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Abstract: Verticillium wilt is a major disease that severely affects eggplant production, and a new
eggplant miRNA named miRm0002 identified through high-throughput sequencing was highly
induced by Verticillium wilt infection. However, the miRm0002 function was still elusive. In this
study, the sequence of the miRm0002 precursor was cloned and transgenic eggplants were con-
structed. In vivo inoculation test and in vitro fungistatic test showed that overexpressing miRm0002
lines were more resistant to Verticillium dahliae and inhibiting miRm0002 lines were more sensitive,
compared to the wild-type (WT) control. Some physiological indicators were selected and the results
showed that SOD, POD, and CAT activities were significantly increased in Verticillium wilt-infected
overexpressing miRm0002 lines, indicating that the expression of miRm0002 activates the antioxidant
system. QRT-PCR assay showed that the transcript expression of miRm0002 candidate target ARF8, a
gene encoding auxin response factor was negatively related to miRm0002 in WT as well as transgenic
eggplants. However, RLM-RACE mapping and degradome sequencing showed miRm0002 could
not cleave the sequence of ARF8. Taken together, these data suggest that miRm0002 plays a positive
role in the defense response of eggplant against Verticillium wilt.

Keywords: Solanum melongena L.; miRm0002; Verticillium wilt; defense response

1. Introduction

Verticillium wilt (V. wilt), a disease caused by soil-borne Verticillium dahliae, reduces
up to 34.1–42.5% of eggplant production worldwide [1,2]. Over the last two decades,
significant progress has been made by scientists and farmers in improving the resistance
of eggplants to V. wilt. Introducing resistance genes such as StoVe1, StoL13a, StoNPR1,
and StoCYP77A2 from the highly resistant wild eggplant Solanum torvum into potato or
tobacco has significantly improved their resistance to V. wilt [3–6]. The transcriptome
analysis of the wild eggplant species Solanum aculeatissimum resistant to V. wilt identified
11,696 upregulated and 5949 downregulated genes, which are candidates for further ge-
netic improvement [7]. All these studies only focused on screening or introducing the
resistance genes, however, the molecular mechanism of how eggplant interacts with the
disease agent fungus remains elusive.

MiRNAs are a series of non-coding regulatory RNAs that play important roles in
plant growth and development, and inhibit the expression of target genes by cleavage of
target transcripts or inhibition of translation. Previous studies have showed that some
miRNAs are involved in regulating the defense responses of plants against pathogen attack.
For instance, in Arabidopsis thaliana, the expression of miR393 whose target is an auxin
response factor, was induced by a short peptide flg22, restricting the growth of bacteria [8].
However, Arabidopsis miR398 and miR773, which are down-regulated by flg22, negatively
regulate PTI resistance to P. syringae [9]. In tobacco, nta-miR6019 and nta-miR6020 can
inhibit the expression of the Toll and Interleukin-1 receptor-NB-LRR immune receptor N
that confers resistance to tobacco mosaic virus [10]. In tomato, the expression of NBS-LRR
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defense genes upon infection by P. syringae is induced by suppressing the miR482-mediated
silencing cascade [11]. In cotton, suppressing the miR482-mediated gene silencing pathway
induces expression of NBS-LRR defense genes upon attack of V. dahliae [12]. In eggplant,
small RNA deep sequencing identified many miRNAs in responsive to V. dahliae infection,
like miR156 [13]. Overexpressing miR395 increased eggplant sensitivity to V. dahliae
infection [14]. In potato, over-expression of miR482e enhanced plant sensitivity to V. dahliae
infection [15].

