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Abstract: The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the
Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accel-
erated ageing on the organismal level reminiscent of the Hutchinson–Gilford progeria syndrome
(HGPS). Farnesyl transferase inhibitors (FTIs) can suppress the phenotypes of the nuclear morphol-
ogy in cultured fibroblasts from HGPS patients and cultured cells overexpressing farnesylated INM
proteins. Similarly, FTIs have been reported to suppress the shortened lifespan in model organisms.
Here, we report an experimental system combining cell culture and Drosophila flies for testing the
activity of substances on the HGPS-like nuclear morphology and lifespan, with FTIs as an experi-
mental example. Consistent with previous reports, we show that FTIs were able to ameliorate the
nuclear phenotypes induced by the farnesylated nuclear proteins Progerin, Kugelkern, or truncated
Lamin B in cultured cells. The subsequent validation in Drosophila lifespan assays demonstrated the
applicability of the experimental system: treating adult Drosophila with the FTI ABT-100 reversed
the nuclear phenotypes and extended the lifespan of experimentally induced short-lived flies. Since
kugelkern-expressing flies have a significantly shorter average lifespan, half the time is needed for
testing substances in the lifespan assay.
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1. Introduction

The nuclear lamina is a network of lamin polymers and lamina-associated proteins,
which provides mechanical support, controls the size and shape of the nucleus, and me-
diates the attachment of chromatin to the nuclear envelope. A range of human disorders
can be linked to defects in the components of the nuclear lamina [1–3], of which some
have been linked also to physiological ageing [4–8]. Mutations in the human lamin A/C
gene (LMNA) cause at least eleven different human diseases called laminopathies [9–12],
with Hutchinson–Gilford progeria syndrome (HGPS) as a prominent example [8,13–15].
In the majority of HPGS variants, the C-terminal farnesylation site of LMNA is affected,
which results in the presence of a permanently farnesylated variant of Lamin A called
Progerin [8,13,14,16]. Given the lipophilic farnesyl moiety, Progerin intrinsically associates
with the membrane bilayer and interferes in some way with the integrity of the nuclear
lamina and causes misshapen nuclei [2,8,13,14,17].

Even in healthy individuals, Progerin is present in aged human cells [4]. And thus may
participate in physiological ageing. In healthy individuals, Progerin has been shown to
accumulate during the lifetime in a subset of dermal fibroblasts [5], in coronary arteries [7],
and in bone marrow stem cells [18]. The farnesylation of Progerin and the frequency of
misshapen nuclei in HGPS cell can be suppressed by the inhibition of protein farnesylation
with a protein farnesyl transferase inhibitor (FTI). It is well-established that FTIs prevent
the accumulation of Progerin at the nuclear envelope and reduce nuclear deformation and
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ageing-like phenotypes [19–25]. FTIs have been tested in clinical trials for the treatment of
HGPS patients [26,27].

Remarkably, the induction of ageing-like phenotypes by the expression of farnesylated
lamina proteins is observed also in other vertebrates [28] and invertebrates [29–35]. Fur-
thermore, laminopathy-related phenotypes can be induced by other farnesylated nuclear
proteins beside Progerin. Lamin B variants, or the insect-specific Kugelkern (Kuk), can
induce ageing-like phenotypes in Drosophila [29,30]. Besides the C-terminal farnesylation
site, Drosophila Kuk shares no apparent sequence homology with lamins. The expression
of Kuk or Lamin B or farnesylated variants in vertebrate cells induces nuclear lobulation
and deformations in conjunction with DNA damage, and changes in histone modifica-
tions [29,36–39] reminiscent to those found in HGPS cells or in cells from aged human
individuals [4]. Lobulated, wrinkled nuclei are characteristic for the premature ageing
syndrome HGPS, but are also present in healthy ageing humans, in nematodes, and in
Drosophila [4,29–31,40]. In wild type adult Drosophila flies, age-related changes in muscle
morphology and physiology are observed [41]. This involves increased size and aberrant
morphology in aged flight muscle nuclei [29]. Such ageing-like phenotypes can be prema-
turely induced by the expression of farnesylated lamina proteins. The overexpression of
Lamin B or Kuk induces aberrant nuclear shapes early in adult life and reduces the lifespan
of the flies. The shorter lifespan correlates with an early decline in age-dependent locomo-
tor behavior [29]. Thus, the lobulation of the nuclear membrane induced by the insertion
of farnesylated nuclear proteins is associated with premature ageing-like phenotypes in
cultured mammalian cells as well as in adult Drosophila [29].

