
Citation: Hawke, D.C.; Watson, A.J.;

Betts, D.H. Selecting Normalizers for

MicroRNA RT-qPCR Expression

Analysis in Murine Preimplantation

Embryos and the Associated

Conditioned Culture Media. J. Dev.

Biol. 2023, 11, 17. https://doi.org/

10.3390/jdb11020017

Academic Editors: Ioannis Georgiou

and Simon J. Conway

Received: 19 January 2023

Revised: 13 March 2023

Accepted: 30 March 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Biology
Developmental

Article

Selecting Normalizers for MicroRNA RT-qPCR Expression
Analysis in Murine Preimplantation Embryos and the
Associated Conditioned Culture Media
David C. Hawke 1,2, Andrew J. Watson 1,2 and Dean H. Betts 1,2,*

1 Departments of Physiology and Pharmacology & Obstetrics and Gynaecology, Western University,
London, ON N6A 3K7, Canada

2 Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
* Correspondence: dean.betts@schulich.uwo.ca; Tel.: +1-519-661-3786

Abstract: Normalizing RT-qPCR miRNA datasets that encompass numerous preimplantation embryo
stages requires the identification of miRNAs that may be used as stable reference genes. A need has
also arisen for the normalization of the accompanying conditioned culture media as extracellular
miRNAs may serve as biomarkers of embryo developmental competence. Here, we evaluate the
stability of six commonly used miRNA normalization candidates, as well as small nuclear U6,
using five different means of evaluation (BestKeeper, NormFinder, geNorm, the comparative Delta
Ct method and RefFinder comprehensive analysis) to assess their stability throughout murine
preimplantation embryo development from the oocyte to the late blastocyst stages, both in whole
embryos and the associated conditioned culture media. In descending order of effectiveness, miR-16,
miR-191 and miR-106 were identified as the most stable individual reference miRNAs for developing
whole CD1 murine preimplantation embryos, while miR-16, miR-106 and miR-103 were ideal for the
conditioned culture media. Notably, the widely used U6 reference was among the least appropriate
for normalizing both whole embryo and conditioned media miRNA datasets. Incorporating multiple
reference miRNAs into the normalization basis via a geometric mean was deemed beneficial, and
combinations of each set of stable miRNAs are further recommended, pending validation on a per
experiment basis.

Keywords: preimplantation; embryo; microRNA; miRNA; murine; media; housekeeper; normalizer;
reference; blastocyst

1. Introduction

MicroRNAs (miRNAs) are short, non-coding RNA sequences (~19–22 nt) that post-
transcriptionally regulate cellular mRNA and, by extension, influence downstream pathway
activation [1]. These sequences regulate many cellular processes owing to the nominal 8 bp
mRNA binding requirement for interference with mRNA translation [2]. This widespread
regulation has spurred their popularity, driven further by their potential use as diagnostic
biomarkers owing to their considerable variety and extracellular stability [3]. miRNAs are
expressed within a wide range of plants and animals, including mammalian preimplan-
tation embryos [4,5] wherein miRNAs regulate developmentally critical features such as
inner cell mass pluripotency and proliferation [6,7]. Extracellular miRNAs found within
the surrounding spent culture media are also finding application as accessible biomarkers
indicative of the developmental state [8]. Currently, the quantification of miRNA expression
is most often performed using reverse transcription quantitative real-time polymerase chain
reaction (RT-qPCR) technology, where mature transcripts are isolated, reverse-transcribed
and quantified during subsequent amplification to determine the starting amount within
the initial biological sample [9].
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Reference genes, also referred to as normalizers, are used in relative RT-qPCR gene
expression workflows and serve as stable reference points to accurately quantify true
changes in target transcript abundance. Additionally, normalization to a reference gene
enables the reliable and robust comparison of transcript abundance between datasets that
were collected separately—either at a different time, in a different laboratory or by a dif-
ferent investigator—wherein slight deviations in either sample preparation (i.e., variable
total RNA or sample quality) or analysis (i.e., variable detection thresholding) may have
occurred. Normalizers should share biochemical properties with the targets to ensure
consistent handling at the cellular level, during sample processing or during eventual anal-
ysis. Most often, authors normalize RT-qPCR data to a single reference gene; however, the
geometric mean of multiple transcripts may be used to greater effect [10]. Several publicly
available tools have been developed to assess panels of putative normalizers: (1) the com-
parative Delta Ct method [11], (2) geNorm [10], (3) BestKeeper [12], (4) NormFinder [13]
and (5) RefFinder [14]. These methods evaluate expression data collected across a sample
space of interest either by pairwise comparisons between candidate reference genes (1–3),
using a mathematical model (4) or integrating and weighting these methods to provide a
comprehensive analysis (5).

