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Abstract: Every year, wildfires strike the Portuguese territory and are a concern for public entities and
the population. To prevent a wildfire progression and minimize its impact, Fuel Management Zones
(FMZs) have been stipulated, by law, around buildings, settlements, along national roads, and other
infrastructures. FMZs require monitoring of the vegetation condition to promptly proceed with the
maintenance and cleaning of these zones. To improve FMZ monitoring, this paper proposes the use
of satellite images, such as the Sentinel-1 and Sentinel-2, along with vegetation indices and extracted
temporal characteristics (max, min, mean and standard deviation) associated with the vegetation within
and outside the FMZs and to determine if they were treated. These characteristics feed machine-learning
algorithms, such as XGBoost, Support Vector Machines, K-nearest neighbors and Random Forest.
The results show that it is possible to detect an intervention in an FMZ with high accuracy, namely with
an F1-score ranging from 90% up to 94% and a Kappa ranging from 0.80 up to 0.89.

Keywords: remote sensing; time series; Sentinel-2; Sentinel-1; Fuel Management Zones; machine
learning

1. Introduction

Every year in Portugal thousands of hectares of forest are consumed by fires causing
environmental, infrastructural, and personal damages [1]. With the purpose to minimize the damages
caused by fires, the Portuguese government established Fuel Management Zones (FMZs), which are
zones where the vegetation has to be treated, meaning the removal or partially removal of vegetation,
to protect different types of infrastructures and to also work as strategic points for fighting fires [2,3].
Since responsibility of the treatment of FMZs falls onto who owns a certain terrain, like like citizens,
private entities, as well as counties, actively monitoring the treatments of FMZs is critical. The National
Republican Guard is responsible for the monitoring of the FMZs.

FMZs cover a large part of the Portuguese territory forming a three-level network: Primary
Network, Secondary Network, and Tertiary Network. The primary network is defined at the
district level, while secondary and tertiary networks are defined at the municipal and local levels.
Furthermore, the interventions made in these zones are classified as follows: Fuel Reduction Zones
(FRZs) and Fuel Interruption Zones (FIZs). FRZs are characterized by the removal of surface vegetation
and the cutting of trees to create a separation between cups. FIZs consist of the total removal of all types
of vegetation within the defined range [4].
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The primary FMZ covers a large part of the Portuguese territory, dividing it into plots with a size
between 500 ha and 10,000 ha. This network consists of 125 m wide strips. Beyond reducing the area
traveled by forest fires, these strips are also an auxiliary element in the planning of firefighting, since
this network is built in strategic areas. The secondary and tertiary FMZs are defined around roads,
tracks, powerlines, railways, and settlements. These networks are part of the Municipal Plan for the
Defense of Forests Against Fires. The strips created along roads, tracks, and railways are of the FIZ
type. Strips around individual houses and settlements are also FIZ types with the addition that the
canopy of trees must be more than 5 m apart from the dwellings. High and medium voltage electrical
distribution lines and natural gas transmission lines are also part of these networks.

Since FMZs can have huge extensions (thousands of hectares), it can be difficult for the authorities
to monitor these zones and identify which ones require intervention. The existence of automatic
or semi-automatic processes that allow the identification of FMZs that were treated, could help the
monitoring process, speeding up the detection of zones in need of intervention, thus allowing timely
maintenance and increasing the overall protection against forest fires. The use of machine- learning
methods applied to remote sensing for large scale geographical analysis is common [5-8]. The Institute
for the Conservation of Nature and Forests (ICNF) maintains the geographical information about
FMZs and makes this information publicly available. Combining this information with publicly
available satellite imagery from satellites such as Sentinel-1 and Sentinel-2 that that capture images
with resolutions up to 10 by 10 m, opens up the possibility of integrating new methods that use remote
detection in the FMZs monitoring process.

The FMZs must be treated every year so that during the fire season the vegetation inside is as
reduced as possible so that these zones fulfill their purpose. The high extent of these zones and the fact
that a large part of the FMZs intersects with private land can hinder the cleaning process and generate
discontinuities in the treated areas of the FMZs. These factors make monitoring the treated zones or
detecting zones in need of intervention a complex problem.

Although forest fires are a serious problem, there has not been extensive research into
the monitoring process of FMZs. In [9], the Normalized Difference Vegetation Index (NDVI)
was used, along with geographic information of roads and agricultural fields, to identify FMZs. In a
different context, the work of [10] compared the precision of three digital surface models to estimate the
elevation of the terrain in the areas that concern FMZs, in a northern part of Greece.

There are several approaches regarding crop and vegetation monitoring and biomass estimation
that can be used as a basis to build a robust solution for the monitoring of FMZs. Some studies
in which the focus is to classify types of crops [8,11,12], others that classify tree species in forest
areas [8], and also a more comprehensive classification approaches that focus on distinguishing
different types of land cover (e.g., forest, urban, agricultural areas, etc.) [5,13,14]. Some studies only
use data from satellite bands directly [5,8], although in most cases vegetation indices are used as
indicators of vegetation characteristics. Some works use time series to extract more information about
vegetation [11,14,15]. The use of time series has already shown better results in the classification of
vegetation and land cover than the use of data referring to only one date [14,16].

There are also some studies in which the dimension and the characteristics of the analyzed areas
are similar to those of FMZs [17,18]. Immitzer et al. [8] classified the vegetation in an agricultural
area and a forest area using the Random Forests. In the agricultural area, 8 types of crops were
classified and in the forest area 6 species of trees. Two approaches were compared: pixel-based
and object-based, and it was observed that in the forest area the object-based approach obtained
better results. Clevers et al. [17] used Sentinel-2 data and vegetation indices to analyze areas similar
to the size of FMZs, with 30 by 30 m. Also using the same data type Rozenstein et al. [19] found
that there is a strong correlation (R? = 0.94) between the NDVI and the water consumption of
that plant, which may be helpful when analyzing the state of vegetation in an FMZ. Other studies
attempt to estimate the production of a given crop following indicators such as Leaf Area Index (LAI)
and vegetation indices [20,21]. Setiyono et al. [21] used Synthetic Aperture Radar (SAR) data from
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Sentinel-1 and multispectral data from the MODIS satellite to estimate rice production, compared
to data obtained in the field, obtaining errors of less than 10%. Castillo et al. [22] used Sentinel-2,
Sentinel-1, and elevation data, along with some vegetation indices to estimate the amount of biomass
present in mangrove forests in the Philippines. The results showed a correlation between the levels of
biomass with some vegetation indices and the LAL