The phytohormone auxin has also been identified as a key regulator in plant-pathogen
interactions, and plays a myriad of roles in plant resistance to pathogens: auxin biosynthe-
sis and accumulation cause host plant cell wall expansion and stomatal opening, which
promote disease susceptibility. Camalexin biosynthesis and JA/ethylene signaling induced
by auxin signaling promote resistance to necrotrophic pathogen; suppressed indole glu-
cosinolates (IGs) biosynthesis and SA signaling by auxin signaling reduce the resistance to
biotrophic pathogens [16,17]. Moreover, overexpression of AFB1, an auxin signal receptor,
renders the plant more susceptible to biotrophic pathogens due to the reduction in IG
accumulation and SA levels mediated by ARF1 and ARF9 [18]. Many elements involved
in auxin synthesis or signaling pathway are regulated by miRNAs: auxin signal receptors
TIR1 and AFB1/2/3 are targets of miR393 [8], and different auxin response factors are
regulated by different miRNAs, for example, ARF6 and ARF8 are targets of miR167, and
ARF10, ARF16, and ARF17 are targets of miR160a [19,20].

Previous work prepared two sets of eggplant small RNA libraries from mock-infected
and V. dahlia-infected seedlings of eggplants, and identified two nascent miRNAs namely
miRm0001 and miRm0002 through high-throughput sequencing, with miRm0002 being
significantly induced following pathogen infection [13]. However, the role of miRm0002 in
regulating eggplant response to V. dahliae is still elusive. In this study, the disease resistance
of miRm0002 overexpression and inhibitory expression transgenic lines to V. dahliae was
systematically examined and the expression of potential target ARF8 (an auxin response
factor) was examined, demonstrating that miRm0002 enhances eggplant resistance to V.
wilt, possibly by translational repression not cleavage of ARF8.

2. Results
2.1. The Sequence, Stem Loop Structure, and Gene Clone of the MiRm0002 Precursor

According to the predicted sequence of miRm0002 precursor (Figure 1a) [13], the stem
loop structure was folded by applying the online mfold software (http://www.unafold.
org/mfold/applications/rna-folding-form.php accessed on 20 September 2021), and the
results showed that the 19 nt of miRm0002 was located at the stem (Figure 1b). 194 bp
pri-miRm0002 sequence was then cloned for further research (Figure 1c).

2.2. Production of Transgenic Eggplant

To investigate whether miRm0002 is involved in the defense response of eggplant to V.
wilt, the sense and antisense sequences of miRm0002 precursor were cloned and introduced
into pCAMBIA1304 expression vectors driven by the CaMV35S promoter (Figure 2a), which
were finally transferred into eggplant cultivar Suqi (Figure 2b). Molecular identification
performed by PCR with primer pair miRm0002_F and GFP_R (Table S1) and sequencing
showed that the expected 247 bp product contains the partial sequence of both precursors
and pCAMBIA1304 vector. mO lines were obtained namely mO1, mO2, mO3, and mO4
(Figure 2c) as well as 4 mI lines namely mI1, mI2, mI3, and mI4 (Figure 2d). Stem loop
qRT-PCR of miRm0002 revealed that the expression of mature miRm0002 was increased in
the mO transformants while it was decreased in the mI transformants (Figure 2e).

http://www.unafold.org/mfold/applications/rna-folding-form.php
http://www.unafold.org/mfold/applications/rna-folding-form.php
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identification of transgenic eggplants by PCR. (a) Schematic representation of two vectors
pCAMBIA1304-pre-miRm0002 or antisense pre-miRm0002 with sites of restriction enzymes, respec-
tively; (b) Regeneration of transgenic eggplants. PCR-based identification of miRm0002 overexpres-
sion lines (c) and miRm0002 inhibition expression lines (d). P: pCAMBIA1304-pre-miRm0002 vector
or pCAMBIA1304-antisense pre-miRm0002 vectors, C: non-transformed plants, mO: miRm0002
overexpression transgenic lines 1–4, mI: miRm0002 inhibition expression transgenic lines 1–4.
(e) QRT-PCR-based analyses of miRm0002 transcripts. WT: non-transformed plants, TG1304: Control
plants (transformed with vector only). The expression level of miRm0002 in non-transformed plants
was considered as the background level and set to 1. *, p < 0.05.

