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Abstract: Solar3D is an open-source software application designed to interactively calculate solar
irradiation on three-dimensional (3D) surfaces in a virtual environment constructed with combinations
of 3D-city models, digital elevation models (DEMs), digital surface models (DSMs) and feature layers.
The GRASS GIS r.sun solar radiation model computes solar irradiation based on two-dimensional
(2D) raster maps for a given day, latitude, surface and atmospheric conditions. With the increasing
availability of 3D-city models and demand for solar energy, there is an urgent need for better
tools to computes solar radiation directly with 3D-city models. Solar3D extends the GRASS GIS
r.sun model from 2D to 3D by feeding the model with input, including surface slope, aspect
and time-resolved shading, which is derived directly from the 3D scene using computer graphics
techniques. To summarize, Solar3D offers several new features that—as a whole—distinguish this
novel approach from existing 3D solar irradiation tools in the following ways. (1) Solar3D can
consume massive heterogeneous 3D-city models, including massive 3D-city models such as oblique
airborne photogrammetry-based 3D-city models (OAP3Ds or integrated meshes); (2) Solar3D can
perform near real-time pointwise calculation for duration from daily to annual; (3) Solar3D can
integrate and interactively explore large-scale heterogeneous geospatial data; (4) Solar3D can calculate
solar irradiation at arbitrary surface positions including on rooftops, facades and the ground.
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1. Introduction

Solar radiation models are used to estimate solar energy that reaches the Earth’s surface. Traditional
geographic information system (GIS)-based solar radiation models are designed primarily to obtain
spatially and temporally resolved solar irradiation estimates on the ground over large geographic areas.
With increasing demand for solar energy in urban areas—and increasing interest in researching urban
climates at local scales—there has been an urgent need for better tools to estimate solar irradiation at local
scales within urban areas. Traditional GIS solar radiation models, such as the widely used ESRI ArcGIS
Solar Analyst (SA) [1] and GRASS GIS r.sun [2], can operate only on two-dimensional (2D) raster maps
that supply the surface elevation. Moreover, in most cases, they cannot be used to estimate irradiation
at vertical surfaces such as building facades. When modeling solar irradiation on the building scale,
2D raster maps are not able to represent complex geometric features such as vertical surfaces and
overhangs, and the complexity of urban morphology can best be represented in three-dimensional
(3D) city models in the form of triangular meshes. Owing to the advancements in unmanned aerial
vehicle (UAV) and 3D-reconstruction technologies, oblique airborne photogrammetry-based 3D-city
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models (OAP3Ds or integrated meshes) have become widely available and are a valuable asset for
solar energy assessment, energy planning and urban planning [3]. Despite this, little has been done
to support the direct use of OAP3Ds in solar irradiation estimation. In summary, efforts are needed
to develop an integrated solar radiation tool that overcomes these limitations so it can be applied to
real-world scenarios more broadly.

A 3D-city model can be constructed in multiple ways, including by manually creating in
computer-aided design (CAD) software, from LiDAR point clouds, from oblique airborne imagery and
by extruding building footprints. Liang et al. [4] used graphics processing unit (GPU)-based ray casting
to calculate solar irradiation on building roofs and facades, but the obtained solution was optimized
specifically for building footprints-extruded 3D-city models and did not perform well with complex
scenes comprising dense CAD meshes. Liang et al. [5] used a novel type of GPU ray casting technique
accelerated with a sparse voxel octree to calculate solar irradiation on building surfaces in real time,
but the solution cannot accommodate large scenes due to video memory limitation. Kaňuk et al. [6]
recently developed a GRASS GIS r.sun extension to calculate solar irradiation on triangular irregular
networks (TINs), which is a widely used GIS data format. By design, TINs are composed purely of
contiguous, non-overlapping triangular facets. As such, they are essentially a 2.5D representation of
the 3D world and therefore are subject to a loss of 3D geometric information.