All the information presented in these works serves as a knowledge base to establish an adequate
strategy to carry out the classification of interventions and monitoring the state of vegetation in FMZs.
This paper presents an automated machine- learning approach that leverages time series to detect
if an FMZs was treated or not using open satellite data at a resolution of 10 by 10 m. To the best
of our knowledge, this is the first work that proposes a machine- learning approach to detect if
the FMZs are maintained according to the law. Machine learning combined with remote sensing
can accelerate the process of monitoring these FMZs which otherwise would be time-consuming.
Furthermore, the monetary costs associated with the manual labor required to monitor the FMZs
could be mitigated by using open satellite data. The contributions from this paper are as follows:
(1) a methodology for detecting interventions in FMZs is presented, which uses information about
vegetation present inside and outside the FMZs. This approach can be used to analyze any FMZ type
that roughly follows the specifications, dimensions, shape, and purpose; (2) a set of software tools
that given the vector information about the FMZs and a set of satellite images can extract metrics
from the time- series patterns, and estimate if the FMZs was or not maintained properly with a high
degree of accuracy.

This paper is organized as follows: Section 2 describes the experimental processing pipeline,
showing how the data was acquired and processed, how the FMZs were clustered, and how the data
sets were created. Section 3 shows and compares the results by pairing multiple algorithms with
different data sets. Finally, Sections 4 and 5 presents the discussion and conclusions.

2. Materials and Methods

2.1. Study Area

The study area chosen was Macéao in the Santarém district, as shown in Figure 1. This area has
been hit several times by fires and has been managing FMZs for several years. The area is situated
in the central part of continental Portugal (39°32'54.708" N-8°0"17.9964" W), and its FMZs cover an
area of about 4263 ha, with 1120 ha being FMZs around roads. Along with geographic information,
in vector format, about this municipality FMZs, a collaboration was established between NOVA LINCS
(a Computer Science research laboratory located at the Faculty of Science and Technology of the NOVA
University of Lisbon) and the city hall of Magdo which provided information about the FMZs that
were treated in 2018. In Figure 2 some FMZs that have been treated (white) and others that have not
(red) are represented. This type of information is essential to validate the created models.

2.2. Approach Overview

To detect an intervention in an FMZ, this work proposes comparing the vegetation inside the
FMZs and the vegetation in the outer areas adjacent to the FMZs, by creating buffers adjacent to the
FMZs boundaries. FMZs have different dimensions (they can vary between 10 and 125 m in width),
have a format that varies according to the type of FMZ and also, it is necessary to guarantee that
these buffers are located on vegetation areas. The materials that are used as a base for the analysis are
satellite images and the FMZs vector information.

The satellite imagery is pre-processed, and the areas of interest were cut to obtain just the data
from the FMZs areas that are being analyzed. The FMZs vector information is also pre-processed
and used to cut the satellite imagery. From the resulting image, several metrics are extracted and
then fed into the machine- learning algorithms to make the predictions. The algorithms with the best
results in the literature were used to assess which works best for the presented problem. The used
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algorithms are Support vector machine (SVM), Random Forest (RF), Extreme Gradient Boosting
(XGBoost), and K-nearest neighbors (KNN). The performance of these algorithms will be mainly
analyzed through the Fl-score (Equation (1)), which reaches its max value with perfect precision and

recall, and the Kappa score.
. precision * recall

precision + recall

)

Fl-score =

To optimize the learning algorithms the input data was split into two sets, train and test with a
70% and 30% split. 70% of the data (train set) was used in conjunction with 5-fold cross-validation to
find the best parameters for all the algorithms via random search of the algorithm’s parameters.

[ Primary FMZ
[ Electrical Lines
[ Roads

[ Houses

Figure 1. Study area and some Fuel Management Zones (FMZs) in vector format in the zone of
Cardigos, Magdo. Please note that the images are not in scale.

[l ] Intervened
Il Not Intervened

Figure 2. Fuel Management Zones (FMZs) along roads and powerlines, in the north of Macao,
which were treated in 2018.
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2.3. Satellite Data Acquisition

The used approach uses a combination of data extracted from two satellite constellations,
Sentinel-1 and Sentinel-2, as well as some derived indices derived from the multispectral data:
NDVI [23], Soil-Adjusted Vegetation Index (SAVI) [24], Simple Ratio (SR) [25], Inverted Red-Edge
Chlorophyll Index (IRECI) [26] and Normalized Difference Water Index (NDWI) [27]. The data
used in this study was extracted from ESA’s Copernicus between 30th of January 2018 and 28th of
December 2018, the distribution of the images throughout the year is presented in Figure 3, with a total
of 20 images for Sentinel-2, and for Sentinel-1, 30 in descending orbit and 30 in ascending orbit. For
Sentinel-2 data, only images with a cloud cover percentage below 10% were considered, which were
then manually checked to ensure there were no clouds over the study area.

Satellite
Sentinek1ASC @ ® ® @ © © © © © ¢ 6 ¢ ¢ 6 ¢ ©¢ 6 ¢ © 0 ¢ © o © o O ©° ©° o o
Sentinel-1 DESC
Sentinel-2 [ ] [ ] [ 1] o 00 [ 1] o o oo o 00 [ ] [ ] [ ] [ ]
01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12 01/01
Date (2018)
Figure 3. Temporal distribution of the images used from both satellites, Sentinel-2 and both orbits from

Sentinel-1 throughout 2018.

Some Sentinel-2 satellite products only provide reflectance values at the top of the atmosphere
(level 1C). This can be problematic when dealing with multi-temporal data since the composition of
the atmospheric layer is not constant, and can vary depending on the time of year or even the location.
This instability has an impact on the values obtained by the satellite bands and, consequently, on the
vegetation indices calculated from them, especially when multi-temporal data is being used [28,29].
The tool Sen2Cor [30] was used to process Sentinel-2 level 1C data to the corrected level 2A.

For Sentinel-1, images with the product type Ground Range Detected (GRD) were used,
in descending and ascending orbit with intensity values converted to Gamma0. The processing
pipeline, using the ESA Sentinel Application Platform (SNAP) (ESA Sentinel Application Platform
(SNAP)—http:/ /step.esa.int/main/toolboxes/snap /—Last visited on 6 March 2020), was as follows:
(1) Apply-Orbit-File; (2) Terrain-Correction; (3) LinearToFromdB.

