the most significantly downregulated terms in post-blanched
plants compared with the mid-blanched plants and control samples. Similarly, several
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other biological processes, such as response to stress, photosynthesis, light stimulus, and
chlorophyll biosynthetic process, also showed a higher number of downregulated DEGs in
post-blanched samples than the other samples (Table S4).

2.6. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis

This analysis revealed that 326 DEGs in mid-blanching samples were allotted KEGG
IDs and further classified into 96 pathways. Similarly, 614 DEGs in post-blanched samples
were allocated KEGG IDs and further classified into 113 pathways. Lastly, 241 DEGs in
control conditions were assigned with IDs and further classified into 91 pathways. The
most enriched pathways in post-blanched plants in comparison with the mid and con-
trol conditions were signal transduction, ribosome, protein processing in endoplasmic
reticulum, and starch and sucrose metabolism. Moreover, a higher number of downregu-
lated DEGs post-blanched plants were in ribosome, photosynthesis, carbon metabolism,
starch and sucrose metabolism, photosynthesis-antenna proteins, porphyrin and chloro-
phyll metabolism, and carbon fixation in photosynthetic organisms compared with the
mid-blanching and control conditions (Table S5).

2.6.1. Photosynthesis Related Pathways

Photosynthesis related genes in the pathways of photosynthesis, antenna proteins,
carbon fixation, and porphyrin and chlorophyll metabolism were suppressed in post-
blanched plants in companion with pre-blanched plants. In the photosynthesis pathway,
we found 36 DEGs in post-blanching samples, among which 35 were suppressed. The
only upregulated gene was c47691.graph_c1 which codes for the delta subunit of F-type
ATPase complex (Figure 2). Similarly, 32 DEGs were found in mid-blanching samples, and
all were downregulated. Furthermore, control samples showed six DEGs, in which two
were upregulated.

Figure 2. DEGs involved in photosynthesis pathway of blanched (post-blanching) stem of water dropwort. Red color boxes
indicate the downregulated genes, and the blue color represents the upregulated gene [12,13].

2.6.2. Photosynthesis-Antenna Proteins Pathway

In this pathway, 19 DEGs were identified in post-blanching samples, and all were
downregulated (Figure 3). Similarly, 18 DEGs were identified in mid-blanching samples,
and no gene was upregulated among them. There is only one gene of decreased expression
in the control plant.
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Figure 3. DEGs involved in photosynthesis-antenna proteins pathway of the blanched stem (pre vs.
post-blanching) of water dropwort. Red color boxes indicate the downregulated genes [12,13].

2.6.3. Carbon Fixation in Photosynthetic Organisms

We found 18 DEGs in post-blanching samples, among which 16 were suppressed
(Figure 4). The two upregulated DEGs were c17894.graph_c0 (Ribulose bisphosphate carboxy-
lase small chain 1) and c44566.graph_c2 (Chloroplastic glutamate–glyoxylate aminotransferase 2).
On the other hand, 13 DEGs in mid-blanched samples and 8 DEGs in control samples were
found suppressed.

Figure 4. DEGs involved in “carbon fixation pathway in photosynthetic organisms” from blanched
stem of water dropwort (post-blanching sample).

2.6.4. Porphyrin and Chlorophyll Metabolism Pathway

The current study showed that 17 genes in the porphyrin and chlorophyll metabolism
pathway were downregulated in post-blanched samples in comparison with pre-blanched
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samples. Similarly, 12 DEGs in mid-blanched and 4 genes in control samples were down-
regulated in this pathway. No gene was found upregulated in any case. The relative
expression of the DEGs is presented in Figure 5.

Figure 5. Heat map of DEGs of porphyrin and chlorophyll metabolism pathway in the water
dropwort stem under ‘pre vs. mid–blanching’, ‘pre vs. post–blanching’, and ‘pre vs. control’
conditions. Scale represents the expression level of genes ranging from green (downregulation) to
red (upregulation).

2.6.5. Plant Hormone Signal Transduction Pathway

In this pathway, we found 48 DEGs in post-blanched samples, among which 32 were
upregulated and 16 were downregulated. 20 genes were dysregulated in mid-blanched
samples, 13 of which were upregulated, and 7 were downregulated. The control sample
showed the presence of 13 upregulated and 5 downregulated genes.