Gene expression studies utilizing whole preimplantation embryos must discern be-
tween changes in gene expression associated with normal development and those that are
a physiological response to experimental perturbation. The complex nature of gene expres-
sion during normal preimplantation development invalidates the application of reference
genes commonly accepted for many other cells and tissues, such as β-actin mRNA [15] or
U6 snRNA [16]. In the context of miRNAs, RT-qPCR datasets comparing miRNA abun-
dance in developing preimplantation embryos must contend with the occurrence of major
transcriptional events such as zygotic gene activation, mid-preimplantation and cavitation-
related transcriptional waves, and transcriptome remodeling resulting from active cell
differentiation [17]. Between species, the timing of events such as zygotic gene activation
can vary considerably [18]. Together, these events trigger the rapid degradation and expres-
sion of miRNAs to create a distinct expression profile during preimplantation development.
Due to this considerable fluctuation, validated reference miRNAs are particularly important
in order to capture the diverse miRNA character of this developmental period. Due to the
lack of a consensus regarding preimplantation embryo miRNA normalizers, the individual
normalizers used in studies investigating miRNA expression in preimplantation embryos
and the surrounding culture media are diverse: U6 [19–23], miR-16-2 [24], miR-125b [25,26],
5S [27] and RPS18 [25]. To date, only a single study has validated preimplantation embryo
miRNAs, and this is limited to the examination of bovine preimplantation embryos [16].
Additionally, no studies have validated stable extracellular miRNAs for normalizing early
embryo conditioned media miRNA datasets; these datasets have diagnostic potential for the
non-invasive selection of single human embryos for transfer during an in vitro fertilization
cycle [8].

To address this, we have selected seven normalization candidates (six miRNAs and
snRNA U6) based on their common use as reference genes within the miRNA literature.
We have confirmed the expression of these candidates throughout murine preimplantation
embryos and the associated conditioned media before evaluating their suitability for use
as normalizers using the publicly available analytical tools. Based on this evaluation, we
have ranked these individual candidates according to their effectiveness as normalizers for
each of these datasets and evaluated the potential benefit of using the geometric mean of
multiple candidates together in the normalization basis.

2. Materials and Methods
2.1. Animals and Preimplantation Embryo Collection

Animal use reporting follows the recommendations outlined in the ARRIVE guide-
lines [28]. CD1 female mice (Charles River Laboratories International Inc., Sherbrooke,
QC, Canada) were housed in groups of 10 per cage under a 12 h day/night cycle (6 am to
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6 pm) and allowed to feed ad libitum. Euthanasia was performed using CO2 asphyxiation
followed by cervical dislocation, according to animal care protocol (AUP #2022-098) as
approved by the Western University Animal Care Committee. Two batches of 20 three-
to four-week-old female CD1 mice were intraperitoneally injected with 5 IU of pregnant
mare’s gonadotropin (PMSG; Intervet Canada Ltd., Whitby, ON, Canada) followed by a
second injection of 5 IU of human chorionic gonadotropin (hCG; Intervet Canada Ltd.,
Whitby, ON, Canada) to induce superovulation. Following the second injection, females
were immediately housed with a male of at least 8 weeks of age at a ratio of 2:1 overnight.
For zygote collection, plugged female mice were sacrificed 15 h after hCG injection and
cumulus oocyte complexes were collected from the oviducts in warmed M2 medium be-
fore being treated briefly with M2 media containing hyaluronidase (Sigma-Aldrich, P/N:
MR-051-F) at 37 ◦C. Ovulated MII oocytes were similarly collected from abstinent females.
For 2-cell embryos, plugged female mice were sacrificed 48 h after hCG injection and 2-cell
embryos were flushed from the oviducts in warmed M2 Medium (Sigma Aldrich, Oakville,
ON, Canada; P/N: MR-015-D).