2.4. FMZs Vector Information Processing

All FMZ types are present in a single vector file and to analyze each one of them individually it
is necessary to previously separate them by their type. This separation was made in 4 types of FMZ:
roads, powerlines, settlements, and primary FMZ, as presented in Figure 4. The used approach to
detect if an FMZ has been treated consists of the comparison of the vegetation inside the FMZ with the
vegetation outside the FMZ. To make this comparison possible, buffers that are external to the FMZ
with a width of 20 m were created. The shape of the resulting polygons that represent the FMZ varies
depending on its type and because of that the process to create the buffers needs to be adapted.

For powerlines, roads, and primary FMZ the process of buffer creation is similar. The final result,
along with the intermediate results, are presented in Figure 5. First, take the original FMZ, Figure 5a,
and apply a buffer with 20 m for each side obtaining Figure 5b. Finally, cut the original FMZ from the
buffer in order to obtain only the exterior zones as presented in Figure 5c.
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Figure 4. Vector information of Fuel Management Zones (FMZs) in the north of Macao.

/ v

@) (b) (0)
Figure 5. Example of the phases to create the outer buffers. (a) Polygon that represents a Fuel
Management Zones (FMZ) along electrical lines, with a width of 15 m. (b) Polygon resulting from using
the 20 m Buffer function. (c) Polygons that represent only external areas of the FMZ, after removing the
middle of the FMZ and roads from OpenStreetMaps.

For FMZs surrounding houses and settlements, buffer creation is more complex, as only the buffer
on the outer part of the FMZs is needed. These FMZs have a circular shape and many holes, where the
actual buildings are. Applying a simple buffer creates many intersection zones inside the polygon.
To solve this the processing chain presented in Figure 6 is applied. First, extract all the points belonging
to the FMZ vector file and apply the Concave hull algorithm [31], as a result, the envelope of a set
of points is obtained, present in Figure 6b. After applying Concave Hull, the resulting polygon is
dissolved, and its holes are filled resulting in the polygon presented in Figure 6¢. Finally, apply a 20 m
buffer to the initial FMZ and use the dissolved polygon to cut into the buffer, resulting in only the
outer buffer of the FMZ (Figure 6d).
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Figure 6. Example of the processing chain to obtain the interior of the Fuel Management Zones (FMZs)
around housing. (a) Initial FMZ; (b) Concave Hull applied; (c) Polygon dissolveddissolved, and holes
removed; (d) Difference between the FMZ with a 20 m buffer and the polygon that represents the
interior of the initial FMZ, after removing roads from OpenStreetMaps.

Some faults on the final buffers can be observed in Figures 5c and 6d. Road information extracted
from OpenStreetMap [32] was cut into the final FMZ buffers, due to roads not being part of these FMZs.
This removes unwanted buffer zones where FMZs have areas in its interior that do not belong to the
FMZs (e.g., roads).

2.5. FMZs Vector Clustering

The FMZs have a large extension and to analyze them this paper proposes an object-based
approach in which the FMZs were divided into sections with approximately the same dimension.
Since the satellite images have a spatial resolution of 10 m, some FMZs can have a width of
multiple pixels, making it difficult to compare the values of the pixels in the buffer with the ones
inside the FMZ. Using an object-based approach simplifies this comparison by combining the value of
multiple pixels into just one value, and comparing the two values (the buffer value with the FMZ value).
The object-based approach has other benefits such as noise reduction of pixels that could have been
affected by the reflectance of nearby structures. Another advantage of this approach is the decrease in
the data set size, reducing the computation time of the machine- learning algorithms.

The creation of sections is done after the buffers are created so each section has information about
the FMZ and the outside buffer. These sections were created using K-means [33] whose cluster results
will be referred to as FMZ segments. By using K-means the segments inherit some of its properties
like like creating non-hierarchical and nonoverlapping clusters in a Voronoi pattern, which creates
similar-sized segments along with the extent of the FMZ. One of K-means’ drawbacks is that the
number of clusters (K) must be known before running the algorithm.
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The used approach goes as follows: first, transform the pixels that correspond to the interior of
the FMZ and the buffer into points (Figure 7a). The K is then selected by dividing the total number of
points in an FMZs with the number of wanted pixels in a single segment. For example, in the case of
FMZs along roads, with a total of 208,000 points and 40 points per cluster, 5200 segments were obtained.
After testing a range of numbers, 10 to 100, of points per cluster, 40 points was the value chosen to
present the results and methodology of this paper. This value is the value that better represents
segments of FMZs and intersects their interior and exterior. The number of points per section cannot
be very low (e.g., 10), as it generates sections that do not cover the strip and its exterior buffer, nor can
be too high (e.g., 100) to reduce the possibility of a section containing treated and untreated areas.
After visual inspection, this value represents a balance between the resolution of the pixels, the width
of the FMZs and the created buffers. Finally, to obtain the polygon that corresponds to a section,
the Convex Hull algorithm is run for each cluster generated by K-Means. The result is a set of polygons
with approximately the same area, which covers the entire FMZ (Figure 7b) and keeps information on
which points belong to the interior and exterior of the FMZ. Examples of the final results for each FMZ
type are shown in Figure 8. Please note that the FMZ type affects the overall shape of the segments.

(b)

Figure 7. Stages of segment creation. (a) Points of the interior (orange) and the exterior buffer of the
FMZ (gray). (b) Clusters generated using K-Means. K = 5200.

(b) (c)

Figure 8. Examples of the intersection of Fuel Management Zones (FMZs) and buffers with the created

sections. (a) Section of an FMZ along a road. (b) Section of an FMZ along an electric line. (c) Section of
an FMZ around a cluster of dwellings.

2.6. Data Sets

Multiple characteristics were used to describe the FMZ interior and the outside buffer for
each section. In addition to the satellite data, new features were extracted using the Sentinel-2
bands and Sentinel-1 polarizations. The extracted features are present in Table 1. For Sentinel-1 the
difference and ratio between the VV and VH polarizations in both ascending and descending orbits are
calculated since they have already been shown to improve classification accuracy [34]. For Sentinel-2
some vegetation indices were derived.
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Table 1. Calculated characteristics for each one of the satellites.