2.3. Disease Resistance of Transgenic Eggplant to V. Wilt

To understand the resistance of transgenic eggplant to V. wilt, the in vitro anti-fungal
assay was performed with the crude protein extract from the transgenic lines obtained
above (Figure 3). Only mO4 and mI4 transgenic lines are presented (Figure 3a) because there
was no significant difference between transgenic lines with the same transgenic constructs
by analyzing the inhibition rates (Figure 3b). The results showed that the antifungal efficacy
of mO lines was twice higher than that of control. However, the antifungal efficacy of
mI lines was not readily apparent, showing slight inhibition compared with that of PBS
(Figure 3). The wild-type control and eggplant transformed with vector pCAMBIA1304
had no difference between each other but had a basal antifungal efficacy which differed
from the PBS sample.
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Figure 3. Analysis of the anti-fungal efficacy of transgenic eggplant protein extracts. (a) Growth of V. dahliae on the medium
containing the extract of total proteins from eggplant. 1: PBS control, 2: wild type eggplant, 3: control plants (transformed
with 1304 vector only), 4: only mO4 transgenic line, 5: only mI4 transgenic line. (b) V. dahliae inhibition rate of different
transgenic lines. **, p < 0.01.

To further assess the in vivo resistance of the transgenic lines, the infection experiment
of V. dahliae was conducted with mO, mI lines and control lines at eggplant seedling stage
(Figure 4). The phenotype of wilting and the statistical analysis of disease index showed
that mO lines were more resistant to V. wilt while the mI lines were more susceptible
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compared to the control lines (Figure 4a,b). Further, in order to know whether expression
of miRm0002 affects the propagation of pathogens in transgenic eggplants, quantitative
detection of fungal biomass was carried out by semi-quantitative PCR of V. dahliae internal
transcribed spacer (ITS) in the vascular tissue of the eggplants. The results showed that
after infection for three days, the ITS DNA level was lower in the mO plants and higher in
the mI plants, compared to the control plants (Figure 4c). This suggests that overexpression
of miRm0002 inhibits the proliferation of V. dahliae in eggplant.
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Figure 4. Analysis of the resistance of transgenic eggplants against V. wilt. (a) Two-week-old transformants and the control
plants (both WT and TG1304) were inoculated with V. dahliae (mock treatments were done with water) and photographed
at 3 days. (b) The disease index was analyzed. (c) PCR of fungal colonization by comparing V. dahliae ITS DNA levels
relative to eggplant α-tubulin DNA level (for equilibration). Expression level of ITS in the control plants was considered as
background level and set to 1. *, p < 0.05; **, p < 0.01.

2.4. Antioxidant Activity in Transgenic Eggplants

When plants are infected by pathogens, they experience an accumulation of oxygen
free radicals, which leads to the activation of the antioxidant system hence increasing the
activity of antioxidant enzymes. In this study, the activity of SOD, POD, and CAT was
systematically examined in mO, mI, and control lines, respectively (Figure 5). The results
showed that infection of V. dahliae increased the accumulation of SOD, POD, and CAT
in all overexpressing lines and after V. dahliae treatment, overexpression of miRm0002
significantly increased SOD, POD, and CAT compared to both controls (Figure 5a–c).
However, there is no obvious difference in activities of SOD, POD, and CAT in all inhibiting
lines, whether before and after treatment or compared with the control (Figure 5a–c).
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Figure 5. Antioxidant activity analysis of transgenic eggplants. Total activity of SOD (a), POD (b), and CAT (c) in the leaves
of two-week-old mO and mI transgenic lines and the control plants (both WT and TG1304) upon mock inoculation or V.
dahliae infection for 3 days. *, p < 0.05; **, p < 0.01.

2.5. Analysis on Predicted Targets of MiRm0002

MiRNAs exert their regulatory role by down-regulating the expression of their target
genes at the post-transcriptional level. The target gene for miRm0002 was predicted using
the online software psRNATarget (http://plantgrn.noble.org/psRNATarget/ 20 September
2021) and two candidate sequences in eggplant were obtained: TC5469 and TC9181, of
which only TC5469 was a complete known sequence encoding the auxin response factor
ARF8 involved in auxin signal transduction [21]. Therefore, the expression of miRm0002
and ARF8 was quantified in control, mO, and mI eggplants under both water and V. dahliae
treatments, and the results showed that the expression regulation trends of miRm0002 and
ARF8 are opposite in different plants, which indicated that ARF8 expression was down-
regulated by miRm0002 cleavage or V. dahliae treatment (Figure 6a). To further confirm

