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Abstract: Light is one of the important environmental factors for seeds to evaluate whether the
natural environment is appropriate for germination and subsequent seedlings emergence. The
mechanism of light-mediated germination is mainly concerned with fresh seeds (FS) of model plants
but is poorly understood in aged seeds. Here, the effects of light on germination of FS and naturally
aged seeds (NAS) in tobacco and their relationship with plant hormones gibberellins (GA) and
abscisic acid (ABA) were investigated. The results demonstrated that light promoted and inhibited
the germination of FS and NAS, respectively. GA and ABA were involved in the germination control
of NAS, as well as in FS. However, light suppressed GA signal and stimulated ABA signal in NAS,
whereas it stimulated GA signal and suppressed ABA signal in FS. In addition, light stimulated
the GA accumulation and reduction in ABA in FS while inhibiting the increase in GA level in NAS.
Together, the present study demonstrates that light has opposite effects on the germination of FS and
NAS, which are closely related to the metabolism and/or signaling of plant hormones ABA and GA.

Keywords: germination; light; fresh seed; aged seed; hormone sensitivity; hormone level; hor-
mone signal

1. Introduction

Seed dormancy can be considered as the inability of viable seeds to germinate under
favorable conditions [1]. Germination begins with the uptake of water by dry seed and
ends with the protrusion of their radicles [2,3]. The essential role of the plant hormones
abscisic acid (ABA) and gibberellin (GA) in the control of dormancy and germination has
been recognized in photophilic, photoneutral, and photophobic seeds [4–8]. ABA is a
positive regulator of dormancy induction and maintenance and acts as a negative regulator
of germination. GA releases dormancy and promotes germination by antagonizing ABA
actions [9–11]. Genetic evidence suggests that seed germination is not only regulated by
hormone levels but also by hormone signals. ABA-deficient mutants, such as aba1-1 and
ABA-insensitive mutants, such as abi3, show reduced seed dormancy [12–14]. In contrast,
GA-deficient mutants such as ga1-3 and GA-insensitive mutants such as gid1-receptor triple,
sly1-10, and gai show impaired seed germination [15–17].

Light is an important environmental signal that regulates seed germination of small-
seeded plants, such as Arabidopsis, lettuce, and tomato (Solanum lycopersicum), and it
controls seed germination by affecting biosynthesis and/or signals ABA/GA [18,19]. In
Arabidopsis, PIF1 (PHYTOCHROME-INTERACTING FACTOR 1) strongly inhibits PHYA-
and (or) PHYB-induced germination under dark [20]. On the one hand, PIF1 promotes
the transcription of the genes (GA2ox2, ABA DEFICIENT1 (ABA1) and NCED6, 9) and
inhibits the expression of genes (GA3ox1 and CYP707A2), leading to a low GA/ABA
ratio and consequently inhibiting seed germination [21–23]. On the other hand, PIF1 also
promotes the expression of genes (ABI3 and ABI5), which positively regulate ABA signaling
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and genes (RGA and GA-INSENSITIVE) that negatively regulate GA signaling, thereby
inhibiting seed germination [24–26]. Under light, PHYA and (or) PHYB are activated by
light and subsequently promote the degradation of PIF1 [27,28], thereby releasing those
genes controlled by PIF1, leading to an increase in the GA/ABA ratio and stimulating
GA signaling for seed germination. In lettuce, light regulates GA biosynthesis and light-
and GA-mediated regulation of ABA metabolism during germination of photoblastic
lettuce seeds [29,30].

It is assumed that light has at least two effects on the germination of tobacco seeds [31].
First, it activates the PHY signal pathway to release photodormancy and promote germi-
nation. Second, light accelerates rupture of the endosperm in non-photodormant tobacco
seeds. In tobacco, testa rupture and endosperm rupture are separate events during seed
germination. ABA delays endosperm rupture but not testa rupture [32]. GA can substitute
for the red-light trigger needed to release photodormancy and to induce both testa rupture
and the subsequent endosperm rupture of tobacco seeds imbibed in the dark. GA also
can promote the germination of non-photodormant tobacco seeds by counteracting the
inhibitory effects of ABA on endosperm rupture [33]. Several specific target enzymes,
such as XTHs (xyloglucan endotransglycosylases),areinduced by GA in the micropylar
endosperm during seed germination and proposed to promote endosperm weakening [3].