The VI-Suite is a 3D environmental analysis toolset developed within the open-source CAD
software Blender [7], and it was designed to interactively calculate and visualize solar irradiation on
building surfaces. Although the VI-Suite allows users to import georeferenced raster maps as meshes
into Blender, it loads all meshes at once into memory, and, thus may not be able to manage large-scale
3D-city models such as OAP3Ds. Robledo et al. [8] used GPU shadow mapping on WebGL to evaluate
shading losses as a way to estimate solar irradiation on photovoltaic (PV) arrays. Shadow mapping
proved to be a computationally efficient solution for computing solar radiation with 3D models, but it
is susceptible to resampling errors [9] especially when the sun forms a narrow angle with the surface.

A common shortcoming of existing 3D-solar-radiation tools is a lack of support for interactive
computation with large-scale level-of-detail (LOD) 3D-city models such as OAP3Ds. OAP3Ds
distinguish itself from traditional 3D-model sources with its very high level of geometric accuracy and
textural fidelity. Due to a lack of support for large-scale 3D-city models, when utilizing OAP3Ds in
conventional solar radiation tools, they must be rasterized into digital surface models (DSMs) so that
the solar tools can consume, and this 3D–2D conversion will result in information loss and geometric
errors which will further propagates through the solar modeling process. Ideally, OAP3Ds should be
utilized in their native form in solar radiation tools.

Additionally, although several 3D-solar-radiation tools that can work directly with 3D models
have been developed, most of them are implemented in an isolated environment for use with a
specific 3D-model format. Moreover, few of them support integration with other common geospatial
data sources, such as digital elevation models (DEMs), DSMs and feature layers, which are essential
background information needed for decision making in urban and energy planning [10].

Bearing in mind the above limitations, we developed a new solar irradiation tool designed
specifically to meet the following requirements. (1) to support pointwise calculation of daily to
annual irradiation at arbitrary surfaces including at rooftops, facades and the ground; (2) to provide
near real-time computation and feedback; (3) support for interactive exploration and calculation;
(4) to support heterogeneous 3D-model formats, including common CAD model formats, OAP3Ds
and building footprint extrusions; and (5) to support the mash-up of local- to global-scale geospatial
data sources, including DEMs, DSMs, imagery and feature layers with 2D and 3D symbology.

2. Methods

This section is divided into two parts. The first part introduces the r.sun solar radiation model
and then delves into the conceptualization and key technologies of the 3D extension. The second part
is focused on the software architecture and business logic of Solar3D.
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2.1. The Solar Radiation Model

The r.sun model breaks the global solar radiation into three components: the beam (direct)
radiation, the diffuse radiation and the reflective radiation [2]. The beam irradiation is usually the
largest component and the only one that accounts for direct shadowing effect, which is a major factor
determining the accessibility of solar energy in urban environments. The clear sky beam irradiance on
a horizontal surface Bhc [W.m-2], which is the solar energy that traverses the atmosphere to reach a
horizontal surface, is derived using the following Equation (1) [2]:

Bhc = G0 exp
{
−0.8662TLKmδR(m)

}
sin h0 (1)

where TLK, G0, m and δR(m) are, respectively the air mass Linke turbidity factor, the extraterrestrial
irradiance normal to the solar beam, the solar altitude and the Rayleigh optical thickness, and Bhc is
converted into the clear sky beam irradiance on an inclined surface Bic [W.m-2] using the following
Equation (2) [2]:

Bic =

{
0, if Mshadow(Vsun) = 1

Bhc sin δexp/ sin h0 if Mshadow(Vsun) = 0
(2)

where Mshadow is the shadowing effect determined by the solar vector Vsun and the shadow casting
objects in the scene. The solar vector Vsun is determined by the solar azimuth angle (θ) and the solar
altitude angle (ϕ). δexp is the solar incidence angle measured between the sun and an inclined surface
described by the slope and aspect angle. Mshadow a binary shadow mask which returns 0 when the
direct-beam light of the sun is blocked or otherwise returns 1. When applying the r.sun model to
3D-city models instead of 2D raster maps, a major technical challenge is to calculate the shadow mask
accurately and rapidly for each time step.