http://plantgrn.noble.org/psRNATarget/
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the expression regulation mode of ARF8, RLM-RACE assay was performed showing that
the cleavage site of target mRNA ARF8 was 50 bp upstream of matching sites in large
proportion (Figure 6b). Besides, the degradome sequencing showed that there was no
corresponding ARF8 mRNA fragment [22]. All these results showed that miRm0002 could
not cleave the sequence of ARF8 at the matched site.
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corresponding to the 2085 bp site is high.

3. Discussion

MiRNAs play their specific roles in regulating the defense responses against pathogen
attack in different plants. In the case of V. dahliae, suppression of cotton miR482 promoted
resistance upon attack [12] while overexpressing potato miR482 enhanced susceptibility to
V. dahliae infection [15]. In eggplant, small RNA deep sequencing identified many miRNAs
in response to V. dahliae infection, like miR156 and miR482, which are induced by infection,
and others like miR393, miR395, and miR399 whose expressions are gradually inhibited
with increased infection time [13]. Furthermore, two new miRNAs namely miRm0001
and miRm0002 were identified, miRm0002 being induced by V. dahliae infection, which
indicated that it might be involved in defense against V. wilt. To test this hypothesis, this
study comprehensively analyzed the characteristics and functions of the miRNA though
genetic engineering, physiological and molecular methods, and all the results showed that
miRm0002 is involved in eggplant defense response and its overexpression can enhance
the resistance of eggplant to V. wilt, which indicated that V. dahliae-induced miRm0002
expression enhanced the eggplant resistance.

MiRNAs exert their function by directly targeting mRNA of their target genes for
post-transcriptional repression. Therefore, the identification of the target is an important
part of miRm0002 research. So far, there are four accepted methods for miRNA target gene
validation: verification of the cleavage site by 5′-RACE [23], mutation of the site of miRNA
to analyze the relationship between the expression of the two genes [24], the transgenic
way [25,26] and degradome sequencing [27]. In these studies, three ways were employed
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for miRNA target validation. First, the expression analysis of ARF8 in miRm0002 over-
expression and antisense inhibition lines showed the expression of miRm0002 was inversely
correlated to ARF8 in both mO lines and mI lines. However, RLM-RACE assay showed that
the cleavage sites are upstream of miRm0002 binding sites, and degradome sequencing
used for identification of miRNA targets in eggplant in response to V. dahliae [22] could not
identify the fragment of ARF8 at the matched site, which indicated that miRm0002 may
regulate the expression of ARF8 by translation inhibition not by cleavage. However, that
needs to be further investigated.

It is worth noting that in previous target gene prediction, both ARF8 and NTF3
(mitogen-activated protein kinase homolog gene) were the candidate target gene of miRm0002.
However, NTF3 could not be analyzed due to the lack of a complete sequence. For the same
reasons there may be still some target genes which have not been found. Therefore, this
suggests that miRm0002 may mediate also different regulation and participate in different
biological processes.

4. Materials and Methods
4.1. Plants Material and Growth Conditions

The eggplant cultivar Suqi (Solanum melongena L) was obtained from Jiangsu Province
Academy of Agricultural Sciences. Seeds were sterilized and inoculated on solid MS
medium [28] containing 3% sucrose and 0.8% agar at pH 5.8 with 200 mg/L cefotaxime
(Amresco, USA) for further sterilization, and maintained under 28 ± 2 ◦C dark condition
for 5 d for germination. They were then cultured in Petri-dishes containing solid MS
medium under a 28 ◦C 16 h light/20 ◦C 8 h dark regime for 4 weeks. Subculture was
done once every 4 weeks. In vitro plantlets were used for transformation experiment, or
they were sown in pots with a potting mix of 1:1:1 ratio of loam, vermiculite, and perlite
and grown in greenhouse for gene cloning, expression analysis, and pathogen infection
experiment [13].