We found seven upregulated and five downregulated genes involved in the auxin
signaling pathway of auxin synthesis in the post-blanched samples. Similarly, four genes
were upregulated in mid-blanched samples, and the control samples possessed eight
upregulated and three downregulated genes related to auxins. The two upregulated and
two downregulated genes of cytokinine (CTK) were detected in post-blanched samples; two
genes were upregulated in mid-blanched samples; and only one gene was downregulated
in the control samples (Figure 6). Gibberellin (GA) showed only one dysregulated gene,
and this gene was upregulated in the control samples. The number of upregulated genes
related to abscisic acid (ABA) were six, three, and two for post-blanched, mid-blanched,
and control samples, respectively. Moreover, five DEGs were downregulated in the post-
blanched samples, and one gene was downregulated in the control samples (Figure 6).
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Figure 6. DEGs involved in plant hormone signal transduction pathways in the stem of water dropwort. Yellow color
balls represent upregulated DEGs of ‘pre vs. mid-blanching’ and black color represents downregulated DEGs of ‘pre
vs. mid-blanching’. Red color balls represent upregulated DEGs of ‘pre vs. post-blanching’, the blue color represents
downregulated DEGs of ‘pre vs. post-blanching’, green color balls represent upregulated DEGs of ‘pre vs. control’ samples,
and the brown color represents downregulated DEGs of ‘pre vs. control’.

Post-blanched samples showed seven upregulated genes related to ethylene. However,
three downregulated genes related to ethylene were found in mid-blanched samples.
The number of upregulated genes related to brassinosteroid (BR) in post-blanched, mid-
blanched, and control samples were three, four, and two, respectively. By contrast, two
downregulated genes related to BR in post-blanched and three in mid-blanched were
detected. We found three upregulated genes related to jasmonic acid (JA) in post-blanched
plants, and only one downregulated gene was found in the control samples. Furthermore,
only two downregulated genes related to salicylic acid were observed in the post-blanched
samples (Figure 6).

2.7. Transcription Factors

This study depicted that 215 TFs were differentially expressed in post-blanched sam-
ples (150 were upregulated and 65 were downregulated) and were categorized into 28 fami-
lies. The most enriched families were bHLH that have 17 upregulated and 9 downregulated
DEGs, followed by ERF which have 22 upregulated and 2 downregulated DEGs, zinc finger
has 14/7, MYB has 17/2, and WRKY has 6/6 DEGs (Figure 7; Table S5). In compari-
son, 127 TFs were differentially expressed in mid-blanched samples (47 upregulated and
80 downregulated). These TFs were categorized into 27 different families, and the most
enriched families were MYB that has 8 upregulated and 11 downregulated DEGs, followed
by bHLH that has 2 upregulated and 11 downregulated DEGs, ERF has 5/6, zinc finger
has 5/6, and DBB has 0/7 DEGs. Furthermore, 132 TFs were differentially expressed
in control samples (44 genes upregulated and 88 downregulated), and these TFs were
further categorized into 24 families. The most enriched family was WRKY, which has
18 downregulated DEGs, followed by ERF that has 2 upregulated and 10 downregulated
DEGs; MYB has 7/5, BHLH has 2/9, and C3H has 6/4 DEGs (Figure 7; Table S6).



Plants 2021, 10, 2484 8 of 17

Figure 7. Distribution of transcription factors DEG from three analyses: plants before blanching
versus mid–blanching; plants before blanching versus post–blanching; and plants before blanching
versus control conditions.

2.8. Validation of DEGs

qRT-PCR analysis was conducted on 20 selected genes from different pathways to
validate the RNA-seq data; control, pre-, mid-, and post-blanching were used in the qRT-
PCR analysis. The results showed that the expression profiles of selected genes under
qRT-PCR were in agreement with the results obtained from the RNA-seq, which indicates
the accuracy and reproducibility of the RNA-seq data (Figure 8).