In photophilic seeds, light determines the levels and signals of gibberellin (GA) and
abscisic acid (ABA), which promote and inhibit germination, respectively. Although this
effect has been known in fresh seeds (FS) of Arabidopsis (Arabidopsis thaliana) and lettuce
(Lactuca sativa), the molecular basis of light-regulated germination in aged seeds is still
poorly understood. With the storage of seeds, the germination ratio of seed batches
gradually decreases, and G50 (50% germination) is used as the standard to judge the
survival of a batch of seeds. In this study, we noticed that the germination of FS was
strongly inhibited by the entire spectrum of visible light in tobacco, while germination
of NAS (G50) was promoted by the light. Kinetic curve analysis of hormones and related
genes revealed that NAS has similar regulatory components as in FS for germination but
with opposite responses to light.

2. Results
2.1. FS and NAS Germinate Better under Light and Dark Conditions

As shown in Figure 1, the germination ratio of FS was above 90% under light, which
was significantly higher than that of 40% under dark. On the contrary, the germination
ratio of NAS was higher under dark conditions and lower under light, with a difference
of about 20%. The results indicated that the light promoted the germination of FS while
inhibiting the germination of NAS.

2.2. GA Replaced Light to Promote and Inhibit Germination of FS and NAS

Under dark, the germination of FS was significantly improved by the application of
exogenous GA3; however, the germination of NAS was inhibited by GA3 application, and
the inhibiting effects were enhanced with an increase in its concentration. Under light,
exogenous GA3 unaffected the germination of FS, and it promoted the germination of NAS
at a high concentration of 10−3 mol/L (Figure 2).
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Figure 1. Light promotes and inhibits germination of freshly harvested seeds (FS) and naturally 
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the same Figs below) or under 12h light/dark (white graphics, the same Figs below) cycle and 325 
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The higher the concentration, the more obvious the inhibition. The germination of NAS 
was inhibited by ABA treatment under light, while the germination was promoted at 
some concentrations by ABA under dark (Figure 2). The above results indicated that the 
FS was sensitive to ABA and GA during the germination, while the NAS seems to have 
lost their sensitivity to ABA and GA, or at least the sensitivity is much lower. The sensi-
tivity of FS to ABA was not affected by light, while its sensitivity to GA was affected by 
light. 
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The germination of FS was inhibited by ABA treatment either under light or dark.
The higher the concentration, the more obvious the inhibition. The germination of NAS
was inhibited by ABA treatment under light, while the germination was promoted at some
concentrations by ABA under dark (Figure 2). The above results indicated that the FS was
sensitive to ABA and GA during the germination, while the NAS seems to have lost their
sensitivity to ABA and GA, or at least the sensitivity is much lower. The sensitivity of FS to
ABA was not affected by light, while its sensitivity to GA was affected by light.

2.3. The Germination of FS Depending on Light to Promote GA Biosynthesis and ABA Reduction

In dry seeds, the ABA level in NAS was higher than that in FS (Figure 3A). After
imbibition, ABA levels of NAS continued to decrease under light, while increased first
and then subsequently decreased under dark. ABA levels of FS showed opposite changes,
which continuously decreased and increased when they were incubated under light and
dark, respectively. These results indicated that light promotes the decrease in ABA levels
in both FS and NAS.
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Figure 3. Kinetic curves of ABA and GA level in germinating FS and NAS. Hormone levels [in ng g−1 dry weight (DW)]
of ABA (A), bioactive GA (B,C), and inactive GA (D–G) are shown during seed germination in tobacco. (H) Ratio of the
averages from GAs (Sum of active and inactive GA) and ABA measurements.