Ray casting is a conventional and accurate shading evaluation method [4]. When performing
ray casting, a ray oriented in the target direction is cast to intersect with all triangles in the 3D scene;
therefore, this method is computationally intensive. Computation performance is especially critical for
calculating long-duration irradiation with high temporal resolution. For example, when calculating
annual solar irradiation with a temporal resolution of 10 min, a total of 8760 × 6 rays need to be cast for
the shading for each time step to be evaluated and, moreover, the time cost of casting a ray is directly
correlated with the geometric complexity of the scene.

An alternative approach to evaluate shading is to produce a shadow map from the solar
position for each time step [8]. Shadow mapping can be easily implemented on the GPU to provide
real-time rendering. However, shadow mapping is susceptible to various quality issues associated with
perspective aliasing, projective aliasing and insufficient depth precision [9]. Moreover, when performing
time-resolved shading evaluation with shadow maps for a specific location, the shadow mask of
each time step needs to be evaluated at a different image-space location on a separate shadow map.
Therefore, the results could be subject to notable spatiotemporal uncertainty.

Hemispherical photography is another approach to evaluating shading and estimating solar
irradiation [11]. In hemispherical photography, a fisheye camera with a 360-degree horizontal view
and a 180-degree vertical view is placed at the ground looking upward, producing a hemispherical
photograph in which all sky directions are simultaneously visible. As the visibility in all sky directions
are preserved in the resulting hemispherical photograph, it can be used to determine if the direct beam
of the sun is obstructed for any given time of the year.

One of the goals of Solar3D is to provide accurate pointwise estimates of hourly to annual
irradiation with high temporal resolution. Having reviewed the three main shading evaluation
techniques with this goal in mind, we endeavored to follow the hemispherical photography approach
based on the following considerations. (1) In terms of geometric accuracy and uncertainty, given a
sufficient image resolution, it is theoretically nearly as accurate as ray casting, and it is not subject
to the notable spatiotemporal uncertainty that is associated with shadow mapping; (2) In terms
of computation efficiency, theoretically, it scales better with geometric complexity than ray casting;
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therefore, it can compute faster with 3D-city models, which typically have very high geometric
complexity. Furthermore, although shadow mapping may be faster in areal computation, we are
focused on accurate pointwise computation; therefore, sacrificing accuracy for performance is not an
ideal option.

A hemispherical photograph is essentially a 3D panorama projected onto a circle in a 2D image
(Figure 1b). A hemispherical projection can result in oversampling, under-stamping and image
distortion. To avoid these issues, instead of relying directly on a projected hemispherical photograph
for shading evaluation, we use a 360-panoram in its native form.
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Figure 1. (a) Cube map and (b) hemispherical view at the same ground location.

In computer graphics, cube mapping is a common technique that is used to preserve a 360-degree
panoramic snapshot of the surrounding environment at a given location [12]. A cube map (Figure 1a)
is composed of six images facing north (positive Y), south (negative Y), east (positive X), west (negative
X), the sky (positive Z) and the ground (negative Z). To generate a cube map of a scene, the scene needs
to be rendered once for each of the cube’s face. We use OpenGL and the GLSL shading language to
generate a cube map as follows [13]:

(1) Allocate a render target texture (RTT) with an alpha channel for each cube map face;
(2) Construct a camera with a 90-degree horizontal and vertical view angle at the given location in

the scene;
(3) For each of the six cube map faces, set up the camera so it is aligned in the direction of the cube

map face and initialize the RRT with a transparent background (alpha = 0) and then render
the scene offscreen to the associated RTT. The scene must be set up so that it is not enclosed or
obstructed by any objects that are not part of the scene, for example by a sky box, so that only the
potential shadow-casting objects in the scene will pass the z-buffering test and be shaded with
nonzero alpha values. Hence, in the resulting cube map face images, the sky and non-sky pixels
can be distinguished by their respective alpha mask values.