One of the major obstacles on the way to develop new genetic interventions or drug
treatments that concern ageing or prolong lifespan is that screens are time-consuming and
limited in scale. By complementing existing and well-established assays with cultured cells
with lifespan assays in adult Drosophila flies, we developed a relatively fast screening system
for the identification of genes or substances that ameliorate ageing-like phenotypes and
potentially prolong the lifespan [29]. To demonstrate the feasibility but also the limitations
of our combined method, we employed two well-characterized inhibitors that interfere
with the farnesylation of proteins: ABT-100 (Abbott, Chicago, IL, USA) and Simvastatin
(Sigma, St. Louis, MO, USA) [42–44]. ABT-100 is an orally bioavailable farnesyl transferase
inhibitor. Simvastatin is a specific inhibitor of HMG-CoA reductase, an enzyme involved
in farnesyl biosynthesis.

2. Materials and Methods
2.1. Cell Culture

NIH3T3 cells were cultured in DMEM (Thermo Fisher Scientific/Invitrogen, Waltham,
MA, USA supplemented with 10% FBS and 2 mM L-glutamine at 37 ◦C. We plated NIH3T3
cells in 6 wells containing cover slips and transiently transfected them with Effectene
(Qiagen, Hilden, Germany) when they reached a confluence of 25–30% with pCS2HAkuk
([38], referred to here as kuk), pEYFP-Progerin or pCS2XlaminB2∆NGFP ([36], referred to
here as laminB2∆N) (2 µg construct/6-well). The efficiency of transfection was generally
at least one third. The YFP-Progerin plasmid was generated by cloning human Progerin
(human Prelamin A with a 50 aa deletion) into the BspE1/XhoI sites of vector pEYFP-C1
(Takara Bio/Clontech, Mountain View, CA, USA).

2.2. Generating a Stable HeLa Cell Line with Inducible GFP-kuk Expression

GFP-kuk and GFP were cloned by PCR into the vector pBI.F3 [45], resulting in plasmids
pBI-F3-GFP-Kuk and pBI-F3-GFP. The vector pBI.F3 allows for FRT/Flp-mediated insertion
into the S/A locus in HeLa cells [45]. Targeted integration of the constructs was conducted
as described by Weidenfeld [45]. Briefly, cells from the mother HeLa S/A cell line were
plated in a six-well plate with standard medium except for tetracycline-free fetal calf serum
(FCS) instead of FBS. The following day, the nearly confluent cells were transfected with
2 µg of pCAGGS-Flpe-IRES-Puro and 2 µg of targeting vectors (pBI-F3-GFP-Kuk, pBI-F3-
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GFP) using Effectene. The molar ratio of the plasmids was ~1:1. After overnight incubation,
cells were transferred to a 10 cm Petri dish and Puromycin (5 µg/mL) was added for the
selection of cells transfected with the pCAGGS-FLPe plasmid. After 36 h, the medium
was changed and cells were selected with Ganciclovir (10–50 µM) for recombinants (loss
of the HygTK-cassette). The medium was replaced by fresh selective medium every day
for one week. Subsequently, ten clones were picked, amplified in selective medium, and
induced with Doxycycline in order to confirm GFP-Kuk expression. Protein expression was
checked by Western blotting and by immunofluorescence. The induction was performed by
addition of 250 ng/mL Doxycycline to the medium. ABT-100 was used at a concentration
of 6 µM. Cells were collected after 0–7 d and stained or lysed in Laemmli buffer in order
to be used for Western blotting (0.5 × 105 cells were loaded). Antibodies for Western blot:
mAb414 (Sigma), mouse HP1α (Chemicon, Takahagi, Tokyo), RBBP (Abcam, Cambridge,
UK), α-Tubulin (Sigma), Kuk [38].

2.3. Immunohistochemistry

Cells were cultivated for 48 h (HP1α and H3K9me3 staining) or for 72 h (H2A.X
staining). After washing in PBS, cells were fixed with 2% formaldehyde in PBS containing
0.2% Tween and 0.5% NP-40 for 20 min at room temperature. After washing in phosphate-
buffered saline (PBS), cells were permeabilized in PBS with 0.5% Triton X-100 plus 0.5%
Saponin (Sigma) for 10 min. Consecutively, cells were blocked in PBS containing 0.1%
Triton (PBT) with 5% BSA and stained in PBT containing primary antibodies, fluorescent
secondary antibodies (4 µg/mL, Alexa, Molecular Probes, Eugene, OR, USA), or 4’,6’-
Diamidin-2-phenylindol (DAPI), and mounted in Aquapolymount (Polyscience, Nieles,
Il, USA). Antibodies for immunostainings: p-H2A.X (Chemicon, 1:5000), mouse HP1α
(Chemicon, 1:2500), Kuk (0.2 µg/mL, [38]), H3K9me3 (Sigma/Upstate, 0.2 µg/mL).

2.4. Microscopy

To visualize the effect of the FTIs in vivo, adult males were anaesthetized. The head,
abdomen, legs, and wings were cut off. The thorax was transferred to ice cold Schneider
cell medium where it was split into half and mounted in 50% glycerol. For measurement
of the muscle nuclei perimeters, we acquired digital fluorescent images of longitudinal
adult muscles taken with a fluorescent microscope connected to a Progress camera and
processed them with Photoshop (Adobe). Three independent experiments were analyzed
by VassarStats (Mann–Whitney U-Test, Web-based VassarStats).