Figure 8. qRT–PCR of selected genes for the validation of RNA-seq data in mid-blanching, post-blanching, and control
conditions. The black bars on the qPCR data represent the means ± SD.
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3. Discussion
3.1. Blanching Affects the Light-Dependent and Light-Independent Reactions of Photosynthesis in
Water Dropwort

Light is the driving force of photosynthesis and provides a signal for plant morpho-
logical and physiological adaptions under various environmental conditions [14]. Different
studies showed that in etiolation conditions, photosynthesis rates are significantly reduced
compared with the control samples [15–17]. Moreover, photosynthesis regulation is con-
trolled by the activities of photosynthesis-related enzymes [14,16,17]. Previously, Kumar
et al. (2021) found that chlorophyll content is remarkably decreased under blanching con-
ditions, particularly in post-blanching samples [7]. The main reason behind this occurrence
is the absence of light due to deep cultivation. Plants have higher chlorophyll content and
possesses more light-harvesting antennae under natural conditions than in blanching con-
ditions. The genes expression involved in photosynthetic pathways influences chlorophyll
content [15–17].

The photosystem II (PSII) is surrounded by light-harvesting complex proteins (LHCPs),
including major and minor LHCP II, and form complexes with chlorophyll and xantho-
phylls [18]. After blanching, the photosynthetic systems of water dropwort showed altered
expression profiles. The present study revealed the downregulation of the “light-harvesting
complex (LHC) components” used in trapping and transporting light energy to PSI and
PSII, such as RPS4 (c39632.graph_c0), Lhca4 (c40818.graph_c0), and Lhca1 (c42181.graph_c0).
Similarly, other genes, such asLcha2-3 and Lhcb1-7, were also downregulated in the mid-
and post-blanching samples. The only gene downregulated in the control samples was
Lhcb4. The results of previous studies also reported that chlorophyll levels decreased in the
etiolated shoots of Olea europaea and Juglans regia [17,19]. The Lhc genes were also reported
to be downregulated under etiolated conditions. Etiolated Brassica rapa leaves also showed
a repression in Lhc genes [15]. Plants with repressed Lhcb1 and Lhcb2 genes are pale green
and have low chlorophyll content [18,20]. The low chlorophyll content and pale color of
water dropwort could be due to the downregulation of these Lhc genes [21,22].

In the current study, PSII components, such as psbB (c51941.graph_c0), psbO
(c47984.graph_c0), psbR, psbP, psbQ, and psbS were found to be downregulated. Simi-
larly, psaB (c53042.graph_c0), psaN (c43347.graph_c0), psaO (c41978.graph_c0), psaD-G, and
psaL in PSI were also downregulated. Wang et al. (2020) also reported the downregulation
of PSI genes (psbB, psbO, psbR, psbP, psbQ, and psbS) and PSII genes (psaB, psaD-G, psaL,
psaN, and psaO) in the etiolated cotyledons of Cunninghamia lanceolate [23]. Furthermore,
the genes for components of cytochrome b6f complex, such as petC (c37658.graph_c0 and
c38988.graph_c0); photosynthetic electron transport, such as petE (c30570.graph_c0), petF
(4 genes), and petH (c48071.graph_c0); and F-type H+-transporting ATPase subunits gamma
(c39370.graph_c0), delta (c43471.graph_c0), and b (c37746.graph_c0) were also found to be
downregulated in mid and post-blanching samples. They are involved in electron trans-
port between PSII and PSI, and used for ATP formation [24]. The earliest result is also
in agreement with the current study, which showed petE, petF, petH, and F-type ATPase
subunit gamma, delta, and b were downregulated under dark conditions [23]. Therefore,
we speculate that alteration in the expression of genes involved in PSI and PSII may be
responsible for the etiolated stem.

Apart from these findings, blanching also inhibits carbon assimilation by impeding
the Calvin–Benson cycle. When the water dropwort was subjected to blanching, reduction
in gene expression encoding ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco)
was detected. Gene encoding the Rubisco subunit (c44466.graph_c0) was repressed in both
mid- (logFC −2.01695) and post-blanching (logFC −4.00885) conditions. These results
agree with previous studies where a lower level of Rubisco protein was found in the
etiolated leaves of Brassica rapa [15]. The expression of the other 13 genes in post-blanched
samples and 10 genes mid-blanched samples were found to be downregulated, such as
GAPDH, fructose-bisphosphate aldolase, FBPase, transketolase, and SBPase, ribose-5-phosphate
isomerase, ribulose-phosphate 3-epimerase, and phosphoribulosekinase (PRK). By contrast, the