At this stage, the shadow mask needed for each time step for use in Equation (2) can be easily
determined by looking up the classified cube map image pixels. When looking up a cube map to
access the pixel for a given solar position in spherical coordinates Psun(θ, ϕ), the following steps are
performed:

(1) Determine the cube map face to look up. As all six cube map faces have a 90-degree horizontal
and vertical view angle, the cube map face index can be determined using the solar position (θ, ϕ)
by following the logic expressed in Equation (3):
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Cubemap f ace =



0Positive Z, ϕ > 45 ,
Negative Z, ϕ < −45
0Positive Y, θ < 45
0Positive X, θ > 135
Negative Y, θ < 225
Negative X θ < 315
0Positive Y, θ ≥ 315

(3)

(2) Project the solar position into the image space and fetch the pixel at the resulting image coordinates.
The image-space coordinates are obtained using Equation (4):

Pimage(u, v) = Psun(x, y, z) ×Matview ×Matproj (4)

where Pimage(u, v) are the resulting image-space coordinates, Psun(x, y, z) are the Cartesian coordinates
of Psun(θ, ϕ), Matview and Matproj are the view and projection matrix of the associated cube map face
camera, respectively.

Finally, in addition to the shadow masks, to calculate the irradiation on an inclined surface in a
3D-city model using r.sun, the remaining information needed by r.sun includes the slope and aspect of
the surface, which can be easily derived from the surface normal vector [4].

2.2. The Computation and Software Framework

The core framework is constructed by integrating the r.sun solar radiation model into a 3D-graphics
engine, OpenSceneGraph [14], an OpenGL-based 3D-graphics toolkit widely used in visualization and
simulation. OpenSceneGraph is essentially an OpenGL state manager with extended support for scene
graph and data management. The source code of the r.sun model was detached from the GRASS GIS
repository and integrated into the Solar3D codebase, and it was modified so that the r.sun model can
be programmatically called to calculate irradiation with custom parameters. The reasons for choosing
OpenSceneGraph are multifold: first, OpenSceneGraph provides user-friendly, object-oriented access
to OpenGL interfaces; second, OpenSceneGraph provides built-in support for interactive rendering
and loading of a wide variety of common 3D-model formats including osg, ive, 3ds, dae, obj, x, fbx
and flt; third, OpenSceneGraph supports smooth loading and rendering of massive OAP3Ds, which
are already being widely used in urban and energy planning. Once exported from image-based
3D-reconstruction tools such as Esri Drone2Map and Skyline PhotoMesh into OpenSceneGraph’s
Paged LOD format, OAP3Ds can be rapidly loaded into OpenSceneGraph for view-dependent data
streaming and rendering. The r.sun model in Solar3D also relies on OpenSceneGraph for supplying
the key parameters needed for irradiation calculation. (1) location identified at a 3D surface; (2) slope
and aspect angles of the surface; (3) time-resolved shadow masks evaluated from a cube map rendered
at the identified position.

OpenSceneGraph, as the rendering engine in Solar3D, serves several purposes. (1) it is used to
render 3D-city models that come in different formats, including OAP3Ds, CAD models and procedurally
generated 3D models such as those extruded from building footprints; (2) it is used to render the
scene into cube maps for shading evaluation; (3) it renders the UI that gathers user input and provides
feedback; (4) it handles user device input, primarily moue actions, so that users can interact with the
UI and the 3D scene.