4.2. Pathogen Culture and Infection

A highly aggressive VDT 18 strain of V. dahlia [5] isolated from eggplant with V.
wilt was kindly provided by The Plant Protection College of Nanjing Agricultural Uni-
versity (China) and was cultured on potato dextrose agar (PDA) plate in darkness at
25 ◦C for 14 days to collect spores, which were washed with distilled water to a concen-
tration of 5 × 107 spores mL−1 or in Czapek’s culture medium (NaNO3 2%, K2HPO4 1%,
MgSO4·7H2O 0.5%, KCl 0.5%, FeSO4·7H2O 0.01%, and sucrose 3%) to obtain crude toxin,
which was filtered with 8 layers gauze and the concentration was adjusted to 8 mg mL−1.

The inoculation of Verticillium wilt was carried out by root irrigation. Eggplant
seedlings with 4~5 true leaves grown were chosen for infection with the mixture of spores
and crude toxin (1:1) of V. dahliae which was poured into their culture medium of each
pot until saturated [29]. Mock-infected plants were inoculated with sterile distilled water.
After infection for 3 days, equal amounts of leaves were harvested and immediately frozen
in liquid nitrogen for RNA extraction.

4.3. RNA Extraction and Expression Analysis

Total RNA was extracted from the leaves of eggplant plants using Takara RNA Extrac-
tion kit. The first-strand cDNA was then synthesized with specific Stem-loop RT primer
miRm0002_RT and U6_R for miRNA expression (Table S1) [30], or with Oligo(dT)18/Random
Primer for expression of target gene ARF8 using Super RT kit (Bio Teke, Wuxi, China), and
then used as template for qRT-PCR analysis. Primer sequences for miRm0002, ARF8, and
their internal references are listed in Table S1. QRT-PCR was performed in triplicate using
SYBR PremixExTaq reaction system (TaKaRa Biotech, Japan) on the ABI PRISM7500HT
FAST Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) and U6 was used
as a control to normalize the level of total RNA for miRm0002 measurements, and EF-1α
was used as internal reference for ARF8 analysis.
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4.4. RACE Mapping of miRNA Target Cleavage Sites

Total RNA was extracted from leaves of eggplant Suqi seedlings in four-leaf stage using
the Trizol reagent (Sangon, Shanghai, China), then it was directly ligated to the RNA 5′ adap-
tor (5′-GCTGTCAACGATACGCTACGTAACGGCATGACAGTGCCCCCCCCCCCCCCC-3′)
and 3′ and reverse-transcribed using M-MuLV First Strand cDNA Synthesis Kit (B532435)
with oligo (dT) primer. The cDNA samples were amplified by nested PCR according to
invitrogen 5′ race system manual. Initial PCR was carried out using the 5′ outer primer (5′-
GCTGTCAACGATACGCTACGTAACGGCATGACAGTGCCCCCCCCCCCCCCC-3′) and
gene-specific outer primer (5′-TTCTAGCCCAAACATGCGAGCAAGC-3′). Nested PCR
was carried out using 1 µL of the initial PCR reaction, and 5′ nested primer (5′-GCTGTCAAC
GATACGCTACGTAAC-3′) and gene-specific inner primer (5′-GAGTGACCGTCCAAAGG
ACCCTGATT-3′). After amplification, 5′-RACE products were gel purified and cloned into
the pMD180T vector and the clones were sequenced.

4.5. Vector Construction and Plant Transformation

A cDNA library from eggplant (Suqi) was used for amplifying the Pre-miRm0002
sequences using gene-specific primers (Table S1), and the amplified fragments were
cloned into the vector pCAMBIA1304 to construct the miRm0002 over-expression vector
pCAMBIA1304-pre-miRm0002 and antisense inhibition vector pCAMBIA1304-antisense
pre-miRm0002 respectively. The resulting constructs were introduced into Agrobacterium
tumefaciens strain GV3101 using the freeze-thaw method [31].

The stem segment explants of in vitro plantlets were pre-cultured for 2 days, then in-
fected with GV3101 containing plasmid pCAMBIA1304-pre-miRm0002 and pCAMBIA1304-
antisense pre-miRm0002 respectively. After co-culturing for 2 days, the explants were
transferred to the differentiation medium for callus formation and shoot regeneration.
Transgenic plants were selected on media containing 10 mg/L−1 Hygromycin B (Amresco,
USA) by root screening [3].