Plants 2021, 10, 2484 10 of 17

control samples have only five downregulated genes that encode the enzymes of the Calvin–
Benson cycle. According to Michelet et al. (2013), four enzymes of the Calvin–Benson
cycle PRK, GAPDH, FBPase, and SBPase, were downregulated under dark conditions [25],
which is in agreement with the current study. The suppression of these genes indicated
that blanching shut down this energy generating process. The result indicates that the
pathways associated with processes related to photosynthesis were largely suppressed,
which could be a retrograde process regulated by organelle-to-nucleus signaling [15].

Yang et al. (2016) showed that the porphyrin and chlorophyll metabolism, as well
as carotenoid biosynthesis play an important role in etiolation phenotype [21]. Similarly,
Lyu et al. (2017) showed that the downregulated genes encoding chlorophyllide-a oxygenase
involved in porphyrin and chlorophyll metabolism and abscisic-aldehyde oxidase might
cause the difference in leaf color [26]. In this study, we detected the downregulation
of 17 genes in post-blanched samples and 12 genes in mid-blanched samples involved
in the porphyrin and chlorophyll metabolic pathway, such as chlorophyllide-a oxygenase,
magnesium chelatase, protochlorophyllide reductase, and uroporphyrinogen decarboxylase. A study
on Brassica rapa showed that protochlorophyllide reductase has an important role in Pchlide
homeostasis and the greening of etiolated plants. They also found the downregulation
of protochlorophyllide reductase in etiolated conditions [15]. Furthermore, we also found
genes encoding important enzymes, including abscisic-aldehyde oxidase, zeaxanthin epoxidase,
and (+)-abscisic acid 8′-hydroxylase, which were downregulated and participated in the
carotenoid biosynthesis pathway. These genes of porphyrin and chlorophyll metabolism
and carotenoid biosynthesis pathways change the pale color of water dropwort and might
have an important role in the blanching of water dropwort stem. However, functional
genomics is needed for confirmation.

3.2. Plant Hormone Signal Transduction Pathways

In this transcriptomic analysis, several genes in the plant hormone signal transduction
pathways in the stem of water dropwort were examined in response to blanching. Different
hormones, including ethylene, ABA, auxin, BR, CTK, JA, GA, and salicylic acid, showed
distinct regulation patterns.

Auxin is used to stimulate organogenesis and patterning in plants [22]. PIN and PILS
show a significant role in auxin accumulation in developing organs, and the upregulation
of these genes are positively associated with IAA accumulation [27,28]. In the current
study, PIN, SAUR, GH, and IAA were upregulated in the blanched stem, which agrees with
the previous finding that the level of PIN increased under low light [29]. We also found
several downregulated genes in the post-blanched samples that encode AUX1, ARR-B,
and SAUR. IAA1 is induced by auxin under light stress and helps in the elongation of
coleoptile in rice [22]. We also found IAA1 upregulation in blanched samples, and IAA1
downregulated in the control samples. The concentration of IAA can induce the etiolated
stem length [17]. These findings indicate that the upregulation of IAA and PIN helps plants
during the blanching process to tolerate stress and induce the length of the blanched stem.