2.5. Drosophila Strains

Fly stocks were obtained from the Bloomington stock center [46], if not otherwise noted.
Genetic markers, mutations and annotations are described in Flybase (http://flybase.org,
accessed on 1 January 2020) [47]. GS-actin used the actin5C promoter [48], and GS-MHC
used the myosin heavy chain promoter [49]. For cloning of pUASp-kuk, the cDNA from
LD09231 was cloned as NotI-ApaI/blunt fragment into the NotI-XbaI/blunt sites of pUASp.
UASp-GFP-kuk was generated by insertion of a GFP-encoding sequence at the start codon
into pUASp-kuk. For the GFP-kuk and GFP-kukCS567 constructs, a sequence encoding
GFP was inserted at the start codon, and a sequence of the C-terminus with the CS567 point
mutation exchanged with the corresponding sequence in the plasmid pBKS-kuk+, which
contains an 8.2 kb EcoRV-EcoRV fragment including the kuk locus [38]. For transgenesis,
the GFP-kuk and GFP-kukCS567 constructs were transferred to the transformation vector
Casper4. Transgenic flies were generated according to standard procedure with random
transposase-mediated integration.

2.6. Lifespan Assays, Preparation of Muscle Tissue

All flies were raised and kept in a humidified, temperature-controlled incubator with
12 h on/off light cycle at 25 ◦C in vials containing standard cornmeal medium (2.5%
yeast, 2.18% treacle, 1% soya meal, 8% cornmeal, 8% malt, 1.25% propionic acid). Flies
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were collected under short CO2-anaesthesia. Each demography cage was initiated with
at least 100 newly eclosed males. The number of deceased flies was recorded every two
to three days, when flies were transferred to fresh food plates. For induction with the
GeneSwitch system, RU486 (Sigma) was added directly to the food to a final concentration
of 200 µM. Food plates for control experiments contained an equal amount of the vehicles
DMSO and ethanol as plates with RU486 or FTIs. The data across three to four replicate
demography cages per treatment and genotype were combined. The concentration of
ABT-100 was 1 µg/mL in the food. We did not systematically test a series of ABT-100
concentrations. Prism GraphPad and Sigmaplot software were used for survival data (log-
rank test). Longitudinal muscles were prepared from young adult flies (2–7 d) heterozygous
for GS-actin and UASp-GFP-kuk and fed for five days with food complemented with ABT-
100 (1 µg/mL) or RU486 (200 µM). Living tissue was stained with DAPI and imaged with
an epifluorescence microscopy. Muscles from at least three animals per genotype were
analyzed.

3. Results
3.1. The Farnesyl Transferase Inhibitor ABT-100 Suppressed Ageing-like Phenotypes in
Cultured Cells

Fibroblasts that express Progerin have been shown to develop phenotypes also found
in fibroblasts from HGPS patients such as excessive folds of the nuclear envelope, an accu-
mulation of unrepaired DNA damage, and reduced HP1α staining [17,50]. The suppression
of these Progerin-induced phenotypes by FTIs, including dose–response relationships, are
well established in cell culture [19–23,50,51] as well as on the organismal level in mice and
HGPS patients [26,51,52].

We first confirmed the activity of the FTI ABT-100 in our assay system with previously
established ABT-100 concentrations [42,51,53]. When we treated Progerin-expressing NIH
3T3 fibroblasts with the farnesyl transferase inhibitor ABT-100, we observed a suppression
of the nuclear phenotypes as expected (Figure 1, Table 1). Progerin was no longer concen-
trated at the nuclear envelope but was found in intranuclear spot-like accumulations. The
nuclei appeared smooth and devoid of folds in the nuclear envelope, in contrast to the
control cells with blebs and an abnormal nuclear shape. The HP1α staining intensity was
restored to levels comparable to those of untransfected control cells (Figure 1A).

Table 1. Suppression of ageing-like phenotypes with ABT-100 treatment.

Nuclear Perimeter (µm)

YFP-Progerin Transfected S.E.M. Non-Transfected S.E.M. (2) p-Value (1)

control 61.79 ±1.64 39.33 ±1.26 <0.00001

ABT (3.6 µM) 39.05 ±1.06 38.02 ±0.87 n.s. (3)

ABT (7 µM) 35.95 ±1.19 36.00 ±0.87 n.s.

Kuk

control 42.17 ±2.85 33.44 ±2.85 0.021

ABT (3.6 µM) 30.94 ±0.68 33.73 ±0.65 n.s.

ABT (7 µM) 32.41 ±0.72 33.04 ±0.61 n.s.