2.2. Embryo Culture for Developmental Series Sample Preparation

The 2-cell embryos were cultured at 20 per 20 µL microdroplet of KSOMaa medium
supplemented with BSA (EmbryoMax; Sigma Aldrich, P/N: MR-106-D) under a mineral oil
blanket at 37 ◦C in a 5% O2, 5% CO2 nitrogen atmosphere. At various morphological stages
(2 cells, 4–8 cells, morula, blastocyst, and expanded blastocyst), 10 embryos were collected
and immediately lysed in 2 µL of Cells-to-Ct ‘Lysis Solution’ (Thermo Fisher Scientific,
Mississauga, ON, Canada; P/N: 4391848) before being stored at −20 ◦C. Ovulated MII
oocytes and zygotes were similarly lysed and stored following hyaluronidase treatment.
Upon thawing, 10 µL of ‘Lysis Solution’ containing a 1:100 dilution of DNase I (Thermo
Fisher Scientific; P/N: 18047019) was added to each sample followed by a 2 µL addition of
‘Stop Solution’ (Thermo Fisher Scientific; P/N: 4402960) 8 min later. Samples were vortexed
and stored at −20 ◦C before subsequent reverse transcription. A total of 210 embryos were
collected for the entire dataset.

2.3. Embryo Culture for Media Conditioning Sample Preparation

The 2-cell embryos were flushed and cultured in groups of 20 in KSOMaa with 0.1%
PVA (no BSA), made fresh in-house. A fresh blank microdroplet was cultured during this
period in tandem to serve as a background negative control. Every 12 h, the embryos
were washed and moved to fresh new microdroplets. After embryo removal, 15 µL of the
spent and control microdroplets were then collected separately and each was immediately
lysed with an addition of 15 µL ‘Lysis Solution’ containing 1% DNase I, followed by a 3 µL
addition of ‘Stop Solution’ 8 min later. Samples were stored at −20 ◦C for later analysis
using droplet digital PCR. Conditioned media samples were generated using a total of
60 embryos that were moved to new microdroplets every 12 h.

2.4. Reverse Transcription Quantitative Real-Time PCR (RT-qPCR)

Reverse transcription of whole embryo lysate samples was performed using a Mi-
croRNA Reverse Transcription kit (Thermo Fisher Scientific, P/N: 4366596) in addition
to separately ordered TaqMan miRNA primers (Thermo Fisher Scientific, P/N: 4427975)
for each of the 6 targeted miRNAs and snU6 according to the manufacturer’s instructions:
10 µL of RT Mastermix, 1 µL of whole embryo lysate and 4 µL of water were added to
each RT reaction before thermal cycling at 16 ◦C for 30 min, 42 ◦C for 30 min and 85 ◦C for
5 min in both cases. For qPCR amplification of whole embryo lysate samples, 1.33 µL of
RT reaction products was mixed with 18.67 µL of TaqMan 2X Universal PCR Mastermix
No AmpErase UNG (Thermo Fisher Scientific, P/N: 4324018), and quantitative amplifica-
tion was performed using a CFX384 thermocycler (BioRad, Mississauga, ON, Canada) for
40 cycles.
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2.5. Reverse Transcription Droplet Digital PCR (RT-ddPCR)

Reverse transcription of the conditioned media samples was performed similarly
using a TaqMan MicroRNA Reverse Transcription kit (Thermo Fisher Scientific, P/N:
4366596) and TaqMan RT primers (Thermo Fisher Scientific, P/N: 4427975) for the seven
normalization candidates. Conditioned media samples were thawed, and 2.5 µL aliquots
of each were mixed with 7 µL of TaqMan RT Mastermix, 2.5 µL of MilliQ sterilized H2O
and 3 µL of TaqMan RT primer for each target candidate sequence to yield seven separate
reactions for each media sample. For amplification, 7 µL of RT products was mixed with
10 µL of ddPCR Supermix for probes (BioRad Laboratories, Mississauga, ON, Canada
P/N: 1863010) and 1 µL of their respective TaqMan probes (Thermo Fisher Scientific, P/N:
4427975). Amplification was performed using a BioRad thermal cycler according to the
manufacturer’s instructions (25 ◦C, 3 min; 95 ◦C, 10 min; 40× (94 ◦C, 30 s; 60 ◦C, 1 min);
98 ◦C for 10 min). The total volume containing amplification products was mixed with 20 µL
droplet generation oil (BioRad Laboratories, P/N: 1863005) using a BioRad QX200 Droplet
Generator (BioRad Technologies, P/N: 1864002) according to manufacturer’s guidelines,
followed by quantification using a BioRad QX200 Droplet Digital PCR System (BioRad
Technologies, P/N: 1864001). Three biological replicates and two technical replicates of
each were performed for each pair of RT and PCR reactions, and the average was taken.
In several instances, either a single technical replicate was used in absence of a successful
second repetition or two biological replicates were averaged instead of three.