The business logic of the core framework works in a loop triggered by user requests (Figure 2):
(1) a user request is started by mouse-clicking at an exposed surface in a 3D scene rendered in an
OpenSceneGraph view overlaid with the Solar3D user interface (UI) elements; (2) the 3D position, slope
and aspect angle are derived from the clicked surface; (3) a cube map is rendered at the 3D position
as described above; (4) all required model input [15], including the geographic location (latitude,
longitude, elevation), Linkie turbidity factor, duration (start day and end day), temporal resolution
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(in decimal hours), slope, aspect and shadow masks for each time step, is gathered, compiled and fed
to r.sun for calculating irradiation. The shadow masks are obtained by sampling the cube map with the
solar altitude and azimuth angle for each time step; (5) the r.sun model is run with the supplied input
to generate the global, beam, diffuse and reflective irradiation values for the given location; (6) the
r.sun-generated irradiation results are returned to the Solar3D UI for immediate display.
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To better facilitate urban and energy planning, the core framework is further extended by
integrating into a 3D-GIS framework (Figure 2), osgEarth [16], an OpenSceneGraph-based 3D geospatial
library used to author and render planetary- to local-scale 3D GIS scenes with support for most common
GIS content formats, including DSMs, DSMs, local imagery, web map services, web feature service
and Esri Shapefile. With the 3D GIS extension, Solar3D can serve more specialized and advanced
user needs, including. (1) hosting multiple 3D-city models distributed over a large geographic region;
(2) overlaying 3D-city models on top of custom basemaps to provide an enriched geographic context
in support of energy analysis and decision making; (3) incorporating the topography surrounding a
3D-city model into shading evaluation; (4) interactively calculating solar irradiation with only DSMs.

Users can start OAP3D with an osgEarth scene by providing a xml configuration file (.earth)
authored following osgEarth’s scene authoring specifications. An osgEarth scene (.earth) starts
with a map node. A map can be created either as a global or a local scene by specifying the type
attribute (type = “geocentric” for a global scene or type = “projected” for a local scene) in the map
node. Under the map node, users can add different layer nodes, including image layers, feature
layers, elevation layers, model layers and annotations. A layer node is created by providing the
layer type, data source and other data symbology and rendering attributes. For example, an image
layer can be added by providing the driver attribute (TMS, GDAL, WMS, ArcGIS) and URL attribute
(e.g., http://readymap.org/readymap/tiles/1.0.0/22/).

The code was written in C++ and complied in Visual Studio 2019 on Windows 10. The three
main dependent libraries used, OpenSceneGraph, osgEarth and Qt5, were all pulled from vcpkg [17],
a C++ package manager for Windows, Linux and MacOS, and therefore Solar3D can potentially be
complied on Linux and MacOS with additional work to set up the build environment. Solar3D is
publicly available at https://github.com/jian9695/Solar3D.

http://readymap.org/readymap/tiles/1.0.0/22/
https://github.com/jian9695/Solar3D


ISPRS Int. J. Geo-Inf. 2020, 9, 524 7 of 12

3. Results

The discussion of the results begins with an evaluation of Solar3D. The evaluation was designed
with two questions in mind. The first question is ‘How reliable is the cube map-based shading
evaluation technique and how does cube map size affect shading accuracy?’ As the accuracy of the
beam irradiation is largely dependent on the shading evaluation algorithm, it is of critical importance
to have a quantitative understanding of the cube map-based shading evaluation technique. The second
question is ‘how does the extended 3D r.sun, i.e., Solar3D, perform in complex urban environments in
comparison to the original 2D r.sun?’ The remainder of this section is dedicated to demonstrating the
general business workflow and main features of Solar3D.

3.1. Evaluation of the Cube Map-based Shading Technique

Theoretically, the accuracy of the cube map-based shading technique is determined by the size
of the cube map—or more specifically—by the image size of the six cube map faces. To quantify
how the shading accuracy correlates with the cube map size, we performed a comparison of the cube
map-based shading technique against the rigorous ray-casting algorithm with cube map (face) sizes
ranging from 4 × 4 pixels to 2048 × 2048 pixels including all powers of two in between.

The 3D-city model used for the comparison is an OAP3D that covers a 45 km2 downtown
area of the coastal city Weihai, China located at 37.5131◦ N, 122.1204◦ E. The OAP3D was captured
using a quadcopter with an image resolution of approximately 10–20 cm and generated using
Skyline Photomesh.