GFP-LaminBDN

control 60.13 ±5.33 34.76 ±1.27 0.00003

ABT (3.6 µM) 27.07 ±1.14 31.75 ±0.99 0.00032

ABT (7 µM) 33.49 ±0.67 35.71 ±1.10 n.s.
(1) Mann–Whitney U-test, (2) standard error of the mean, (3) n.s. statistically not significant.
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(grey/blue). Arrows point to nuclei of transfected cells. Scale bars 10 µm. 
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Figure 1. Ageing-like phenotypes are suppressed by ABT-100 treatment. NIH3T3 mouse fibrob-
lasts transfected with farnesylated nuclear proteins (A) YFP-Progerin, (B) Kugelkern, or (C) GFP-
LaminB2∆N and treated with ABT-100 at concentrations of 0 µm (control), 3.6 µM, or 7 µM, as
indicated. Fixed cells were stained for (A) GFP, (B) Kuk, (C) LaminB (grey/green), HP1α (grey/red),
and DAPI (grey/blue). Arrows point to nuclei of transfected cells. Scale bars 10 µm.

Fibroblasts expressing a truncated but constitutively farnesylated form of Lamin
B, Lamin B∆N [36,37], showed a nuclear phenotype comparable to Progerin-expressing
cells [29]. The transfected cells displayed foci and accumulations of the GFP-laminB∆N
signal, strong nuclear envelope folds, and reduced HP1α staining (Figure 1C). When we
treated those cells with ABT-100, we observed a suppression of these phenotypes: the nu-
clear envelope acquired a regular shape with few/no folds and HP1α staining was restored
to normal levels. The GFP-laminB∆N signal was reduced to few spot-like accumulations
and a diffuse GFP-laminB∆N signal was present throughout the nucleoplasm.

Kugelkern, a Drosophila-specific, farnesylated lamina protein, induces nuclear phe-
notypes comparable to Progerin or LaminB∆N [29,38]. The treatment with ABT-100 also
suppressed the nuclear phenotypes in kuk-transfected fibroblasts (Figure 1B, Table 1). The
GFP-kuk signal was no longer restricted to the nuclear envelope but was reduced to a dif-
fuse signal throughout the nucleoplasm, indicating the efficient inhibition of farnesylation.
In the ABT-100 treated cells, nuclear folds were absent and the HP1α-staining intensity was
restored to levels comparable to those of the untransfected control cells (Figure 1B).

In addition to ABT-100, we tested a second FTI, FTI-277, and the statin Simvastatin,
an established inhibitor of the enzyme hydroxymethylglutaryl-CoA reductase (HMG-
CoA reductase), which catalyzes the entry step for the synthesis of cholesterol and other
prenyl derivatives such as farnesyl residues. As expected from previous reports [43,44],
both drugs reduced the GFP-Progerin signal at the nuclear envelope, and only a diffuse
nucleoplasmic signal was observed (Figure 2, Table 2). The typical nuclear envelope
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malformations, like blebs or protrusions, were reduced by Simvastatin and FTI-277, and the
nuclei had an overall normal shape (Figure 2A). Comparable phenotypes were observed in
the cells expressing GFP-LaminB∆N (Figure 2B). The GFP-LaminB∆N signal was mostly
nucleoplasmic. We observed an amelioration of the nuclear shapes with reduced blebs,
lobulations, or nuclear envelope protrusions, albeit abnormalities were still present in
the-drug treated cells. Consistent with previous reports, we conclude that the FTIs ABT-100
and FTI277 and Simvastatin were able to suppress the nuclear phenotypes induced by
Progerin, Kuk, or Lamin B∆N expression in the cultured mouse fibroblasts.
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Figure 2. Simvastatin and FTI-277 suppress nuclear morphology phenotypes. NIH3T3 mouse
fibroblasts transfected with farnesylated nuclear proteins (A) GFP-Progerin or (B) GFP-LaminB2∆N
and treated with Simvastatin or FTI-277 as indicated. Fixed cells were stained for GFP (grey/green)
and DAPI (grey/blue). Arrows point to nuclei of transfected cells. Scale bars 10 µm.

Table 2. Suppression of ageing-like phenotypes by Sim and FTI-277 treatment.

Nuclear Perimeter (µm)

GFP-Progerin Transfected S.E.M. Non-Transfected S.E.M. (2) p-Value (1)

control 53.48 ±1.19 33.19 ±0.82 <0.00001

Sim 38.69 ±1.10 36.00 ±0.85 0.043

FTI-277 42.66 ±0.98 37.40 ±1.44 n.s. (3)

GFP-LaminBDN

control 58.96 ±18.19 34.83 ±0.99 0.005

Sim 37.62 ±2.67 33.57 ±0.88 0.017

FTI-277 38.31 ±4.83 36.63 ±0.78 n.s.
(1) Mann–Whitney U-test, (2) Standard error of the mean, (3) n.s. statistically not significant.