Satellite Calculated Characteristics

Sentinel-1 VV/VH, VV-VH
Sentinel-2 NDVI, NDWI, SAVI, IRECI, SR

With these characteristics, 5 data sets were created to compare the impact of each group of
characteristics in the results (Table 2). The data set DS_ALL has all Sentinel-2 bands, vegetation indices
and Sentinel-1 polarizations, data set DS_INDICES has only vegetation indices and DS_BAND has
only satellite bands. The DS_FUSION was created using the red, green, red-edge and near-infrared
bands, which are the bands that are used in the vegetation indices calculations, and two indices that
assess different vegetation characteristics: NDVI and NDWI. Finally, the DS_SAR exclusively using
Sentinel-1 data.

Table 2. Tested data sets and its characteristics.

Data Sets Base Attributes

NDVI, NDWI, SAV], IREC], SR, B02, B03, B04, B05, B06, B07,
DS_ALL B08, B11, (VV_DESC, VH_DESC, VV-VH_DESC, VV/VH_DESC,
VV_ASC, VH_ASC, VV-VH_ASC, VV/VH_ASC) *

NDVI, NDWI, SAVI], IRECI, SR,
DS_INDICES (VV_DESC, VH_DESC, VV-VH_DESC, VV/VH_DESC,
VV_ASC, VH_ASC, VV-VH_ASC, VV/VH_ASC) *
B02, B03, B04, B05, B06, B07, B08, B11,
DS_BAND (VV_DESC, VH_DESC, VV-VH_DESC, VV/VH_DESC,
VV_ASC, VH_ASC, VV-VH_ASC, VV/VH_ASC) *
NDVI, NDWI, B03, B04, B05, B06, BO7, BOS,
DS_FUSION (VV_DESC, VH_DESC, VV-VH_DESC, VV/VH_DESC,
VV_ASC, VH_ASC, VV-VH_ASC, VV/VH_ASC) *
VV_DESC, VH_DESC, VV-VH_DESC, VV/VH_DESC,
VV_ASC, VH_ASC, VV-VH_ASC, VV/VH_ASC

* Sentinel-1 data only used in time- series analysis.

DS_SAR

For each one of these characteristics, the information from the interior of the FMZ and the
outer buffer was extracted. Complementing that, the difference (Equation (2)) and ratio (Equation (3))
between the outer buffer and interior FMZ was calculated for every characteristic. With this,
every segment ends up with data about the buffer, FMZ, difference, and ratios.

dify = xp — x; 2)

. Xp
ratioy = — 3
= ©)
where x;, represents buffer data and x; the FMZ data, for the characteristic x.

Multi-temporal analysis can take advantage of the multiple images extracted, as for each
characteristic the difference between two consecutive dates is calculated for the whole time
series (Equation (4)).

daysToPreviousDate — maxDays
maxDays — minDays

Adif, = ( ) * (dify g —difyr-1) (4)

where dif, ; represents the difference between the outer buffer and the interior of the FMZ for attribute
x, on date k.



ISPRS Int. ]. Geo-Inf. 2020, 9, 533 10 of 20

In the temporal analysis, each one of these characteristics generates a temporal pattern, and from
that pattern, the metrics max, min, mean, and standard deviation are extracted. These values are used
as a representation of the vegetation behavior over time, for each section.

3. Results

In this section, the results for both the static analysis (one date only, Section 3.1) and temporal
analysis (time-series data from 2018, Section 3.2) are presented for roads. Other types of FMZ were
left out a more detailed analyses due to uncertainty and absence of ground truth. For both types of
analysis, the four chosen algorithms (KNN, RF, SVM, and XGBoost) were trained on all the defined
data sets. Furthermore, all experiences of temporal analysis were repeated with and without Sentinel-1
data, as this allowed the assessment of the impact that radar data has in the detection of FMZs
interventions. Both the code and the data used to obtain these results are available online at https:
/ /bitbucket.org/rfafonso/fuel-management-zones-interventions/commits/cefObel.

3.1. Static Analysis

The first analysis consists of comparing different data sets using only Sentinel-2 data from just
one date, 12 September, this is the date closest to our ground truth. Figure 9 shows the F1-score values
for the used algorithms and the different data sets, note that the data sets are sorted by performance
and by model. The RF and XGBoost were the algorithms that achieved better results, with RF reaching
slightly better values.

Classifier ~ Dataset

RF DS_ALL
DS_FUSION
ps_sAanD |
ps_INDICES I m0.8922

XGB DS_BAND
DS_FUSION
DS_ALL ]
DS_INDICES I mo.s873
DS_ALL

DS_BAND

DS_INDICES e 0.8653

SVM DS_BAND
DS_ALL
ps_FusioN e
ps_INDICES [ — 0.8589

0.600.63 0.66 069 072 0.75 0.78 081 0.84 0.87 0.90
F1-Score

= DS_ALL = DS_INDICES = DS_BAND = DS_FUSION

Figure 9. Fl-score values of the different algorithms and data sets, for the Fuel Management Zones
(FMZs) along roads.

The data set DS_ALL consistently delivered good results for all the algorithms and the best result
was achieved using this data set with the RF algorithm. The data set choice, in this case, can have a
great impact on the results, in some cases, it has an impact in the F1-score superior to 4%. The lowest
result was obtained using the data set DS_INDICES with SVM, resulting in an F1-score of 0.83.

Analyzing in more detail the combination that generated the best results (RF using DS_ALL
data set) using a confusion matrix (Table 3) the class of “not treated” sections was the one with a higher
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F1-score of 0.98 and with a precision and recall of 0.98 and 0.99, respectively. The class of “treated”
sections had a lower Fl-score value of 0.82.

Table 3. Confusion Matrix for the algorithm RF using the DS_ALL data set.

Predicted \Reference Treated Not Treated Total Precision Recall F1-Score

Treated 90 17 107 0.84 0.80 0.82
Not Treated 23 1257 1287 0.98 0.99 0.98
Total 112 1275
Global F1-Score (macro) 0.90
Global Kappa 0.80

Although the best model performs quite well, the previous results are only shown to one date,
12 September, given there is only ground truth for that particular date. Since the static analysis only
uses reference satellite images from one date to train the model, the other left out products can be used
to check if the behavior of the algorithm is as expected. This model (RF) was trained with a reference
image from 12 September and the ground truth until the same date. The model was then applied
for each date that had Sentinel-2 data. This shows how the model behaves with data before (start of
the year), during (middle of the year), and after the interventions (end of the year). This analysis
is especially interesting because the ground truth shows interventions in FMZs up to 12 September,
meaning interventions can appear in images at distinct points in time before that date. In Figure 10 the
number of sections classified as treated for each date is presented.