In dry seeds, GA6, GA9, and GA15 levels were significantly higher in NAS than those
in FS (Figure 3D–F), while GA1, GA3, and GA34 levels showed no significant differences.
(Figure 3B,C,G). After imbibition, the levels of GA9 and GA15 continued to decrease in
NAS under both light and dark, reaching a level similar to those in FS. In both FS and NAS,
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the GA34 level was higher when the seeds were cultivated under light than under dark, or
at least equal. The level of GA6 increased first and then decreased in FS or NAS, and its
levels in FS showed that cultivated under light is lower than under dark, while showed
higher under light in NAS. The changes of active GAs are similar in FS and NAS incubated
under dark, with GA1 and GA3 showing a gradual increase after imbibition. Notably, the
changes of active GAs are different in FS and NAS under light, with a significant increase
in GA1 and GA3 on the third day in FS and not in NAS.

In dry seeds, the ABA/GA ratio in FS was significantly higher than that in NAS
(Figure 3H). After imbibition, the ratios of ABA/GAs in both FS and NAS decreased
quickly under light. Under dark, the ratio of ABA/GA in FS appears to decrease first and
then increase, while ABA/GA ratio in NAS showed, increase first and then decrease. The
ABA/GA ratios of both FS and NAS were lower under light than those under dark.

The above results indicate that the higher germination rate of FS under light conditions
depends on the increase in active GA and the decrease in ABA level resulting in a lower
ABA/GA ratio; while the lower germination under dark conditions is due to the decrease
in active GA and the increase in ABA level leading to a higher ABA/GA ratio. However,
there was no similar regulatory mechanism in NAS as FS.

2.4. The Effect of ABA Catabolism on Germination of FS Promoted by Light

In Arabidopsis, NCED6 is considered to be a key gene regulating ABA biosynthesis,
whereasCYP707A1 is involved in regulating ABA catabolic metabolism. No significant
differences in the expression levels of NtNCED6 and NtCYP707A1 were observed between
FS and NAS in the dry state (Figure 4A,B). After imbibition, the expression levels of
NtNCED6 were generally decreased either in FS or NAS under light and dark, but the
decline speed of FS was significantly faster than that of NAS. The expression of NtNCED6
was down- and upregulated by light in FS and NAS, respectively. Notably, NtCYP707A1
was specifically highly expressed in FS on the first day, and its expression was significantly
upregulated by light. These results indicate that ABA anabolism could be inhibited and
stimulated by light in FS and NAS, respectively, while ABA catabolism could be stimulated
by light in FS.

ABI3 and ABI5 are considered positive regulators of ABA signaling pathways, and
they inhibit seed germination significantly in Arabidopsis. NtABI5 and NtABI3 were more
highly expressed in the dry state of FS than that of NAS (Figure 4C,D). The expression level
of NtABI3 was quickly decreased in both FS and NAS on the first day, and light decelerated
the decline speed. Notably, the NtABI3 expression level specificity increased on the third
day of dark culture in NAS. The expression of NtABI5 showed a different trend, and its
expression level in FS showed a continuous decrease, while in NAS, it showed an increase
first and then a decrease. Light accelerated the decrease in the expression level of NtABI5
in FS. These results suggest that the light-promoted germination of FS could be due to
the reduction in ABA levels and suppression of its signal, while ABA anabolism and its
signaling appear to be stimulated at the imbibition stage in NAS.
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2.5. The Effect of GA Levels on Germination of FS Promoted by Light

GA3ox is the key regulatory gene for GA biosynthesis, whereasGA2ox mediates GA
degradation. As shown in Figure 4E, the expression level of NtGA3ox2 did not show a
significant difference between NAS and FS. After imbibition, the expression of NtGA3ox2
showed an opposite change between FS and NAS. The expression level of NtGA3ox2 in
FS increased first, then decreased, and then increased, while the expression level in NAS
decreased first, followed by an increase and then a decline. The expression of NtGA3ox2 in
FS is upregulated by light while not in NAS.