3.2. Suppression of Kuk-Induced Nuclear Phenotypes by ABT-100 in HeLa Cells with Inducible
kuk Expression

To establish highly reproducible experimental conditions with inducible expression
levels, we generated a Hela cell line with a genomic insertion of the construct, in which GFP-
kuk expression can be induced by doxycycline treatment [45]. After 24 h of doxycycline
induction, cells showed a prominent GFP-kuk signal at the nuclear lamina. The shape
of the nuclei was deformed with large protrusions and internal folds (Figure 3A), similar
to those observed in NIH 3T3 fibroblasts (Figure 1B) expressing kuk. The nuclei in the
control cells expressing GFP remained round even after extended induction periods. The
induction of GFP-kuk expression after one day and the increasing protein levels throughout
the induction period were detected by Western blot analysis (Figure 3E). Two bands were
detected, which represent the farnesylated (upper) and non-farnesylated forms of Kuk.
The treatment of cultured S2 cells with FTI leads to a band shift in Western blots [54].
Furthermore, we assayed Kuk with Western blot in extracts from embryos homozygous for
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a kuk deletion (allele kuk∆15, [38]) but expressing the GFP-kuk or GFP-kukCS567 transgene.
In the CS567 mutation, the target cysteine residue of farnesylation was mutated to a serine
residue. Comparing the two extracts, we detected a band shift towards a lower apparent
molecular weight with the GFP-kukSC567 transgene (Figure 3E, Supplemental Figure S1),
suggesting that the farnesylation of Kuk leads to a slower movement and higher apparent
molecular weight in SDS-PAGE.
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Figure 3. Stable GFP-kuk transfected Hela cells show abnormal nuclear shapes. Hela cell lines with
integrated GFP-kuk or GFP constructs under control of a doxycycline (Dox) inducible promoter.
GFP-kuk or GFP expression was induced by Dox for indicated periods of time. Cells were treated
with ABT-100 as indicated. (A–D) Fixed cells stained for GFP (grey/green), phosphor-γ-H2A.X or
HP1 (grey/red), and DAPI (grey/blue) as indicated. Scale bars 10 µm. (E) Western blots for Kuk
with lysates from embryos expressing GFP-kuk or GFP-kukCS567 in a kuk-deficient background. The
farnesylated form of Kuk is detected at a higher apparent molecular weight than the non-farnesylated
form. (F,G) Western blots with lysates of Hela cells with induced GFP or GFP-kuk expression and
ABT-100 treatment as indicated. The following proteins were detected: Kuk (with presumably
farnesylated and non-farnesylated forms), nuclear pore antigens (mAB414), Nurd complex protein
RBBP4, and α-tubulin (loading control).

The ABT-100 treatment prevented the formation of abnormally shaped nuclei in GFP-
kuk-expressing Hela cells (Figure 3B). Even after six days of induction, no prominent
nuclear envelope folds were observed and the GFP-kuk signal was predominantly nucle-
oplasmic. In the Western blot analysis, a duplet of Kuk bands was detected. The lower
band was more prominent after the ABT treatment than without the ABT-100 treatment
(Figure 3F,G, Supplemental Figure S1), which would be consistent with a faster migration of
the non-farnesylated form of Kuk in SDS-PAGE (Figure 3E) [54]. Taking together the loss of
the nuclear envelope staining and the apparent band shift in SDS-PAGE, we conclude that
the FTI ABT-100 suppressed the nuclear morphology phenotypes caused by the expression
of kuk.

After five days of induced GFP-kuk expression, kuk-expressing Hela cells showed
prominent H2AX staining, indicating the accumulation of unrepaired DNA damage
(Figure 3C). GFP-kuk-expressing cells showed a strong reduction in HP1α staining af-
ter five days of induction (Figure 3D). In the Western blot analysis, a strong reduction in
the Nurd complex component and heterochromatin marker RBBP4 was observed after
five days of induction (Figure 3F, [4]). These results are consistent with our data obtained
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from the transiently transfected fibroblasts (Figures 1 and 2, [29]). In summary, our cell
culture experiments show that a set of farnesylated nuclear proteins and variants induce
related nuclear phenotypes, which can be suppressed by FTIs and simvastatin. Thus, this
cell culture system can serve as an assay for compounds or genes with an activity similar
to FTIs and simvastatin.