1300 Ground Truth: September 12, 2018

1200

=
=
o
o

1000
900
800
700
600
500
400
300
200

100
o

Febl Marl Aprl Mayl Junl Jull Augl Sepl Octl Novl Decl Janl
Date of the classification [2018]

Number of predicted intervened sections

Figure 10. Number of sections classified as treated using the best model (RF with DS_ALL) along the
whole year of 2018. Trained with data of 12 of September.

There are no precise metrics for the results of the dates before and during the observed intervention
period because the ground truth does not have the date of intervention for each section. As the
classification advances throughout the year, the number of detected interventions starts to climb as
soon as the first intervention is made. As more FMZs are cleaned throughout the year the model can
detect those interventions. After the ground truth date, the number of detected intervention zones
starts declining, mainly due to vegetation regrowth and shadows or dark area pixels in the images at
the end of the year.
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3.2. Temporal Analysis

The FMZs along roads were also analyzed using time- series data with three main structures:
Sentinel-1 data, Sentinel-2 data, and with the combination of Sentinel-2 and Sentinel-1 data.

3.2.1. One Satellite: Sentinel-1

For the Sentinel-1 data approach, dual-polarization (VV and VH) and multiple orbit (Ascending
and Descending) products were used (DS_SAR). Even when using a temporal approach, the precision
for this satellite was considerably lower than for Sentinel-2 in the static analysis, fluctuating between an
F1-Score of 0.6208 and 0.6872 for all models and with a low Kappa score between 0.2508 and 0.3769.
Nevertheless, the RF obtained an Fl-score of 0.69. On the other hand, SVM and KNN obtained
lower results, since they were unable to classify correctly treated sections, classifying most of the
samples as non-treated sections. This behavior is also true for the other models, thus the low Kappa
agreement values.

When analyzing in more detail the confusion matrix (Table 4) of the RF results, it shows that the
metrics of the untreated sections had a great influence on the value of the global Fl-score, since the
treated sections only had an F1-score 0.44.

Table 4. Confusion Matrix for the RF algorithm using the Sentinel-1 data (ASC and DESC).

Predicted \Reference Treated Not Treated Total Precision Recall F1-Score

Treated 61 10 71 0.37 0.54 0.44
Not Treated 52 1170 1222 0.96 0.92 0.94
Total 113 1275
Global F1-Score (macro) 0.69
Global Kappa 0.38

3.2.2. One Satellite: Sentinel-2

Figure 11 shows the classification results for the time- series experiment using only Sentinel-2 data,
note that the data sets are sorted by performance and by model. All data sets, except for DS_INDICES,
obtained similar results. Comparing DS_INDICES with the other data sets, for the KNN and
SVM algorithms, results were significantly lower, being around 22% lower than the best for the KINN.
Unlike the static analysis, the results from the SVM classifier managed to outperform ensemble
methods (excluding the data set DS_INDICES). The best algorithm was the SVM with an F1-score
of 0.93, nevertheless, XGBoost, and RF generated results that have less variance across data sets.

Table 5 shows the confusion matrix for the best results, with SVM using the DS_BAND data set.
The “not treated” sections class had very high metrics close to 1. For the “treated” sections class,
the metrics were lower, but still good, with an F1-score of 0.88, with only 10 sections being incorrectly
classified as treated.

Using time-series there is an improvement in the classification of treated and not treated sections
for FMZs along roads when compared with the static analysis, with the F1-score of the treated sections
class rising from 0.82 to 0.88.

Table 5. Confusion Matrix for the SVM algorithm using the data set DS_BAND.

Predicted \Reference Treated Not Treated Total Precision Recall F1-Score

Treated 97 10 107 091 0.86 0.88
Not Treated 16 1265 1281 0.99 0.99 0.99
Total 113 1275

Global F1-Score (macro) 0.94
Global Kappa 0.87
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Figure 11. Fl-score value for all algorithms and data sets using just Sentinel-2 data.

Analyzing the errors in more detail, in Figure 12 there are two examples of sections that were
incorrectly classified as treated. These sections are in areas of intersection between FMZs that were
treated and FMZs that were not treated (Figure 12a) or in the limit between the interior and exterior of
house clusters (Figure 12b).

(b)
Figure 12. Examples of false positives obtained using the SVM with the data set DS_BAND.

3.2.3. Both Satellites: Sentinel-1 and Sentinel-2

The information from Sentinel-2 and Sentinel-1 was merged to analyze if it had impact in the
results. Figure 13 presents the Fl-score values for the different algorithms and data sets, note that
the data sets are sorted by performance and by model. Globally these values maintained a behavior
similar to the values observed using only Sentinel-2 data. For the SVM, the best F1-score values did
not change in comparison to using the Sentinel-2 data. For the RE, the Fl-score slightly increased in all
data sets. This data combination had the biggest impact in the XGBoost results, raising the F1-score
more than 1% in comparison to using just Sentinel-2 data. In this experiment, the XGBoost was the
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algorithm with the best results reaching an F1-score of 0.94. Overall, using Sentinel-1 data together
with Sentinel-2 data showed some improvements in the results of the algorithms.

CLASSIFIER DATASET

XxGB  Ds_FusioN I
DS_ALL |
ps_INDICES [N
ps_BAND [N 0 9332

RF DS_ALL ]
DS_INDICES I
pDS_FusioN .
ps_eAND I 0.9198

svm  ps_sAnD I
DS_ALL I
ps_rusion [ .
DS_INDICES [ 0.8797

KNN  DS_ALL .
ps_sanD [
DS_FusioN I .

DS_INDICES [ 0.8623
0.63 0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.90 0.93
F1-Score
= DS_ALL = DS_INDICES = DS_BAND = DS_FUSION

Figure 13. F1-score values for all algorithms and data sets using Sentinel-1 and Sentinel-2 data.

3.3. Estimation of FMZs Intervention Date

This work aims to classify if FMZs are treated and maintained but it is also interesting to establish
when those same FMZs are treated. For this purpose, an extra experiment was carried out to try to
estimate the dates on which interventions in FMZs occurred. To achieve this, some clusters sections
were selected for further analysis. These sections were treated at the same time of the year, but are part
of two different locations: Site A (Figure 14a) and Site B (Figure 14b).