NtGA2ox2 expression is significantly higher in the dry state of NAS than that in FS
(Figure 4F). The expression level of NtGA2ox2 in NAS is decreasing both under light
and dark. The expression level of NtGA2ox2 in FS increased first, followed by a decline
under light, which decreased first and then increased under dark. Light up-regulates the
expression of NtGA2ox2 in NAS. These results indicated that light-promoted FS germination
might be due to inhibition of GA catabolism and promotion of GA anabolism, while GA
catabolism seems to be stimulated in NAS.

In the dry state, the expression level of NtGAI in NAS was significantly higher than that
in FS (Figure 4G). After imbibition, its expression level in NAS was significantly reduced,
especially under dark. However, the expression level in FS was significantly increased and
then reduced. These results indicated that the photo-inhibited NAS germination might be
due to the inhibition of the GA signal.
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2.6. The Effect of Cell Wall Hydrolysis on Light-Promoted and -Inhibited Germination of FS
and NAS

XTHs are induced by GA to promote the germination of Arabidopsis seeds. As shown
in Figure 4H, the expression level of NtXTH2 was significantly higher in NAS than FS in
the dry state. After imbibition, NtXTH2 was specificity highly expressed on DAI24inFS
under light. These results suggest that the light-promoted germination of FS could be due
to the cell wall hydrolysis, while light-inhibited germination of NAS may be due to the
partial inhibition of cell wall hydrolysis.

3. Discussion

Light is an important environmental signal. That is involved in regulating the ger-
mination of photosensitive seeds. The freshly harvested tobacco seeds are photodormant,
their germination is strongly inhibited in the dark, and light can initiate the germination
of photodormant seeds [34,35]. In other small-seeded species, such as lettuce [29,30,36,37]
and Arabidopsis, light has also been shown to be necessary to initiate the germination of
fresh seeds [38,39]. In contrast, seed germination of tomato and Aethionema arabicum are
inhibited by light [8,40]. Overall, the germination of light-requiring (positive photoblastic)
seeds requires light initiation, whereas light-inhibited (negative photoblastic) seeds need to
avoid the participation of light signals. In this study, we noticed that light does promote
the germination of FS in tobacco but partly inhibits the germination of NAS. To date, there
is no relevant report on photo-inhibition of the germination of positive photoblastic seeds
in the literature. We, therefore, speculate that light may provide suitable and unsuitable
environments for germination of FS and NAS in tobacco, respectively.

ABA is the main plant hormone involved in inducing and maintaining seed dormancy
and inhibiting germination, and GA is a key phytohormone that promotes seed germination
by antagonizing ABA [9,33]. It has been reported that exogenous addition of GA and ABA
promotes and inhibits seed germination, respectively. The effect of GA is more obvious
under dark conditions, while the effect of ABA inhibiting seed germination is significant
under both light and dark conditions [34]. This study also found that exogenous GA
significantly promoted the germination of FS in the dark; however, the germination of NAS
was inhibited under dark at the same concentration of GA application. In addition, the
inhibitory effect of ABA on NAS is not obvious, especially in dark conditions. It has been
reported that 10 or 100 µmol/L ABA strongly inhibited seed germination under light or
dark [34,41]. No obvious inhibitory effect was observed in this study. We speculate that
this difference could be the genotypes of the seeds or the different cultivation environments
of the mother plants. In addition, the germination bed may also affect the results of the
experiment. Agar germination beds were chosen instead of paper beds in this study.