3.3. The Farnesyl Transferase Inhibitor ABT-100 Reverses the Shortened Lifespan Induced by Kuk

The second part of our experimental system consists of an in vivo test with the lifespan
as a readout. Whereas wild type Drosophila flies have a lifespan of two to three months
depending on conditions, flies expressing kuk have a lifespan reduced by about half [29].
We employed these kuk-expressing Drosophila as an assay for the suppression of a shortened
lifespan. We used the GeneSwitch system (GS system), which is induced by RU486, to
drive kuk expression in adult Drosophila. Using the GS system allows for the minimiza-
tion of problems of the genetic background as well as defects, which may arise during
development [49,55]. In this system, the difference between the experimental and control
condition is the presence or absence of the inducing agent RU486 in the food of adult flies
with an identical genetic background and which were raised together as larvae and pupae
without induction. Even high doses of RU486 did not affect the lifespan of flies (Figure 4A).
Although we observed a variation in the survival curves between the individual cages,
no striking difference in the average was observed. The concentration of 200 µM RU486
falls into the saturating range with our experimental settings. We observed about a 50%
activation with a concentration of about 20 µM RU486 (Figure 4B, Supplemental Figure S1).
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Figure 4. The FTI ABT-100 reextends experimentally induced shortened lifespan of Drosophila flies.
Lifespan assays and Western blot with progenies and embryonic lysates of indicated crosses. Food
was complemented with RU486 (200 µM) and ABT-100 as indicated. Shown are curves of individual
assays (dashed lines) and average (solid lines). (A) Male progenies of cross GS-MHC x +/+. Four
cages for each condition, n(–RU) = 291, n(+RU) = 277. The statistical significance for a difference
of the average was p > 0.05. (B) Western blot for GFP and α–tubulin with extracts from thoraces of
flies from cross GS-MHCxUAS-GFP, whose food was complemented with indicated concentration of
RU486. (C) Male progenies of cross GS-actinxUAS-kuk. Three cages for each condition, n(–RU) = 217,
n(+RU) = 297, n(–RU + ABT) = 363, n(+RU + ABT) = 363. The statistical significance was calculated
by a log-rank test.

In agreement with the data of other GS-driver lines [29], the GS-actin line [48,56,57]
driving ubiquitous UASp-kuk expression was able to decrease the lifespan (Figure 4C).
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When we treated non-induced GS-actin X UASp-kuk flies with ABT-100, we saw a signifi-
cant extension of the mean lifespan compared to the untreated flies of the same genotype.
Uninduced flies may express target genes in low levels as the GS system is prone to leak-
iness [56,58]. The treatment with ABT-100 significantly prolonged the mean lifespan of
the induced flies compared to the induced flies which were not treated with ABT-100
(Figure 4C). Similarly, we tested the HMG-CoA reductase inhibitor Simvastatin in the
lifespan assay. We did not observe any beneficial effect on the short lifespan of the kuk-
expressing flies (Figure 5). In summary, we found that among the two drugs that were
positive in the cell culture assay, only ABT-100 scored positive in the in vivo assay, as
ABT-100 suppressed the shortened lifespan of the kuk-expressing flies.

J. Dev. Biol. 2023, 11, 40 9 of 15 
 

 

Figure 4. The FTI ABT-100 reextends experimentally induced shortened lifespan of Drosophila flies. 
Lifespan assays and Western blot with progenies and embryonic lysates of indicated crosses. Food 
was complemented with RU486 (200 µM) and ABT-100 as indicated. Shown are curves of individual 
assays (dashed lines) and average (solid lines). (A) Male progenies of cross GS-MHC x +/+. Four 
cages for each condition, n(–RU) = 291, n(+RU) = 277. The statistical significance for a difference of 
the average was p > 0.05. (B) Western blot for GFP and α–tubulin with extracts from thoraces of flies 
from cross GS-MHCxUAS-GFP, whose food was complemented with indicated concentration of 
RU486. (C) Male progenies of cross GS-actinxUAS-kuk. Three cages for each condition, n(–RU) = 
217, n(+RU) = 297, n(–RU + ABT) = 363, n(+RU + ABT) = 363. The statistical significance was calcu-
lated by a log-rank test. 

In agreement with the data of other GS-driver lines [29], the GS-actin line [48,56,57] 
driving ubiquitous UASp-kuk expression was able to decrease the lifespan (Figure 4C). 
When we treated non-induced GS-actin X UASp-kuk flies with ABT-100, we saw a signif-
icant extension of the mean lifespan compared to the untreated flies of the same genotype. 
Uninduced flies may express target genes in low levels as the GS system is prone to leak-
iness [56,58]. The treatment with ABT-100 significantly prolonged the mean lifespan of the 
induced flies compared to the induced flies which were not treated with ABT-100 (Figure 
4C). Similarly, we tested the HMG-CoA reductase inhibitor Simvastatin in the lifespan 
assay. We did not observe any beneficial effect on the short lifespan of the kuk-expressing 
flies (Figure 5). In summary, we found that among the two drugs that were positive in the 
cell culture assay, only ABT-100 scored positive in the in vivo assay, as ABT-100 sup-
pressed the shortened lifespan of the kuk-expressing flies. 

 
Figure 5. Simvastatin did not prolong experimentally induced shortened lifespan of Drosophila flies. 
Lifespan assays with flies expressing kuk under control of GS-actin driver line. Food was comple-
mented with RU486 (200 µM) and Simvastatin as indicated. Shown are curves of individual assays 
(dashed lines) and average (solid lines). The statistical significance was calculated by a log-rank test. 
Three cages for each condition. 