2.6. Data Analysis

The following publicly available methods and tools were used for reference gene
evaluation: the comparative Delta Ct method [11], geNorm v.38 (Microsoft Excel soft-
ware package) [10], BestKeeper Version 1 (Microsoft Excel spreadsheet template) [12],
NormFinder 0.953 (Microsoft Excel Add-In) [13] and the integrated RefFinder approach
(https://www.heartcure.com.au/reffinder; accessed on 2 February 2022) [14]. For the
comparative Delta Ct method, whole lysate RT-qPCR data were analyzed in their native
base 2 logarithmic form (raw Ct values) and conditioned media RT-ddPCR copy number
data were base 2-logarithmically transformed before analysis. For geNorm analysis, both
cycle threshold RT-qPCR and RT-ddPCR datasets were converted to relative expression
values before input into the geNorm Excel software package. For BestKeeper analysis,
whole lysate RT-qPCR data were analyzed as is (raw Ct values) and base 2 logarithmic
transformations were performed on the conditioned media copy number data prior to anal-
ysis. RT-qPCR and RT-ddPCR datasets were converted to relative values before input into
the NormFinder Excel Add-In. All RefFinder input data for both RT-qPCR and RT-ddPCR
sample sets were base 2-logarithmically transformed before analysis.

3. Results
3.1. Candidate Stability Analysis

Six miRNA candidates commonly used as normalizers for human and murine miRNA
datasets (Schwarzenbach et al. [29]) that were also expressed at significant levels across
murine preimplantation development were selected [30–32]: let-7a [33–35], miR-16 [34–39],
miR-26a [33,40], miR-103 [33,41], miR-106 [35,39,41] and miR-191 [38,39,42–44] (Table 1).
Additionally, a frequently used non-miRNA normalizer for miRNA datasets, snRNA
U6 [38], was also chosen.

https://www.heartcure.com.au/reffinder
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Table 1. Reference candidates selected for stability evaluation.

Candidate Name NCBI/miRBase
Accession Number TaqMan Assay ID Reference(s)

U6 NR_004394 001973 [20–23,37]
let-7a-5p MIMAT0000521 000377 [32–34]

miR-16-5p MIMAT0000527 000391 [33–38]
miR-26a-5p MIMAT0000533 000405 [32,39]
miR-103-3p MIMAT0000546 000439 [32,40]
miR-106a-5p MIMAT0000385 002459 [33,38,40]
miR-191-5p MIMAT0000221 002299 [37,38,41–43]

For both whole murine preimplantation embryo and associated conditioned media
datasets, these candidates were assayed using either RT-qPCR or RT-ddPCR workflows,
respectively (Figure 1). The candidates were then evaluated as possible normalizers us-
ing five different methods: (1) the comparative Delta Ct method [11], (2) geNorm [10],
(3) BestKeeper [12], (4) NormFinder [13] and (5) RefFinder [14]. The tabulated rankings of
candidate stability as determined by each method are listed in Table 2 for the whole lysate
samples and in Table 3 for the conditioned media samples.
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Figure 1. Candidate abundance across murine preimplantation development for both whole embryos
and conditioned media sample sets. (a) Raw cycle threshold values, Ct, from RT-qPCR analysis for
each candidate during murine preimplantation development (ovulated MII oocyte, zygote, two-cell,
four-cell, morula, blastocyst, and expanded blastocyst) and (b) candidate copy number values per
sample well from RT-ddPCR analysis of microdroplets conditioned in 12 h periods with embryos from
the two-cell stage to the expanded blastocyst. Each box represents the inner two quartiles (Q1–Q3)
of each candidate miRNA Ct data subset, the x markers in each box indicate the mean Ct value or
copy number for each miRNA candidate across the sample set, the box inner lines represent each
sample set’s median values, the whiskers represent the maxima and minima and the dots beyond the
whiskers represent outliers. For whole embryo samples in (a), each average represents the average of
21 samples derived from 210 whole embryos, and for media samples (b), each average represents the
average of 18 samples taken across development using 60 embryos to continually condition fresh
media microdroplets during for each 12 h period.
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Table 2. Summary of reference candidate rankings according to each method of evaluation for whole
embryo lysates.