Analyzed Sections

Analyzed Sections

@) (b)

Figure 14. Sections used to estimate the intervention date.

These FMZs in particular were selected due to their official data not being yet available by the
Magcao City Hall, and because the intervention of FMZs around roads is more easily noticeable in
satellite images. As it can be seen in Figure 15, for Site A, the NDVI values before and after intervention
have drastic changes. The same can be observed for Site B in Figure 16. A simple threshold value
was used as the classifier using the temporal pattern Adifypy; (Equation (4)) which calculates the
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difference of the difypy; (Equation (2)) in two consecutive dates. By establishing a threshold of
I = 0.10, an FMZ is assumed to be treated when Adifypy; > [. This index represents a sudden drop of
the FMZ NDVI values in consecutive months, while the values on the outer buffer have little variation.

- ¥

l"‘-- e --..—-=--—"""""ilp

0 75 150 m ; 75 150!:\
(a) (b)
Figure 15. NDVI before and after the intervention for Site A. (a) NDVI on 15 May 2018. (b) NDVI on
19 June 2018.

.‘-‘ il i -..r.“ -
i
! - s
} :
0 75 = .-1-50"\ 0 75 ‘ 150 m
—-— - i =
(@ (b)
Figure 16. NDVI before and after the intervention for Site B. (a) NDVI on 15 May 2018. (b) NDVI on
19 June 2018.

The results for both sites are presented in Figure 17. In both cases, most of the estimated
intervention dates correspond to the manual observed date, only failing in 3 cluster sections out
of 28. However, for several sections, there were no results. In sum, 16 sections were estimated correctly,
3 incorrectly and 9 had no attribution of an estimated intervention date (i.e., difypy; =< 0.10).

[l No Attribution
[ Incorrect
[ Correct

I No Attribution
B Incorrect
[ Correct

(b)
Figure 17. Intervention date forecast results for Site A (a) and Site B (b). Presented in red where the
estimate was wrong, in green where it was correct, and in black which did not obtain results.
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4. Discussion

In this paper, two types of analysis were carried out: a static analysis, using only Sentinel-2
data from one date, and a temporal analysis using the temporal patterns of the Sentinel-2 and
Sentinel-1 characteristics. The FMZs along roads were analyzed using classification algorithms and
temporal patterns to classify which FMZ sections that were treated. An evaluation of the different
classification algorithms was also carried out, both in the temporal analysis and in the static analysis,
comparing the results of these algorithms using different data sets. In addition to these classification
experiments, an experiment was also carried out to try to determine the dates of the intervention of
the FMZs along roads. In this section, the results of the various experiments are discussed.

Different classification algorithms were used in this work: RF, SVM, XGBoost, and KNN.
The algorithms that stand out are XGBoost and RF, which in almost all experiments achieved the
best results. The algorithms that generally obtained the worst results were SVM and KNN. In the
static analysis, SVM obtained the lowest results using the data set DS_INDICES. However, in the
temporal analysis, the results of these algorithms improved considerably in such a way that SVM was
immediately behind XGBoost using data from Sentinel-2. Nevertheless, ensemble methods, such as RF
and XGBoost, methods can consistently achieve high performance and the performance per dataset
does not vary by a big margin.

Regarding the data, five different data sets were compared: DS_ALL, DS_INDICES, DS_BAND,
DS_FUSION, and DS_SAR. In the static analysis, only data from Sentinel-2 was used and in the
temporal analysis information from Sentinel-1 was added. In both temporal and static analysis,
the DS_ALL data set was always among the data sets with the highest metrics, being the best in most
experiments due to having more information available for the algorithms. The DS_INDICES obtained
worse results in almost all experiments in comparison to the DS_BAND data set, often with a big
difference between the results of both. In the temporal analysis, for the RF and XGBoost algorithms,
the DS_INDICES obtained an F1-score close to the best results; however for the SVM and KNN the
results were lower, with a difference of 22% for the best result in one of the tests (using KNN in the
FMZs along roads). It can be concluded that vegetation indices by themselves are not expressive
enough to model the properties of the FMZs to determine if they were treated or not. Furthermore,
the SVM and KNN showed a tendency to overfit on DS_INDICES.

The temporal analysis using the data set DS_SAR (just Sentinel-1 data) generated significantly
lower results. Although it achieved an average F1-Score, the Kappa reached as low as 0.25. This shows
that this type of data is not reliable enough to be used for this type of application. Further research is
needed to see if it is possible to leverage more performance from SAR data, either with new models or
a different processing pipeline (e.g., adding textural information). SAR data is especially interesting
when there is not multispectral data available, for example when there is cloud coverage over the study
area. Even with the low performance of SAR, the combination of Sentinel-1 and Sentinel-2 showed
slight improvements in the results, with the most significant improvement in the F1-score, increasing
by almost 2%. Although the global F1-score is equal when using only Sentinel-2 data and Sentinel-2
in conjunction with Sentinel-1 data, there was a difference in the results for the treated sections
class. With just data from Sentinel-2, the treated sections class had an F1-score of 0.88, when adding
Sentinel-1 data this value raised to 0.90. The combination of Sentinel-1 and Sentinel-2 can increase the
performance of the proposed algorithms. Even though the increase in performance was measured at
2%, the high availability of Sentinel-1 data (not affected by cloud coverage) can be beneficial. However,
it must be considered its only main drawback associated with the data prepossessing complexity.

Finally, as it isas it is not only important to know if FMZs are treated but also when, a final
experiment was carried out. The main goal was to create an algorithm that could roughly estimate
the dates of the interventions. In both study areas, the algorithm performed very well, identifying
most of the intervention dates right compared to the ones obtained after a manual examination.
This experiment had the role of proof of concept, as the sample size was smaller, but it serves as
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a starting point for future research on intervention date estimation. This work can aid in solving
ambiguities and uncertainty in the ground truth about FMZs.

The thorough research for related work yielded no previous studies that directly approach the
analysis of the state of FMZs. In general, the presented results are quite good and showed that the use
of remote sensing techniques in conjunction with classification algorithms can help in the detection of
interventions in the FMZs, promoting fire protection around the detected areas.