GA is another hormone that has a role in plant growth [30]. In this study, the con-
trol samples revealed the upregulation of DELLA and GA20ox genes in comparison with
pre-blanched samples. GA20ox helps promote GA accumulation [31,32]. GA20ox was
downregulated under mid- and post-blanching conditions. Weller et al. (2009) also re-
ported that GA level is affected under dark conditions [33]. These results indicate that
GA improves vegetative growth under normal conditions but not in the blanched stem of
water dropwort. CTK is a hormone that assists in regulating cell proliferation and tissue
development in plants [34]. In the current study, we found that CKX was upregulated
under blanching conditions and downregulated in the control samples. Carabelli et al.
(2007) mentioned that CKX6 expression is increased under the partial absence of light [35],
and a higher CTK level was observed in the young tissues of Elaeocarpus hookerianus and
Prunus persica [36,37]. Furthermore, this result also showed the role of CTK in the plant
response to blanching which results in stem rejuvenation. ABA is used as a negative
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controller of plant growth which contributes to the transition of Pinus pinea and Pinus
radiate from the vegetative stage to mature stages [38,39]. CYP707A and PYL regulate
ABA signal transduction in ABA biosynthesis. In the current study, CYP707A and PYL
were upregulated under blanching conditions, and the difference between the blanched
plant and the control one increased with the increasing duration of blanching. This result
agrees with the published results that the expression of CYP707A and PYL genes in the
etiolated shoots of walnut is elevated [17]. Our finding implied that the upregulation of
the genes involved in ABA signal transduction participates in regulating the blanching
of water dropwort. Ethylene is an important phytohormone that plays a positive role
in various plant developmental processes and can assist plants under different abiotic
stress conditions [40]. The genes of the EIN3/EIL family are involved in regulation and
activation of other transcription factors, such as ERF1 regulating the genes expression in
response to ethylene [41–43]. In this study, DEGs encoding ETR, EBF1-2, and EIN3 were
found upregulated, and CTR1 was downregulated in blanched samples. ERF are important
genes that participate in signal transduction. A total of 22 ERF genes were upregulated in
the post-blanching samples, whereas only two ERF genes were upregulated in the control
samples. Previous studies have shown that the level of ethylene was also increased in the
stems under dark conditions [17]. Previous studies have reported that LeERF1 positively
modulated the ethylene response on etiolated seedling, plant development, and softening
in tomato [44]. Lu et al. (2017) reported that ethylene causes the chlorophyll degradation
in the peels of two citrus species [45], indicating that etiolation may increase ethylene in
tissues. In the current study, we found that upregulation of many ethylene related genes
in the blanched stems of water dropwort, and we speculate that it has an important role
in response to blanching conditions, plant developmental processes, and pale coloration
of stem. Another hormone is BR, which participates in plants growth and development,
and contributes to the regulation of photomorphogenesis [46]. In the present study, the
CYP90 gene involved in BR biosynthesis was upregulated in the post-blanching and control
samples, but the level of its expression was higher in the blanched sample. A previous
study also showed the same results and mentioned that CYP90 expression increases in low
light and in the partial absence of light [47]. Therefore, we speculate that BR could play a
role under blanching condition on photomorphogenesis and stress tolerance. Jasmonic acid
(JA) is a growth regulating substance also involved in the response to abiotic and biotic
stresses [48]. In the present study, JA biosynthesis-related genes (JAZ and MYC2) were
upregulated in the blanched stem of water dropwort. According to Zhang et al. (2015), JAZ
and MYC2 are upregulated in response to environmental stress [49]. Another study also
showed that JAZ–MYC has a noteworthy part in the JA signaling pathway through the
integration of TFs, phytohormones (ABA, JA, SA, GA, IAA, and ET), and related genes [48].
Concurrently, JA has synergistic and antagonistic effects with other plant hormones, such
as ABA, ethylene, and salicylic acid, in response to different environmental stress [48].
Therefore, JA has a significant role in the response of water dropwort to blanching.

Overall, a high number of DEGs promoting the biosynthesis of hormones, such as
IAA, BR, JA, and genes of the pathways related to ethylene synthesis showed an increased
expression in blanched plants. The results suggest that blanching could induce hormone
signal transduction pathways in the stem of water dropwort. The pale color and increased
stem length are speculated to be due to the positive regulation of these hormones to related
genes [25,32,50].