Ranking Order

Method 1 2 3 4 5 6 7

Delta CT miR-16 miR-191 miR-106 miR-103 miR-26a U6 let-7a
geNorm miR-16|miR-191 miR-106 miR-103 U6 miR-26a let-7a

BestKeeper miR-16 miR-103 miR-191 miR-106 U6 miR-26a let-7a
BestKeeper
(repeated) miR-103 miR-191 miR-16 miR-106 U6 miR-26a let-7a

Normfinder miR-16 miR-191 miR-106 miR-103 miR-26a U6 let-7a
RefFinder miR-16 miR-191 miR-106 miR-26a let-7a miR-103 U6

Table 3. Summary of reference candidate rankings according to each method of evaluation for
conditioned media samples.

Ranking Order

Method 1 2 3 4

Delta CT miR-16 miR-106 miR-103 U6
geNorm miR-103|miR-106 miR-16 U6

BestKeeper miR-103 miR-106 miR-16 U6
BestKeeper
(repeated) miR 103|miR-106 miR-16 U6

Normfinder miR-16 miR-106 miR-103 U6
RefFinder miR-16 miR-106 miR-103 U6

The comparative Delta Ct method [11] utilizes a simple pairwise comparison approach
and determines the variability in the expression differences between all possible pairs of
candidate expression values in each individual sample group. Using this method, the

average standard deviation,
−
σ j, of the expression differences between each of the seven

normalization candidates in whole preimplantation embryo developmental stages (oocyte,
zygote, 2-cell, 4-cell, morula, blastocyst, and expanded blastocyst) and each of the four
candidates for conditioned media (2-cell embryo to expanded blastocyst; 12 h periods) were
calculated. The candidates were, respectively, ranked from the lowest standard deviation
to the greatest (most stable to the least stable) and the average standard deviation of each
candidate across sample groups is listed in parentheses. For whole embryos: 1. miR-16
(1.220), 2. miR-191 (1.321), 3. miR-106 (1.383), 4. miR-103 (1.482), 5. miR-26a (1.623),
6. snRNA U6 (2.029), 7. let-7a (2.218) (Figure 2a). For conditioned media: 1. miR-16 (0.755),
2. miR-106 (0.839), 3. miR-103 (0.925), 4. snRNA U6 (1.066) (Figure 3a).

Using the geNorm method [10], the candidates were ranked according to their calcu-
lated stability value across preimplantation embryo developmental stages for both sample
sets. Like the Delta Ct method, the geNorm method makes all possible candidate pairwise
comparisons at each developmental stage and determines the average interstage standard
deviation for each candidate. The standard deviations of all candidates are averaged and
reported as an average expression stability value, M. The least stable candidate is removed
from the pool and M is recalculated, and this process continues until only two candidates
remain. A lower expression stability value is indicative of greater sequence stability and
better utility as a normalization sequence; however, any candidate yielding an individual
stability value, Mj, below the consensus cut-off of 1.5 was considered adequate. The candi-
dates were ranked as follows, from greatest stability to least, with the calculated stability
value Mj listed in parentheses for each. For whole embryo lysates: 1. miR-16/miR-191
(0.799), 3. miR-106 (0.923), 4. miR-103 (0.991), 5. snRNA U6 (1.522), 6. miR-26a (1.783), 7. let-
7a (2.218) (Figure 2c). For conditioned media: 1. miR-103/miR-106 (0.707), 3. miR-16 (0.736),
4. snRNA U6 (1.066) (Figure 3c). Among the whole lysate sample groups, miR-16, miR-191,
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miR-106 and miR-103 were below the cut-off, along with all media candidates—miR-103,
miR-106, miR-16 and U6—indicating that these are acceptable normalizers.
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Figure 2. Reference candidate stability metrics for staged murine whole embryos (ovulated MII
oocytes, zygotes, 2-cells, 4-cells, morulae, blastocysts, and expanded blastocysts). (a) The average stan-
dard deviation of each reference candidate’s pairwise comparisons calculated using the comparative
Delta Ct method. (b) The average expression stability factor, M, of pools of reference candidates as
calculated using the geNorm method. (c) The Pearson coefficients of correlation calculated using the
BestKeeper method. (d) The Pearson coefficients of correlation according to the repeated BestKeeper
method. (e) The stability values calculated for each candidate using the NormFinder method; errors
bars indicate the standard error of the mean. (f) The integrated stability values of each reference
candidate calculated using the comprehensive RefFinder method.