It is well known that light regulates seed germination in Arabidopsis by integrating
ABA and GA metabolism, including decreased ABA level and increased GA level [18,28].
Similarly, the germination of lettuce seeds also depends on light to regulate the anabolism
of gibberellin and the catabolism of abscisic acid [29,30]. In this study, we noticed that
light promoted the germination of FS in tobacco, which depended on the reduction in ABA
levels and increase in GA levels. However, light also stimulated the reduction in ABA
level in NAS but inhibited its germination. Recently, it has been illustrated that the same
ABA/GA key regulatory components are required in light-inhibited and light-requiring
germination in the Brassicaceae, but the difference between the expression of genes for
key regulators upon light exposure [8]. Overall, light-regulated germination is related to
hormone balance [8]. In this study, we noted that the germination ratio of FS was higher
under light with a lower ABA/GA ratio, while the germination was lower under dark with
a higher ABA/GA ratio. However, the germination ratio of NAS was higher under dark
with a higher ABA/GA ratio, while the germination was lower under light with a lower
ABA/GA ratio.

In Arabidopsis thaliana seeds, the expression of GA anabolic genes GA3ox1 and GA3ox2
are enhanced by light, whereas GA-inactivated gene GA2ox2 is repressed, resulting in an



Plants 2021, 10, 2457 8 of 12

increase in GA level [42–45]. In this study, the expression of NtGA3ox2 is upregulated
by light in FS whereas down-regulated in NAS. NtGA2ox2 is down-regulated by light
in FS, whereas itis upregulated in NAS. This indicates that light promotes the increase
in GA levels in FS because it not only promotes GA biosynthesis but also inhibits GA
catabolism. However, light promotes the catabolism of active GA in NAS. The expression
of ABA biosynthesis genes ABA1, NCED6 (9-CIS-EPOXYCAROTENOID DIOXYGENASE
6), and NCED9 are repressed by light in Arabidopsis seed, while ABA catabolism gene
CYP707A2 is upregulated, resulting in a decrease in ABA level [21,24,45]. In lettuce seeds,
the expression of LsNCED2 and LsNCED4 is repressed by light, whereas LsABA8ox4 is
upregulated [29]. In this study, the expression of NtNCED6 was repressed and promoted
when they were incubated under light in FS and NAS, respectively. NtCYP707A1 was
specifically highly expressed in FS, and its expression was significantly upregulated by
light. This indicates that light promotes the decrease in ABA level in FS because it not only
inhibits ABA biosynthesis but also promotes ABA catabolism. However, light inhibits the
biosynthesis of active GA in NAS.

The expressions of GAI (GIBBERELLIC ACID-IN-SENSITIVE, a negative regulator of
GA signal) [24] and ABI3, ABI 5 (ABSCISIC ACID-INSENSITIVE 3, 5, positive regulators
of ABA signal) [25,46] are stimulated to inhibit germination under dark in Arabidopsis
seed. Furthermore, the expressions of genes required for cell wall loosening, such as EXP
(EXPANSIN) and XTH (XYLOGLUCANENDO-TRANSGLYCOSYLASE/HYDROLASE), are
repressed to inhibit seed germination under dark [25]. In this study, the expression of
NtGAI was stimulated by light to inhibit the germination of NAS, and the expression of
NtABI5 and NtXTH was, respectively, repressed and stimulated by light to promote the
germination of FS.

It has been shown that the timing of GA and ABA action is different during seed germi-
nation in Arabidopsis [47]. ABA could be involved in the regulation of almost all processes in
germinating tobacco seeds, including imbibition, storage mobilization, endosperm rupture,
and radicle protrusion, etc. [48]. GAs, although required for the completion of germination,
are not directly involved in many processes taking place during germination in Arabidopsis
seed, occurring at a stage coinciding with or very close to radicle emergence [49,50]. In
this study, we noticed that the ABA level of NAS in a dry state was significantly higher
than that of FS, and both decreased after imbibition under light. However, their ABA level
showed an opposite trend after imbibition under dark, decreasing in NAS and increasing
in FS.GA level only significantly improved when FS was exposed to light and at the stage
coinciding with or very close to radicle emergence. Therefore, we speculated that the
insufficient of GA level leaded to the lower germination of NAS under light, while the
higher germination of NAS under dark was more likely due to the reduction in ABA.