3.3. Transcription Factors

TFs are used to regulate the expression of different genes. Several TFs, such as
ERF, BHLH, zinc finger, MYB, WRKY, bZIP, and NAC, have been identified in response
to biotic and abiotic stresses [50–56]. ERFs are involved in response to environmental
stress [57]. ERF1 could be induced by different abiotic and biotic stresses. LeERF1 is found
to be involved in induction of etiolated seedling, plant development, and softening in
tomato [44]. Similarly, ERF4 could also be stimulated through ethylene and JA [58,59] and
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play an important role in blanching as mentioned earlier. We found 22 upregulated ERF
genes, including ERF1 and ERF4 in the blanched stem of water dropwort, whereas the
control showed only two upregulated genes. The bHLH and bZIP TF families play a role
in photomorphogenesis and act as regulators in anthocyanin biosynthesis [60,61]. HY5 is a
bZIP-TF is used to enhances the expression level of light-inducible genes, which can lead
to HY5 photomorphogenesis [62]. Previous reports showed the higher expression of HY5
under the dark condition in comparison with light exposure. The interaction of COP1-SPA1
with PHYTOCHROME A (PHYA) signaling plays a vital part in HY5 degradation, which
ultimately causes the repression of photomorphogenesis in dark conditions [16]. We found
HY5 upregulation and PHYA downregulation in the blanched stem of water dropwort.
Numerous bHLHs, including R2R3-MYBs, showed a higher expression level in etiolated
leaves [15]. In this study, we also found 17 upregulated bHLH genes in the blanched
stem. However, only two upregulated bHLH genes were observed in the control samples.
Thus, these genes might have a vital role in the blanching of water dropwort. Similarly,
the expression of MYB12 and MYB111 was induced under UV-B light [63]. Furthermore,
MYB15 upregulation was observed under dynamic light conditions compared with the
control conditions [14]. In the present study, we found 17 upregulated MYB genes in the
blanched samples, including MYB2, MYB4, MYB102, and LIMYB, which might play a role
in response to blanching conditions in water dropwort. WRKY TFs, such as WRKY76,
act as a positive regulator for submergence and drought tolerance [64]. The expression
level of WRKY76 in sunflower leaves was induced under drought and reaeration following
submergence [65]. Our study found six upregulated WRKY genes in blanched water
dropwort, whereas the control samples showed 18 downregulated genes of WRKY. There is
probability that the control plants are 40 days older than the pre-blanched plants, resulting
in more WRKY genes with decreased expression. Similarly, we also found a higher number
of upregulated genes related to zinc-finger, bZIP, C3H, NAC, Trihelix, dof, HSF, LBD,
and AUX/IAA in the blanched stems of water dropwort in comparison with the control
samples. The upregulation of most TFs suggests that these TFS have an important role
in blanching and promotes phytohormone synthesis and signal transduction, as well as
polyphenols and flavonoid biosynthesis pathways.

4. Material and Methods
4.1. Experimental Conditions

For this study, water dropwort cultivar V11E0012 (Jianglingye Shuiqin) was grown in
fertile soil with an appropriate irrigation level. The mature stems of water dropwort were
sliced into 3.3–3.5 cm segments, and every segment contained a stem node. The cut stems
were placed in a ventilated and low-temperature area, and sunshade nets were installed
for moisture retention. Water was sprinkled each day, and new shoots developed after
78 days. These new shoots were transferred to seedbeds and covered with a thin layer of
soil; then a sunshade net was used to cover the seedbeds. After 1 month, the plants with
approximately 10 cm height were planted with the hill planting method, that is, the space
between hills was 10 cm × 10 cm, and each hill had three or four plants. Finally, blanching
was performed when the plants’ height was approximately 30 cm [7,9,66].

4.2. Deep Planting Technique Used for Blanch Cultivation

Water dropwort with a height of approximately 30 cm were bound in bunches and
placed for 40 days in 2022 cm deep soil [9,66]. Stem samples were collected at four time
points: pre-blanching (before blanching), mid-blanching (blanched for 20 days), post-
blanching (blanched for 40 days), and control (grown under normal conditions in the field
for 40 days). All experiments were performed in triplicate.
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4.3. RNA Extraction, Library Construction, and Illumina Sequencing

RNA from the stems of the control, pre-blanched, mid-blanched, and post-blanched
samples were extracted with Trizol (Invitrogen, Santa Clara, CA, USA). The quality and
quantity of RNA for transcriptome sequencing were measured with BioDrop uLite (80-3006-51).