J. Dev. Biol. 2023, 11, 17 8 of 14J. Dev. Biol. 2023, 11, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. Reference candidate stability metrics for media samples conditioned with developing mu-
rine preimplantation embryos (12 h conditioning periods from the 2-cell stage to the expanded blas-
tocyst stage embryos, collected continuously). (a) The average standard deviation of each reference 
candidate’s pairwise comparisons calculated using the comparative Delta Ct method. (b) The aver-
age expression stability factor, M, of pools of reference candidates according to the geNorm method. 
(c) The Pearson coefficients of correlation as calculated using the BestKeeper method. (d) The Pear-
son coefficients of correlation calculated using the iterative BestKeeper method. (e) The stability 
values for each candidate according to the NormFinder method; errors bars indicate the standard 
error of the mean. (f) The stability values for expression of each reference candidate using the inte-
grated RefFinder method. 

Figure 3. Reference candidate stability metrics for media samples conditioned with developing
murine preimplantation embryos (12 h conditioning periods from the 2-cell stage to the expanded
blastocyst stage embryos, collected continuously). (a) The average standard deviation of each
reference candidate’s pairwise comparisons calculated using the comparative Delta Ct method.
(b) The average expression stability factor, M, of pools of reference candidates according to the
geNorm method. (c) The Pearson coefficients of correlation as calculated using the BestKeeper
method. (d) The Pearson coefficients of correlation calculated using the iterative BestKeeper method.
(e) The stability values for each candidate according to the NormFinder method; errors bars indicate
the standard error of the mean. (f) The stability values for expression of each reference candidate
using the integrated RefFinder method.
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The BestKeeper method [12] was used to assess the pairwise correlation of each can-
didate across these stages for both whole lysate and conditioned media samples. The
BestKeeper approach uses a pairwise correlation strategy that effectively ranks candidates
according to their degree of correlation with an index that is calculated as the geometric
mean of all candidates within a comparison pool. To numerically assess the extent of
correlation with the index, the Pearson coefficients of correlation, r, are calculated; can-
didates with an r value closer to 1 were more correlative and deemed more stable. The
panel of candidates were ranked for their appropriateness as normalizers accordingly, from
most to least stable, with their coefficients listed in parentheses. For whole embryo lysates:
1. miR-16 (0.994), 2. miR-103 (0.987), 3. miR-191 (0.973), 4. miR-106 (0.965), 5. snRNA U6
(0.941), 6. miR-26a (0.865), 7. let-7a (0.547) (Figure 2b). For conditioned media: 1. miR-103
(0.993), 2. miR-106 (0.965), 3. miR-16 (0.957), 4. snRNA U6 (0.804) (Figure 3b).

To discount sensitivity to poorly performing candidates included within the initial
selection pool, a second ‘repeated’ BestKeeper analysis was also performed. In the repeated
analysis, the Pearson correlations were calculated; however, the least-conforming candidate
was then ‘dropped’ from the pool and the index was recalculated, along with the coefficients
for the remaining candidates. This was repeated until only two candidates remained, and
the rankings are reported according to the ordering of ‘drop out’, with the first candidate
to be removed receiving the lowest rank; each candidate’s Pearson correlation coefficient
during the iteration of exclusion is listed in parentheses. For whole embryo lysates: 1. miR-
103 (0.997), 2. miR-191 (0.995), 3. miR-16 (0.983), 4. miR-106 (0.976), 5. snRNA U6 (0.968),
6. miR-26a (0.829), 7. let-7a (0.547). For conditioned media: 1. miR-103/miR-106 (0.987),
3. miR-16 (0.951), 4. snRNA U6 (0.804) (Figure 3b). The BestKeeper outputs including
crossing point data, Pearson correlation coefficients and regression analysis are listed in
Tables S1–S3, respectively (see Supplementary Materials). All datasets were logarithmically
transformed (base 2) before analysis.

The NormFinder method [13] evaluates and ranks reference candidates using a model-
based approach that calculates a stability value, ρig, that is a descriptor of both inter- and
intra-group variability. Similar to the Delta Ct and geNorm methods, a lower stability value
reflects greater sequence stability and utility as a reference gene for data normalization. By
this method, the candidates were ranked accordingly, from most stable to least, with each
associated stability value in parentheses. For whole embryos: 1. miR-16 (0.277), 2. miR-191
(0.356), 3. miR-106 (0.471), 4. miR-103 (0.704), 5. miR-26a (0.832), 6. snRNA U6 (1.293),
7. let-7a (1.472) (Figure 2d). For conditioned media: 1. miR-16, 2. miR-106, 3. miR-103,
4. snRNA U6 (Figure 3d).