Finally, we tested whether the treatment with ABT-100 also affected the nuclear mor-
phology in vivo. In kuk-overexpressing flies (GS-actin X UASp-GFP-kuk), we observed a 
prominent GFP-Kuk signal in the nuclei of the longitudinal flight muscles, which are a 
homogenous tissue easy to prepare (Figure 6A). Consistent with our previous data [29], 
the size of the nuclei was increased following induced kuk expression to an average nu-
clear perimeter of 8.6 ± 0.5 µm (±S.E.M., Figure 6B). After the treatment with ABT-100, the 
nuclear perimeter decreased significantly to 5.1 ± 0.5 µm, (±S.E.M., Figure 6B). These data 
suggest that ABT-100 ameliorates the nuclear phenotypes also in adult flies. 

0

20

40

60

80

100

0 10 20 30 40 50 60 70 10 20 30 40 50 60 70

control RU486
RU486+SimvastatinSimvastatin

GS-actin x UASp-Kuk

Time [d]

Su
rv

iv
al

[%
]

p=0.5
p=0.42

Figure 5. Simvastatin did not prolong experimentally induced shortened lifespan of Drosophila
flies. Lifespan assays with flies expressing kuk under control of GS-actin driver line. Food was
complemented with RU486 (200 µM) and Simvastatin as indicated. Shown are curves of individual
assays (dashed lines) and average (solid lines). The statistical significance was calculated by a log-rank
test. Three cages for each condition.

Finally, we tested whether the treatment with ABT-100 also affected the nuclear
morphology in vivo. In kuk-overexpressing flies (GS-actin X UASp-GFP-kuk), we observed
a prominent GFP-Kuk signal in the nuclei of the longitudinal flight muscles, which are a
homogenous tissue easy to prepare (Figure 6A). Consistent with our previous data [29], the
size of the nuclei was increased following induced kuk expression to an average nuclear
perimeter of 8.6 ± 0.5 µm (±S.E.M., Figure 6B). After the treatment with ABT-100, the
nuclear perimeter decreased significantly to 5.1 ± 0.5 µm, (±S.E.M., Figure 6B). These data
suggest that ABT-100 ameliorates the nuclear phenotypes also in adult flies.
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Figure 6. The FTI ABT-100 reduces nuclear perimeter size in kuk-expressing flies. (A) Fixed longitu-
dinal muscle cells from males flies heterozygous for GS-actin and UASp-GFP-kuk stained for GFP
(grey/green) and DAPI (grey/blue). Flies on food complemented with RU486 or RU486 + ABT-100 for
five days. Insets show high magnification of a selected nucleus. Scale bar 10 µm. (B) Nuclear perime-
ters in longitudinal muscles. Samples from at least three flies each. n(RU) = 50, n(RU + ABT) = 62.
Whiskers indicate standard error of the mean. Mann–Whitney U test: “**” indicates p < 0.001.
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4. Discussion

Here, we report the development of an experimental system combining cell culture and
adult Drosophila to test potential nuclear morphology- and lifespan-altering interventions.
As an exemplary case, we confirm in our assays that the FTIs ABT-100 and FTI-277 and the
HMG-CoA reductase inhibitor Simvastatin ameliorated the nuclear phenotypes induced
by the farnesylated nuclear proteins Progerin, Kugelkern, or a Lamin B variant in the
cell culture system. For the purpose of simplicity, we kept the scoring of the nuclear
morphology and phenotypes on a qualitative level, although automated solutions for
image analysis could be easily incorporated in a high throughput assay. On the organismal
level, ABT-100 scored positive, in that the lifespan of the flies shortened by kuk expression
was re-extended, whereas Simvastatin failed in the second test. Simvastatin is a specific
inhibitor of the enzyme HMG-CoA reductase that catalyzes the conversion of HMG-CoA
to mevalonate, which is the regulated entry step in the biosynthesis of cholesterol as well
as in isoprene derivatives, including the farnesyl residue. Simvastatin failed to extend the
lifespan in GS-actin X UASp-kuk-expressing flies, which may be explained by metabolic
differences in sterol synthesis [59], as Drosophila and C. elegans are unable to synthesize
sterols de novo [60,61]. However, the enzyme HMG-CoA reductase is present and isoprene
and its derivatives can be synthesized by flies. Thus, the lack of activity of Simvastatin may
be due to differences in the interaction of Simvastatin and the enzyme, inefficient uptake in
the gut, or poor bioavailability, among other possibilities.

It is clear that FTIs affect a wide range of pathways and processes, most prominently
small GTPases, such as RAS, besides the farnesylated proteins of the nuclear lamina. The
application of FTIs to cells and an organism will impair these processes to a different
degree depending on specific circumstances, such as the protein turnover or the sensitivity
of the proteins to the loss of the farnesyl moiety. By comparing the induced and un-
induced condition, we try to reduce complexity and aim to assign the phenotypes to the
differences between the induced and un-induced condition. However, we cannot exclude
the synergistic effects of other farnesylated proteins, as we do not directly measure the
degree of farnesylation.