A total amount of 1 µg RNA per sample was used as the input material for the RNA
sample preparations. Sequencing libraries were generated using NEBNext®Ultra™ RNA
Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA) following the manufacturer’s
recommendations and index codes were added to attribute sequences to each sample.
Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads.
Fragmentation was carried out using divalent cations under an elevated temperature in
NEBNext first-strand synthesis reaction buffer (5×). First-strand cDNA was synthesized
using random hexamer primer and M-MuLV Reverse transcriptase. Second strand cDNA
synthesis was subsequently performed using DNA Polymerase I and RNase H. The remain-
ing overhangs were converted into blunt ends via exonuclease/polymerase activities. After
adenylation of 3′ ends of DNA fragments, NEBNext adaptor with hairpin loop structure
were ligated to prepare for hybridization. In order to select cDNA fragments of prefer-
entially 240 bp in length, the library fragments were purified with AMPure XP system
(Beckman Coulter, Beverly, CA, USA). Then, 3 µL USER Enzyme (NEB, Ipswich, MA, USA)
was used with size-selected, adaptor-ligated cDNA at 37 ◦C for 15 min followed by 5 min
at 95 ◦C before PCR. After this, PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers, and Index (X) Primer. At last, PCR products were
purified (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer
2100 system. The clustering of the index-coded samples was performed on a cBot Cluster
Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to the man-
ufacturer’s instructions. After cluster generation, the library preparations were sequenced
on an Illumina Hiseq 2000 platform and paired-end reads were generated [3,67].

4.4. Quality Control and Transcriptome Assembling

Raw data (raw reads) in fastq format were first processed through in-house perl
scripts. In this step, clean data (clean reads) were obtained by removing reads containing
adapter, reads containing poly-N, and low-quality reads from raw data. The Q20, Q30,
GC-content, and sequence duplication level of the clean data were calculated. All the
downstream analyses were based on clean data with high quality. The left files (read1 files)
from all libraries/samples were pooled into one large left.fq file, and right files (read2 files)
were pooled into one large right.fq file. Transcriptome assembly was accomplished based
on the left.fq and right.fq using Trinity with min-kmer-cov set to 2 by default and all
other parameters set to default [3,67]. Transcriptomic data was submitted to the Sequence
Read Archive (SRA) database of the National Center for Biotechnology Information (SRA
accession number: PRJNA722062).

4.5. DEG Identification and Functional Annotation

The expression levels of genes were calculated through RNA-seq by expectation maxi-
mization for every sample [68]. The gene expression analysis of the four conditions was
accomplished with the DESeq R package (1.10.1). Pre-blanched plants are the reference
point to analyze mid-blanched, post-blanched, and control samples. For significant differen-
tial expression, p-value < 0.05 and Log2 (fold change) > 1 were fixed as the threshold [3,67].
GO and pathways enrichment analyses of the DEGs were performed by topGO R packages
and KOBAS software, respectively [69,70]. Transcription Factor Database PlnTFDB and
PlantTFDB were used in the identification of dysregulated TFs [3].

4.6. Quantitative Real-Time PCR Analysis

RNA from the stems of the control, pre-blanching, mid-blanching, and post-blanching
samples were extracted with Trizol (Invitrogen, Santa Clara, CA, USA). Reverse tran-
scription reactions were performed using SuperScript III reverse transcriptase (Invitrogen,
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Grand Island, NY, USA) according to the manufacturer’s instructions. cDNA synthesis was
performed using oligo(dT)20 primers. CFX96 real-time PCR system and Bio-rad with SYBR
Premix Ex Taq™ II (Tli RNaseH Plus) (TaKaRa Biotech. Co.) were used in the RT-qPCR
assays. Primer3 software (https://primer3.ut.ee/ accessed on 23 November 2020) was
used in primer design. In this study, we used Actin (c41123.graph_c0) as the reference
gene. The primers used for the 20 selected genes and Actin are highlighted in Table S1.
The amplification protocol of Kumar et al. (2020) was used [3]. qRT-PCR detection was
performed in three biological replicates. The relative expression levels were estimated with
the 2−∆∆Ct method [71].

5. Conclusions

In this study, the transcriptomic response to blanching of water dropwort stem are
presented based on GO terms, KEGG functional enrichment analyses, and PlantTFDB
analyses. The generated data provides a basis for further studies on the transcriptomic
response to blanching and photosynthesis in water dropwort and other related species.
Several molecular mechanisms, such as photosynthesis, phytohormones and signaling, and
TFs were highlighted in response to blanching. The differential expression of highlighted
genes and pathways might be important in many aspects of the plant stress response and
photosynthesis regulations. However, further research is still needed to confirm the results.
This study will provide reference data for future research on water dropwort.
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