The comprehensive ranking, a weighted ranking of each previous method, was de-
termined using the integrated approach RefFinder [14]. A composite stability value based
on a weighted integration of these methods was calculated for the candidates for both
sample sets. For whole embryos: 1. miR-16 (0.277), 2. miR-191 (0.356), 3. miR-106 (0.471),
4. miR-103 (0.704), 5. miR-26a (0.832), 6. snRNA U6 (1.293), 7. let-7a (1.472) (Figure 2e). For
conditioned media: 1. miR-16 (0.253), 2. miR-106 (0.340), 3. miR-103 (0.515), 4. snRNA U6
(0.665) (Figure 3e).

3.2. Multiple Candidate Stability Analysis

To determine if including multiple reference candidates within the normalization
basis would be beneficial to the reference stability, the pairwise variation, Vn/n+1, was
calculated for subsets of each sample set’s candidate pool using a feature of the geNorm
tool [10]. The pairwise variation, Vn/n+1, describes the relative degree of inter-group
variation that occurs between normalization bases—calculated as the geometric mean of
the candidates, the normalization factor—that occurs when the next most stable candidate
is added to the basis. As proposed by Vandesompele, values above a cut-off pairwise
variation threshold (Vn/n+1 > 0.15) were considered indicative that the addition of the
next normalization candidate to the basis expansion was impactful. For whole embryo
lysates, the incorporation of additional candidates into the geometric mean continued to
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significantly influence the geomean as pairwise variation was greater than 0.15 for every
addition. Similarly, for conditioned media samples, significant pairwise variation was
observed for the expansion of the miR-103/miR-106 normalization factor to also include
both miR-16 and snRNA U6, suggesting that the addition of both may be beneficial. The
pairwise variation values are plotted in Figure 4a,b.
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dashed horizontal line) indicates that the addition of another candidate to the basis had a substantial
impact on the intergroup geomean variability, indicating that further improvement to the basis may
be achieved by inclusion of the n + 1 candidate.

4. Discussion

Normalization to stable endogenous miRNA references is essential for accurate quan-
tification of miRNA expression using RT-qPCR. It is particularly important for preimplan-
tation embryo RT-qPCR datasets as it avoids the technical uncertainty associated with
handling such limited amounts of total RNA. Furthermore, the sharp rise in an embryo’s
total RNA content after the 8-cell stage [45,46] renders the use of alternative normalization
bases, such as embryo count and exogenous spike-ins, inadequate. These issues are further
exacerbated when analyzing the spent culture media.

Every candidate evaluation method ranked miR-16, miR-191, miR-106 and miR-103
above miR-26a, snRNA U6 and let-7a across the 210 whole embryos comprising the lysate
samples and, similarly, miR-16, miR-106 and miR-103 over snRNA U6 in the media samples
conditioned continuously with 60 embryos. Furthermore, let-7a, miR-26a and snRNA U6
failed to satisfy an internal geNorm metric (Mj = 1.5) assessing the average standard devia-
tion of their pairwise comparisons, indicating that they are inappropriate as normalizers.
These similar results between sample sets were expected, since, for short conditioning
times (<24 h), we have previously shown the extraembryonic ‘miRnome’ composition to
be reflective of the whole embryos [47]. The comparison of the two ‘drop-out’ methods
included in our analysis, geNorm and repeated BestKeeper, to their respective non-iterative
counterparts, the comparative Ct method and BestKeeper, indicated the minimal impact of
poorly performing candidates on the overall evaluation. Since effective reference candi-
dates must only share a similar expression profile with their targets, we postulated that
these candidates may be applicable in other species, despite differences in species-specific
timing of RNA expression due to zygotic gene activation. To see if any of these reference
candidates could be accepted as an interspecies preimplantation standard, we compared
these results to other published preimplantation reference miRNA data. Our results were
consistent with the previously reported stability of miR-191 and miR-103 and inadequacy
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of snRNA U6, let-7a and miR-26a in bovine preimplantation embryos [16], in addition to
the reported stability of miR-191 in rabbit preimplantation embryos [48]. This interspecies
agreement along with the high degree of miRNA sequence conservation may suggest that
miR-191, in particular, is appropriate for other model organisms, in addition to human
preimplantation embryos, for which normalization data may be scarce or unavailable.