4.1. Premature Ageing Models

The study of molecular mechanisms underlying human ageing has been facilitated
by studies on progeroid syndromes, including HGPS. In fibroblasts from HGPS patients,
it has been shown that farnesyl transferase inhibitors (FTIs) restore nuclear shape abnor-
malities and reverse the changes in heterochromatin markers associated with Progerin
accumulation. Accordingly, these compounds, originally developed as anticancer drugs,
represent a therapeutic approach for HGPS. In ageing C. elegans, the FTI Gliotoxin was able
to ameliorate nuclear morphology phenotypes and delay the age-dependent decline in lo-
comotion. However, there was no effect on the lifespan in FTI-treated wild type worms [40].
In HGPS mouse models, FTIs reduce the incidence of nuclear deformities, improve their
body weight, growth, and bone defects, and extend the lifespan of these mice [24,52,62].
These findings led to the clinical application of FTIs in HGPS patients [26,27].

Exposing adult Drosophila to ABT-100 reduced kuk-induced ageing-associated effects,
like nuclear morphological aberrations and shortened the lifespan of the flies. ABT-100
may inhibit the farnesylation of Kugelkern, the expression of which is induced simulta-
neously with treatment with the drug, but also with other farnesylated proteins such as
LaminDm0. For experimental reasons such as the similar genetic background, the lifespans
are comparable between the induced and un-induced conditions. As the expression of
farnesylated proteins is induced only in adult flies, the situation is different to a chronic
expression throughout the life cycle, which is the case for genetic variants such as HGPS.
Whether induced expression or chronic expression makes a difference is hard to estimate
and may depend on the circumstances and the genes expressed. We could recapitulate
the ageing-like phenotypes in Drosophila and successfully apply the therapeutic approach
of FTIs. Thus, our findings show the feasibility of an assay for the identification of sub-
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stances ameliorating nuclear phenotypes and re-extending the lifespan of short-lived flies
expressing kuk.

4.2. Assay for Lifespan Altering Interventions

The molecular mechanisms of ageing are the focus of extensive investigations, provid-
ing hope for the discovery of the principles that govern this process, and novel ways to
attenuate or delay it in humans. Research in the popular vertebrate genetic model systems
mice and zebrafish has provided important insights into vertebrate ageing. However, both
mice and zebrafish live for approximately three years or longer under laboratory condi-
tions, which makes it very time-consuming and expensive to perform screens for genes or
substances that prolong the lifespan. On the other hand, small and prolific organisms with
a short lifespan, such as C. elegans and Drosophila, provide the basis for unbiased screens
that identify and determine the functions of novel genes and substances that influence
ageing in a physiological context. The small size and high fecundity of fruit flies has
made them a favorite invertebrate model of developmental biologists. This has resulted
in the detailed characterization of the Drosophila genome, the development of multiple
mutant and transgenic phenotypes, and in molecular genetics, techniques allowing for
the investigation of the intrinsic mechanisms underlying developmental or ageing-related
events in this organism [63–67].

Specifically, the conditional gene expression system GeneSwitch provides several
advantages for ageing studies, since it permits the temporal and tissue-specific control of the
gene expression of a transgene in animals with identical genetic backgrounds [49,55–58,68].
Moreover, the GeneSwitch system provides powerful controls for the genetic background’s
effects on lifespan, since control and gene-overexpressing animals have identical genetic
backgrounds and differ only in the presence or absence of the expression-inducing drug.
However, most GeneSwitch drivers tested are leaky under non-induced conditions ([56,58],
Figure 4B), which implies that non-expressing controls cannot be obtained in strict terms.
Furthermore, RU486 was recorded to affect food palatability and intake under certain
conditions and to cause mating-dependent effects on lifespan in females [68–70].

Even the relatively short lifespan of the fruit fly (~6–12 weeks, depending on the
conditions) makes the comprehensive investigations of ageing time-consuming. Thus,
methods accelerating the screening of genetic and pharmacological agents for their lifespan-
extending effects are needed. Here, we report the development of an assay in Drosophila, in
which we shorten the lifespan of adult flies, thereby reducing the time needed to perform
lifespan studies by about half. Through the over-expression of farnesylated nuclear proteins
like Kuk, specific ageing-like phenotypes can be induced prematurely and the lifespan is
shortened to less than four to five weeks. This shortening accelerates the ability to evaluate
potential lifespan-altering interventions, thereby greatly facilitating drug or gene discovery.

5. Conclusions

Our experiments employing the FTI ABT-100 demonstrate that a combination of a
cell culture test and population-scale Drosophila survivorship assays can be used as a
test for pharmacologically active substances for lifespan-extending interventions. This
combi-nation of first phasing down the number of candidate substances or genes that
in the second step will be tested, could be used in time-consuming but relevant lifespan
experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jdb11040040/s1, Figure S1: Source data to western blots.
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