4. Materials and Methods
4.1. Plant Materials

The FS of Nicotiana tabacum L. “K326” was obtained from Tobacco Research Institute in
Guizhou Province. Seed aging was carried out under natural conditions (an average daily
temperature of 15 ◦C, a daily difference of 6 ◦C, and an average daily relative humidity
of 76%). In the initial stage, the germination of seeds was monitored every three months.
When the germination rate began to decrease, the germination of seeds was monitored
every month. At the 39th month, the germination ratio reached 50% (G50), and the seeds
were taken as NAS in this study. FS and NAS (G50) were used for seed germination and
hormone sensitivity testing. Two independent experiments were performed to support
the germination pattern of NAS in response to light conditions. Samples on the 1st, 3rd,
and 5th days of germination were used to determine the hormone levels and quantify the
expression levels of their metabolism and signal genes.
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4.2. Seed Germination and Hormone Sensitivity Test

The seeds were disinfected with 0.5% copper sulfate solution for 15 min, then rinsed
with distilled water three times, and finally surface dried with filter papers. The sterilization
solution containing 0.8% AGAR was poured into disposable Petri dishes to prepare as
AGAR germinating beds. A total of 10−6, 10−5, 10−4, 10−3 and 0 mol/L of GA3 (Sigma,
St.Louis, MO, USA), and 10−7, 10−6, 10−5, 10−4, and 0 mol/L ABA (Sigma) solutions were
prepared, respectively. Seeds were sown on AGAR germinating beds with or without
supplementation of ABA or GA3. All Petri dishes were placed in artificial climate chambers
with a temperature of 25 ◦C, light intensity of 18,000 Lux, relative humidity of 80%, and
photoperiod of dark or 12 h light/dark cycle. Germination tests were performed on three
replicates of 100 seeds. Seeds were checked for germination every day for a total of seven
days. Germination was notarized as the length of the observed radicle approximately equal
to the length of the seed.

4.3. ABA and GAs Quantification

Fresh tobacco seed materials collected on the 0, 1st, 3rd, and 5th days of germination
were immediately frozen in liquid nitrogen and stored at −80 ◦C until needed. GAs and
ABA levels were detected as Met Ware (http://www.metware.cn/) described. A total
of 38 GAs were tested. In brief, each sample was ground (30 Hz, 1 min) into powder
with a grinder (MM 400, Retsch). A total of 50 mg of the powder was weighed and then
extracted with a mixed liquid of methanol: water: formic acid = 15:4:1 (v:v:v), containing an
appropriate amount of internal standard substance. A total of 10 µL TEA and 10 µL BPTAB
were added into the extraction solution, after 1 h of reaction at 90 ◦C, the mixture was then
blown dry with nitrogen. The extract was reconstituted with 100 µL of 80% methanol-water
solution, passed through a 0.22 µm PTFE filter membrane, and placed in a sample bottle for
LC-MS/MS analysis. The data acquisition instrument system includes Ultra Performance
Liquid Chromatography (UPLC, ExionLC™ AD) and tandem mass spectrometry (MS/MS,
QTRAP® 6500+). The liquid phase conditions include: (1) Chromatographic column:
ACQUITY HSS T3 column (1.8 µm, 100 mm × 2.1 mm). (2) Mobile phase: Phase A,
ultrapure water (adding 0.05% formic acid), and Phase B, acetonitrile (adding 0.05% formic
acid). (3) Gradient elution program: 0 min A/B is 90:10 (V/V), 0.5 min A/B is 95:5 (V/V),
8.0 min A/B is 5:95 (V/V), 9.0 min A/B is 5:95 (V/V), 9.1 min A/B is 95:5 (V/V), and
12.0 min A/B is 95:5 (V/V). (4) Flow rate 0.35 mL/min; column temperature 40 ◦C; injection
volume 2 µL. The mass spectrometry conditions mainly include: Electrospray ionization
temperature was 500 ◦C, mass spectrometry voltage was 4500 V, curtain gas was 35 psi,
and the collision-activated dissociation parameter was set to medium. In Q-Trap 6500+,
each ion pair is scanned based on the optimized declustering potential and coll energy.