We noticed that our most stable candidates (miR-16, miR-191, miR-106, miR-103) were
both derived from oocytic reserves and expressed during early development, while the
least stable were either nearly exclusively oocyte-derived (let-7a and miR-26a) or exhibited
profound maternal-to-embryonic transition (MET) degradation followed by sharp embry-
onic expression (snRNA U6) [19]. The poor suitability of snRNA U6 is notable considering
its frequent use as a normalizer in miRNA preimplantation embryo studies [20–23].

The inclusion of multiple miRNAs in the normalization basis may improve its stabil-
ity [10]; indeed, the impact of utilizing different individual normalizers to draw conclusions
from a single dataset, even among those deemed stable, is substantial [16,35]. The signifi-
cant pairwise variation in whole lysate geomeans resulting from the continual addition of
the next stable normalizer is consistent with other preimplantation embryo studies [15,16]
and indicates that each addition to the basis was significantly impacting the interpretation
of the dataset. Vn/n+1 did not drop below the value of 0.15, indicating that the addition
of the top-ranking miRNA normalizers to the basis impacted the normalization signifi-
cantly. This is due to the diverse expression profiles of the candidates (i.e., maternal vs.
embryonic miRNA origins, non-miRNA snU6), whereby even the top-ranking miRNAs
exhibited significantly different expression profiles from one another. To better improve
the normalization basis using a geometric mean, a larger panel of miRNA candidates
should be evaluated. Based on these results, we recommend a combination of either miR-
16/miR-191 or miR-16/miR-191/miR-106 for whole embryo lysates and a combination of
miR-16/miR-191 for the conditioned media.

We performed a literature search to investigate whether these miRNAs remained
inert with regard to several commonly studied oocyte factors such as oocyte age and
maturity. As part of clinical assisted reproduction, human preimplantation embryos are
frequently derived from oocytes originating from donors of advanced maternal age, and
oocytes retrieved during stimulated cycles are of varying degrees of maturity [49], for
which maturation may be performed in vitro prior to intracytoplasmic sperm injection
(ICSI) fertilization [50]. Our assessment of the literature did not reveal any differential
expression of the candidate miRNAs during in vitro bovine oocyte maturation [19,27]
except for a single instance of miR-106 displaying a 2.87-fold increase between the MII
and GV stages [51]. For aged oocytes, the expression of let-7a, miR-16, miR-26a, miR-103
and miR-191 was consistent between GV oocytes from aged (14–16-month-old) vs. young
(4–6-week-old) mice [52], and none of the identified candidate miRNAs (miR-16, miR-26a,
miR-103, miR-106, miR-191) varied significantly in abundance between human oocytes
from younger and older patients [53]. Additionally, human inter-oocyte expression of
miR-16, miR-106 and miR-191 was variable, which has also been reported for miR-26a and
miR-103 [53].

Our study is limited by the size of our candidate panels, restricting our recommen-
dations to the handful of miRNAs that we selected. In particular, our media panel only
contained four highly abundant, detectable candidates from the whole lysate panel, and
expansion to include more candidates with abundance in these samples would benefit
these analyses. Larger panels are necessary to identify more stable miRNA normalizers as
well as enable the accurate establishment of a multi-miRNA geometric mean basis. We also
note that while choosing normalization miRNAs that are central to core cellular processes is
an effective strategy to identify robust normalizers, it also predisposes these candidates to
be ubiquitously expressed across many other tissues and cell types, including other species.
This means that preimplantation embryo culture media, which are routinely formulated
with miRNA-containing serum albumin, could potentially contain a pre-existing popu-
lation of these miRNAs, and this should be controlled for on a case-by-case basis [54,55].
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Finally, the miRNA normalizers proposed in this study should be further evaluated on a
per-experiment basis to ensure they remain inert to experimental perturbations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jdb11020017/s1, Table S1: Dataset characteristics of whole embryo
lysate sample set data and conditioned media samples according to the BestKeeper analytical tool;
Table S2: Pearson correlation coefficients describing inter-candidate correlation and correlation with
the BestKeeper index, according to the BestKeeper tool for whole embryo lysates and conditioned
media sample sets; Table S3: Regression output describing individual candidate correlation with the
BestKeeper index according to the BestKeeper tool for whole embryo lysates and conditioned media
sample sets.
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