5. Conclusions

This work presented a new method to detect interventions in FMZs using machine- learning
algorithms and satellite images from Sentinel-2 and Sentinel-1. Combining machine- learning and open
satellite data could reduce the costs associated with manual checkups of FMZs. This process is also
scalable as it would only require the extraction of more satellite images over the study area. The main
technique used to detect an intervention was to extract information about the vegetation in both the
interior and exterior of an FMZ to detect variations. This approach required the creation of buffers
outside the FMZ, in vegetation zones, which depending on the type of FMZ can be complex to generate.
This information about the interior and exterior of FMZs is then used to generate new features from
the input satellite spectral and radiometric images. The proposed method can serve as a baseline for
future work into the detection of vegetation growth and maintenance in forest fire-sensitive areas,
in this case, the FMZs.

The results show that the usage of satellite data can be used to detect if an FMZ is properly clean
and maintained, thus improving forest fire protection. As expected, due to having more information,
time-series data had better results than using only a single date. Furthermore, from all the data
sets tested, DS_ALL had the best scores overall. Regarding the used machine- learning algorithms,
ensemble methods (RF and XGBoost) prove to be robust when working with remote sensing data by
having good scores across the board. In the experiments, the best scores were achieved by XGBoost
when combined with the best data set, DS_FUSION, which uses spectral and radar data as well as
some derived vegetation indices.

Although the results presented in this work refer to road FMZs, other experiments in other types
of FMZs were done, in particular for the electrical lines FMZs. Due to some uncertainty about the
ground truth of this type of FMZ, the results are not shown here. Nevertheless, the preliminary work
is promising, even though it cannot have the same level of certainty of results due to uncertainty in the
ground truth. Apart from that, scores for the electrical lines FMZs could be affected by various factors
like like regular maintenance due to the risk of fire ignition associated with these lines, making the
detection of vegetation change more difficult; the size of the sections for this type of FMZ is smaller
resulting in less information in comparison to the road’s sections. Future work will be done to mitigate
the uncertainty about the ground truth of these FMZs types, allowing the proposed algorithms to be
valuable for many different types of FMZs.

Author Contributions: Conceptualization, Ricardo Afonso, Carlos Viegas Damadsio, Jodao Moura Pires,
and Fernando Birra; Methodology, Ricardo Afonso; Formal analysis, Ricardo Afonso; Investigation, Ricardo
Afonso; Data curation, Ricardo Afonso, André Neves; Writing—original draft preparation, André Neves and
Ricardo Afonso; writing-review and editing, André Neves, Ricardo Afonso, Carlos Viegas Damasio, Jodo Moura
Pires, Maribel Yasmina Santos, and Fernando Birra; Supervision, Carlos Viegas Damasio and Jodo Moura Pires;
Project Administration, Carlos Viegas Damasio and Joao Moura Pires; Funding acquisition, Carlos Viegas Damasio
and Joao Moura Pires. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by NOVA LINCS (UIDB/04516/2020) and ALGORITMI (UIDB/00319/2020)
with the financial support of FCT- Fundacao para a Ciencia e a Tecnologia, through national funds; This work is
also supported by the project Floresta Limpa (PCIF/MOG/0161/2019).

Acknowledgments: The authors would like like to thank the city hall of Macéo for its collaboration with NOVA
LINCS, which provided information about FMZs that were treated in 2018.

Conflicts of Interest: The authors declare no conflict of interest.



ISPRS Int. ]. Geo-Inf. 2020, 9, 533 18 of 20

Abbreviations

The following abbreviations are used in this manuscript:

SAR Synthetic Aperture Radar

NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index

LAI Leaf Area Index

GRD Ground Range Detected

SAVI Soil-Adjusted Vegetation Index

SR Simple Ratio

IRECI Inverted Red-Edge Chlorophyll Index
FMZ Fuel Management Zone

FIZ Fuel Interruption Zones

FRZ Fuel Reduction Zones

XGBoost  eXtreme Gradient Boosting

SVM Support Vector Machine

RF Random Forest

KNN K-nearest Neighbors

References

1.  Instituto da Conservacdo da Natureza e das Florestas. 8° Relatdrio Provisério de Incéndios Rurais. Informagio

10.

11.

12.

13.

Estatistica Sobre Incéndios Rurais 1 de Janeiro a 15 de Outubro de 2019; This Document Is Presented in Portuguese;
Instituto da Conservagado da Natureza e das Florestas: Lisbon, Portugal, 2019.

Ministry of Agriculture for Rural Development and Fishing. Decreto-Lei n.° 124/2006. In Didrio da
Repiiblica n.° 123/2006, Série I-A de 2006-06-28; (Note: This Document Is Presented in Portuguese); Ministry of
Agriculture for Rural Development and Fishing: Ana Paula, Portugal, 2006.

Administra¢do Interna. Decreto-Lei n.° 10/2018. In Didrio da Repiiblica n.° 32/2018, Série I de 2018-02-14;
(Note: This Document Is Presented in Portuguese); Administracao Interna: Lisboa Portugal, 2018.
Instituto da Conservacdo da Natureza e das Florestas-ICNF. Manual de Rede Primiria; Divisdao de Protegdo
Florestal E Valorizacdo de Areas Publicas (DPFVAP) (Note: This Document Is Presented in Portuguese);
Instituto da Conservacdo da Natureza e das Florestas-ICNF: Lisbon, Portugal, 2014.

Noi, P.T.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine
classifiers for land cover classification using sentinel-2 imagery. Sensors 2018, 18, 18. [CrossRef]

Jiang, H.; Li, D.; Jing, W.; Xu, J.; Huang, ].; Yang, J.; Chen, S. Early Season Mapping of Sugarcane by Applying
Machine Learning Algorithms to Sentinel-1A /2 Time Series Data: A Case Study in Zhanjiang City, China.
Remote Sens. 2019, 11, 861. [CrossRef]

Qian, Y.; Zhou, W,; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land
cover classification using very high resolution imagery. Remote Sens. 2015, 7, 153-168. [CrossRef]
Immitzer, M.; Vuolo, F; Atzberger, C. First experience with Sentinel-2 data for crop and tree species
classifications in central Europe. Remote Sens. 2016, 8, 166. [CrossRef]

Maltsev, E.; Maglinets, Y.; Tsibulskii, G. The Technology to Identify Firebreak Plowing Objects Based on the
Satellite Data of the Earth Remote Sensing. E3S Web Conf. 2019, 75, 01006. [CrossRef]

Liampas, 5.-A.G.; Stamatiou, C.C.; Drosos, V.C. Comparison of three DEM sources: A case study from Greek
forests. In Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of
Environment, Paphos, Cyprus, 26-29 March 2018; Volume 10773. [CrossRef]

Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted
dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509-523. [CrossRef]

Pefia, M.A.; Liao, R.; Brenning, A. Using spectrotemporal indices to improve the fruit-tree crop classification
accuracy. ISPRS ]. Photogramm. Remote Sens. 2017, 128, 158-169. [CrossRef]

Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of
the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ.
2018, 216, 345-354. [CrossRef]


http://dx.doi.org/10.3390/s18010018
http://dx.doi.org/10.3390/rs11070861
http://dx.doi.org/10.3390/rs70100153
http://dx.doi.org/10.3390/rs8030166
http://dx.doi.org/10.1051/e3sconf/20197501006
http://dx.doi.org/10.1117/12.2506928
http://dx.doi.org/10.1016/j.rse.2017.10.005
http://dx.doi.org/10.1016/j.isprsjprs.2017.03.019
http://dx.doi.org/10.1016/j.rse.2018.07.006

ISPRS Int. ]. Geo-Inf. 2020, 9, 533 19 of 20

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Miiller, H.; Rufin, P; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining dense Landsat time series for
separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ.
2015, 156, 490-499. [CrossRef]

Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to
map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016,
187, 156-168. [CrossRef]

Goémez, C.; White, ].C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification:
A review. ISPRS ]. Photogramm. Remote Sens. 2016. [CrossRef]

Clevers, J.G.; Kooistra, L.; van den Brande, M.M. Using Sentinel-2 data for retrieving LAI and leaf and
canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [CrossRef]

Piragnolo, M.; Lusiani, G.; Pirotti, F. Comparison of vegetation indices from RPAS and Sentinel-2 imagery
for detecting permanent pastures. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2018,
42,1381-1387. [CrossRef]

Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Estimating cotton water consumption using a time series
of Sentinel-2 imagery. Agric. Water Manag. 2018, 207, 44-52. [CrossRef]

Satir, O.; Berberoglu, S. Crop yield prediction under soil salinity using satellite derived vegetation indices.
Field Crops Res. 2016, 192, 134-143. [CrossRef]

Setiyono, T.D.; Quicho, E.D.; Gatti, L.; CamposTaberner, M.; Busetto, L.; Collivignarelli, F.; GarciaHaro, EJ.;
Boschetti, M.; Khan, N.I; Holecz, F. Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data
and ORYZA crop growth model. Remote Sens. 2018, 10, 1-20. [CrossRef]

Castillo, J.LA.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and mapping of above-ground biomass
of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J.
Photogramm. Remote Sens. 2017, 134, 70-85. [CrossRef]

Jiang, Z.; Huete, A.; Chen, J.; Chen, Y,; Li, ].; Yan, G.; Zou, Y. Analysis of NDVI and scaled difference
vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366-378. [CrossRef]
Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295-309. [CrossRef]
Jordan, C. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50.
[CrossRef]

Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative
estimation of biophysical variables in vegetation. ISPRS ]. Photogramm. Remote Sens. 2013, 82, 83-92.
[CrossRef]

Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water
from space. Remote Sens. Environ. 1996, 58, 257-266. [CrossRef]

Hadjimitsis, D.G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M.G.; Retalis, A.;
Michaelides, S.; Chrysoulakis, N.; Toulios, L.; Clayton, C.R.I. Atmospheric correction for satellite remotely
sensed data intended for agricultural applications: Impact on vegetation indices. Nat. Hazards Earth Syst. Sci.
2010, 10, 89-95. [CrossRef]

Agapiou, A.; Hadjimitsis, D.G.; Papoutsa, C.; Alexakis, D.D.; Papadavid, G. The Importance of accounting
for atmospheric effects in the application of NDVI and interpretation of satellite imagery supporting
archaeological research: The case studies of Palaepaphos and Nea Paphos sites in Cyprus. Remote Sens.
2011, 3, 2605-2629. [CrossRef]

Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Miiller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2.
In Image and Signal Processing for Remote Sensing XXIII; Bruzzone, L., Ed.; International Society for Optics and
Photonics SPIE: Bellingham, WA, USA, 2017; Volume 10427, pp. 37—48. [CrossRef]

Moreira, A.; Santos, M.Y. Concave hull: A k-nearest neighbours approach for the computation of the
region occupied by a set of points. In Proceedings of the GRAPP 2007, Second International Conference on
Computer Graphics Theory and Applications, Barcelona, Spain, 8-11 March 2007.

OpenStreetMap Contributors. 2019. Planet Dump Retrieved from https://planet.osm.org. Available online:
https:/ /www.openstreetmap.org (accessed on 26 March 2019) ).


http://dx.doi.org/10.1016/j.rse.2014.10.014
http://dx.doi.org/10.1016/j.rse.2016.10.010
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.008
http://dx.doi.org/10.3390/rs9050405
http://dx.doi.org/10.5194/isprs-archives-XLII-3-1381-2018
http://dx.doi.org/10.1016/j.agwat.2018.05.017
http://dx.doi.org/10.1016/j.fcr.2016.04.028
http://dx.doi.org/10.3390/rs10020293
http://dx.doi.org/10.1016/j.isprsjprs.2017.10.016
http://dx.doi.org/10.1016/j.rse.2006.01.003
http://dx.doi.org/10.1016/0034-4257(88)90106-X
http://dx.doi.org/10.2307/1936256
http://dx.doi.org/10.1016/j.isprsjprs.2013.04.007
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.5194/nhess-10-89-2010
http://dx.doi.org/10.3390/rs3122605
http://dx.doi.org/10.1117/12.2278218
https://www.openstreetmap.org

ISPRS Int. ]. Geo-Inf. 2020, 9, 533 20 of 20

33. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June-18
July 1965; Volume 1, pp. 281-297.

34. Abdikan, S.; Sanli, EB.; Ustuner, M.; Calo, F. Land cover mapping using sentinel-1 sar data. ISPRS Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 757-761. [CrossRef]

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.5194/isprsarchives-XLI-B7-757-2016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Study Area
	Approach Overview
	Satellite Data Acquisition
	FMZs Vector Information Processing
	FMZs Vector Clustering
	Data Sets

	Results
	Static Analysis
	Temporal Analysis
	One Satellite: Sentinel-1
	One Satellite: Sentinel-2
	Both Satellites: Sentinel-1 and Sentinel-2

	Estimation of FMZs Intervention Date

	Discussion
	Conclusions
	References