4.4. RNA Extraction and Quantitative RT-PCR

Total RNA was extracted by using a TIANGEN RNA prep pure plant plus kit (Polysac-
charides and Polyphenolics-rich). The concentration and purity of RNA were determined
by using a NanoDrop-2000. Reverse transcription of the extracted RNA was performed by
using TaKaRaPrimeScript™ II 1st strand cDNA synthesis kit. RT-PCR was performed by
using TaKaRaTB Green®Premix Ex Taq™ II (Tli RNaseH Plus), Bulk fluorescence quantifica-
tion kit 20 µL reaction system as follow: 10 µL TB Green Premix Ex Taq (2×) (Tli RNaseH
Plus), 0.4 µL ROX Reference Dye (50×), 2 µL diluted to 40 ng/µL cDNA, 0.8 µL of the
upstream and downstream primers, respectively (Table 1), and make up the rest with
water. The conditions of the RT-PCR reaction were 95 ◦C pre-denaturation for 0.5 min,
then 95 ◦C for 5 s, 58 ◦C for 30 s and 40 cycles. The relative expression level of each gene
was determined by using the Step One Plus real-time PCR instrument, and each sample
was repeated three times. The relative expression level was calculated according to the
method provided by Livak and Schmittgen [51]. The primers are as follows: NtGA3ox2,
NtGA2ox2, NtGAI, NtNCED6, NtCYP707A1, NtABI3, NtABI5, NtXTH2, NtTOC1, NtPHYB1,
Actin (Tac9).

http://www.metware.cn/
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Table 1. Real-time PCR primers used for genes expression analysis.

Gene Name Forward Primer (5′–3′) Reverse Primer (5′–3′)

NtGA3ox2 TGGAAAAACTAGCCGGAAGA GCCCATTTCATATCGTCCTTAC
NtGA2ox2 TTGGAGGACCACCATTGAGT CAAGCTGTCTTGATCCCCTTT

NtGAI TCCACTAACAACAGATGCAACAACAAG ACAGCTTCAGCACACGCCATT
NtNCED6 AGTTTCGGGTTGGTGGATGCTAC CTGTAATACGGACGCTATACGGAAGAT

NtCYP707A1 GGTGATTCTGCTGGTGTTGTCTCT GGGATATAGCTTAATGGGCAGA
NtABI3 GAGTATCAGACCATGGAATCTGC TTCCATCGCGGAGAATTG
NtABI5 CGCAAAAGGCGACTAACAA ACACATCAAGGGCAACTCAA
NtXTH2 GGCTAGTCACCACATCAAGTACCTCA CACCTGAAGACCTGTCAAGAACAAGAT
NtTOC1 TGCTTCCACCACTGCTGCTCATA TCCTGTCTGCCGTTCATTAGTTCCT

NtPHYB1 GTGTGATACTGTGGTTGAGAGTGTGA TTGAGGAATGTCGGTAGCAGGATAATG
Actin(Tac9) CCTGAGGTCCTTTTCCAACCA GGATTCCGGCAGCTTCCATT

5. Conclusions

Light is an important environmental signal that regulates seed dormancy and germi-
nation. It promoted and inhibited the germination of FS and NAS in tobacco, respectively.
During germination, the FS was more sensitive to ABA and GA compared to NAS, and
light would affect their sensitivity. Light promoted the germination of FS and inhibited
that of NAS both by integrating metabolisms and/or signals of ABA and GA. First, a
light-stimulated GA signal suppressed the ABA signal in FS, whereas it suppressed the GA
signal and stimulated the ABA signal in NAS. Secondly, light promoted the increase in GA
levels and the reduction in ABA levels in FS, whereas light only promoted the reduction in
ABA levels in NAS. Together, the present study demonstrates that light has opposite effects
on the germination of FS and NAS, which are closely related to the balance of hormones
ABA and GA.
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