4.6. Transgenic Plant Identification

Genomic DNA was extracted from tender leaves of the transgenic and control plants
(transformed with vector only) using the CTAB method. Molecular identification was
carried out by PCR using gene-specific forward primer and vector-specific reverse primer
(GFP_R, Table S1).

4.7. Evaluation of Plant Disease Resistance

Plant disease resistance was evaluated with disease phenotype and disease index.
Disease phenotype was investigated on the third day post-inoculation and disease in-
dex was calculated according to the disease grading criterion of grades 0–4 defined by
Liu et al. (2012) [3] using the formula: disease index = [∑ (number of diseased plants × disease
grade)/(total number of investigated plants × the highest disease grade)] × 100.

4.8. Quantitative Analysis of V. dahliae in Tissues

Quantitative analysis of V. dahliae in plant tissue was done with reference to Pantelides
et al. [32]. The above-ground parts were cut at the soil level. All samples were taken from
the middle part of the above-ground portion of the plantlets, then rinsed with distilled
water, and ground into powder in liquid nitrogen. Total DNA was extracted using CTAB
method for semi-qPCR assay. The quantification of V. dahliae was conducted by measuring
the DNA levels of V. dahliae internal transcribed spacer (ITS), which used eggplant α-tubulin
as internal standards to normalize the DNA template amounts. Primer sequences are listed
in Table S1.

4.9. In Vitro Anti-Fungal Assay

In vitro anti-fungal efficacy of crude protein extracts from transgenic and control egg-
plants was carried out according to the improved mycelium growth inhibition method [33].



Plants 2021, 10, 2274 10 of 12

The anti-fungal activity of the sample was indicated by the radius of the inhibition zone.
Circular wells were drilled at the center of the solid PDA in an 80-mm Petri-dish and
two other positions equidistant from the center on opposite sides. For all Petri dishes, V.
dahliae strain blocks with the same vigorous growth were inoculated in the central well, and
32 µg crude protein extract was added to the other two wells. Phosphate buffered saline
(PBS) was used as negative control. The antifungal efficiency was calculated as follows:
antifungal efficiency % = [(Colony diameter of V. dahliae in PBS control-Colony diameter of
V. dahliae in test extract)/(Colony diameter of V. dahliae in PBS control)] × 100%.

4.10. Antioxidant Enzyme Assay

Enzyme solution for antioxidant assay was extracted using the method of Wan et al. [34],
and protein concentration was determined according to the method of Bradford [35]
using calf serum (BSA) as the standard. The activity of superoxide dismutase (SOD) was
determined by measuring its ability to inhibit the photochemical reduction of NBT [36].
One unit of SOD activity (U) was defined as the amount of crude enzyme extract required to
inhibit the maximum reduction rate of NBT by 50%. The activity of peroxidase (POD) was
determined by measuring the oxidation of guaiacol (extinction coefficient 26.6 mM−1 cm−1)
at 470 nm [37]. Catalase (CAT) can catalyze the decomposition of H2O2 into oxygen
and water, and the enzyme activity was determined by the H2O2 decomposition rate at
240 nm [38].

4.11. Statistical Analysis

The data were analyzed by one-way ANOVA using IBM SPSS Version 19.0. Displayed
results are means± SD (error bar) for two biological replicates and three technical replicates.
Asterisks indicate the significance level in one-way ANOVA (*, p < 0.05; **, p < 0.01).

5. Conclusions

In summary, this study reveals the positive regulation of miRm0002 in the defense re-
sponse of eggplant V. wilt by in vivo inoculation test, in vitro fungistatic test, measurement
of some physiological indicators in mO, mI lines, and controls. All these results provide
not only important insights into the function and mechanism of miRm0002 in eggplant
defense against V. wilt, but also theoretical basis for eggplant V. wilt resistance breeding.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10112274/s1, Table S1: Primers used in PCR reactions.
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