The comparison was made within a 1 km2 area. First, a total of 1000 locations were randomly
generated within the defined area. Then, cube maps from 4 × 4 to 2048 × 2048 pixels were generated at
each of these sample locations. After this, shading was evaluated using both methods at sky directions
regularly spaced at 5 degrees with solar altitude angles ranging from 0–90 and azimuth angles ranging
from 0–360. Finally, for each of the sample locations, we calculated the percentage of the sky directions
at which the cube map technique gives a correct result (shaded or not) as compared against ray casting.
The average percentage of all sample locations is used as a measure of shading accuracy.

The comparison shows a nonlinear relationship between the image size of cube map faces and the
accuracy of the cube map-based shading technique (Figure 3). When the image size is in the lower
range, a small increase results in a larger improvement in shading accuracy. Specifically, when the
image size is increased from 4 × 4 to 128 × 128, the shading accuracy is significantly improved from
81.28% to 98.69%. However, when the image size is larger than 128 × 128, further increase in image size
results in a very small improvement in accuracy. As Figure 1 shows, when the image size is increased
from 256 × 256 to 2048 × 2048, the shading accuracy is improved only slightly, from 99.07% to 99.40%.
This suggest that when the image size of the cube map faces is set to be equal or larger than 256 × 256,
the cube map-based shading technique should be able to perform at a higher than 99% accuracy.
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Figure 3. Shading accuracy of the cube map-based technique versus image size of cube map faces.

3.2. Comparison of the 3D Extension with the Original r.sun 2D

The objective of the comparison is to determine the differences in clear-sky irradiation estimates
between the 3D extension and the original r.sun 2D when both are applied in a complex urban
environment. For the 3D-city model to be consumed in the original r.sun 2D, we converted the 3D
meshes into a DSM regularly gridded at 0.25 m, and the conversion was performed using a computer
graphics approach by rendering the height attribute of the 3D meshes into a 4000 × 4000 image.

The data used for the comparison is the same 1 km-by-1 km area as described in Section 3.1.
The comparison was performed for three different lengths of duration, including daily (Day 1), monthly
(Days 1–31) and annually (Days 1–365), for 1000 randomly generated locations within the defined area,
and the time step and Linke turbidity factor were set at 0.5 h and 3.0, respectively.

Presumably, the differences in clear-sky irradiation estimates between the 3D extension and
the original r.sun can arise from several sources, such as the following. (1) differences in surface
orientation (slope and aspect) caused by the difference in data representation (3D mesh versus 2D
raster); (2) differences in the distribution of the sky areas being blocked due to the difference in data
representation; and (3) difference in shading evaluation methodology (computer graphics-based cube
map versus raster-based analytical visibility algorithm). As a DSM is a rasterized representation of 3D
surfaces and the rasterization of meshes is known to be subject to a loss of geometric information, we are
inclined to exclude the effect of surface orientation on the differences between irradiation estimates.
With this rationale in mind, when generating the random locations, we discarded those where the
surface slope is greater than 5 degrees and continued until 1000 qualified locations were collected.

The comparison (Figure 4) shows that overall, the global irradiation estimates produced by the
r.sun 3D extension closely correlate with those produced by the original r.sun with R-squared values
ranging from 0.87 to 0.97. The comparison also shows that the 3D estimates tend to correlate better
with the 2D estimates for a longer duration. This implies an overall agreement in the percentage of
obstructed sky directions (obstructed sky directions divided by total sky directions) especially in the
case of annual duration in which the entire sky dome was considered.
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3.3. Basic Usage and Workflow

The Solar3D UI consists of three components, respectively responsible for the parameter settings,
the results display and status updates. The parameter settings panels are located on the top left with UI
elements for setting the Linke factor, start day, end day, time step, latitude and base elevation overrides
(used in case of a non- georeferenced scene). The result display UI consists of two panels located on
the left side right below the parameter settings panel used for immediate display of feedback from the
latest request and a popup panel used to display results at the cursor point. The status UI elements
include a compass at the top right and a status bar displaying cursor and camera coordinates toward
the bottom.

One of the first steps in the workflow of Solar3D is scene preparation. Users are expected to
prepare scenes with a least one 3D model and (optionally) some basemaps. An easy way to use Solar3D
is to start the program with the path of a single 3D model exported from CAD or an OAP3D exported
from photo-based 3D reconstruction software (Figure 5), but started this way, the scene will not be
georeferenced, and, thus, the users will need to specify the latitude and base elevation override.

To integrate 3D models into a georeferenced scene with basemaps (Figure 6), users need to follow
the instructions and examples provided by osgEarth [16]. One inconvenience of this method is that
osgEarth does not offer a scene editor with a graphic UI for scene authoring. Instead, users need to
manually add and configure scene layers in a text editor based on one of the example configuration
files (*.earth). An advantage with osgEarth is it that can be used to author advanced scenes with 3D
models overlaid on DEMs and DSMs distributed all over the Earth. Additionally, osgEarth provides
the ability to extrude building footprints from polygon features into 3D models for use in Solar3D.
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In a typical use scenario, after starting Solar3D with a single 3D model or an osgEarth scene,
the user zooms into an area of interest with buildings on which PV arrays are planned to be deployed.
Then, irradiation estimates are obtained by interactively clicking at rooftops and facades to identify
suitable surface areas for PV deployment. Solar3D processes calculation requests, upon the click of a
mouse (with the Ctrl key on the keyboard held down) once at a time. The program typically finishes a
request within a couple of seconds and displays the results immediately. A marker with a text label is
displayed at the location where the calculation request was finished. The irradiation results obtained
during a session can be exported in a batch to a comma-delimited text file for analysis. When exporting
an irradiation record, the associated r.sun parameters and 3D coordinates are packed into a single row.
For further details, refer to the source code [18], user guide [19] and demonstration video [20].

4. Discussion and Conclusions

Solar3D was developed using a mature graphics rendering engine (OpenSceneGraph) and a
full-featured 3D-GIS framework (osgEarth), as a 3D extension of the GRASS GIS r.sun model. Solar3D
relies on a cube map-based computer graphics technique to calculate pointwise solar irradiation in
near real time for up to a year. OpenSceneGraph enables Solar3D to effectively consume massive
3D-city models in heterogeneous forms, including OAP3Ds, CAD models and building footprint
extrusions. Moreover, osgEarth enables Solar3D to consume large-scale geospatial data in the forms of
DSMs, DEMs, imagery and feature layers, which can serve not only as geometric data for shading
evaluation, but also as integrated and informative geographic background to assist energy-related
decision making.

Solar3D was evaluated mainly on two aspects: the accuracy of the cube map-based shading
evaluation technique and its agreement with the original 2D r.sun. When compared against the
rigorous ray-casting algorithm, the cube map-based shading evaluation technique achieved a 99%
accuracy as long as all six cube map faces were allocated to an image size of at least 256 × 256
pixels. When compared with the original 2D r.sun, Solar3D shows an overall agreement in its global
irradiation estimates. The correlation tends to be higher for longer duration as suggested by the
increasing R-squared values of 0.87, 0.90 and 0.97 for daily, monthly and annual global irradiation
estimates, respectively.

To conclude, Solar3D offers several new features that, as a whole, distinguish this novel approach
from existing 3D solar irradiation tools in the following ways. (1) Solar3D can consume-to-consume
massive heterogeneous 3D-city models; (2) Solar3D can perform near real-time pointwise calculation
for duration from daily to annual; (3) Solar3D can integrate and interactively explore large-scale
heterogeneous geospatial data; (4) Solar3D can calculate solar irradiation at arbitrary surface positions
including on rooftops, facades, the ground, under a canopy or in the mountains.

Solar3D, in its current form, is subject to several limitations: first, it cannot be used to perform areal
calculation which is an important utility in solar energy assessment. Although Solar3D can theoretically
be extended to perform areal calculation, computation performance could become a concern when
large areas are being considered and a potential solution is to accelerate shading evaluation using
alternative approaches such as shadow mapping; Second, as a simple extension of a 2D solar radiation
model, Solar3D has not considered many complex factors that may affect light propagation in urban
environments and these include reflective materials, plant canopies and multiple scattering.
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