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Abstract: Submerged aquatic vegetation (SAV) in the Khanh Hoa (Vietnam) coastal area plays an
important role in coastal communities and the marine ecosystem. However, SAV distribution varies
widely, in terms of depth and substrate types, making it difficult to monitor using in-situ measurement.
Remote sensing can help address this issue. High spatial resolution satellites, with more bands
and higher radiometric sensitivity, have been launched recently, including the Vietnamese Natural
Resources, Environment, and Disaster Monitoring Satellite (VNREDSat-1) (V1) sensor from Vietnam,
launched in 2013. The objective of the study described here was to establish SAV distribution maps for
South-Central Vietnam, particularly in the Khanh Hoa coastal area, using Sentinel-2 (S2), Landsat-8,
and V1 imagery, and then to assess any changes to SAV over the last ten years, using selected historical
data. The satellite top-of-atmosphere signals were initially converted to radiance, and then corrected
for atmospheric effects. This treated signal was then used to classify Khanh Hoa coastal water
substrates, and these classifications were evaluated using 101 in-situ measurements, collected in
2017 and 2018. The results showed that the three satellites could provide high accuracy, with Kappa
coefficients above 0.84, with V1 achieving over 0.87. Our results showed that, from 2008 to 2018,
SAV acreage in Khanh Hoa was reduced by 74.2%, while gains in new areas compensated for less
than half of these losses. This is the first study to show the potential for using V1 and S2 data to assess
the distribution status of SAV in Vietnam, and its outcomes will contribute to the conservation of
SAV beds, and to the sustainable exploitation of aquatic resources in the Khanh Hoa coastal area.

Keywords: Submerged aquatic vegetation; VNREDSat-1; Sentinel-2; Landsat-8; distribution map;
temporal change map

1. Introduction

Vietnam is a coastal country located on the western side of the Eastern Sea (Biển Ðông); it has
3260 km of coast, and a highly diverse assemblage of submerged aquatic vegetation (SAV) [1–3],
which consists of two main groups-seagrasses and seaweeds. Seagrasses are flowering plants,
while seaweeds are macro algae consisting of aggregating cells [2,4,5]. SAV is usually distributed in
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coastal estuaries, brackish lagoons, and tidal regions, which are habitats and food sources for most
aquatic organisms [4,5]. There are over 800 seaweed species in Vietnam, with about 121 of these having
high economic value or potential to treat pollutants [2,6]. Fifteen seagrass species have been identified
in Vietnamese coastal waters, and while the number of Vietnamese species is low, their root systems
hold on to the ground, protecting benthic organisms and reducing coastal erosion. They also absorb
carbon from the ocean, help purify the aquatic environment, and provide raw materials for several
industries [2,6].

Khanh Hoa province is an important location in terms of the socio-economics and security defense
of South-Central Vietnam; its shoreline extends from Dai Lanh commune to the end of Cam Ranh Bay,
and features numerous estuaries, lagoons, and bays—and approximately 200 islands [7]. The coastal
marine environment of Khanh Hoa is recognized as a high biodiversity area, with ecosystems containing
an abundant and diverse flora and fauna [2,7]. The SAV of Khanh Hoa are considered to represent a
high biodiversity hotspot in Vietnamese coastal waters.

It has been suggested that SAV in Khanh Hoa has been tending to decrease, both temporally and
spatially, however, SAV dynamics have not been validated with any degree of accuracy. SAV ecosystems
in Khanh Hoa province are widely distributed, in terms of their depths, substrates, and geographical
locations, and include significant reserves [8–10]. These issues make them difficult to investigate and
manage, suggesting that two modern tools—remote sensing and geographical information systems
(GIS)—should be applied to overcome these challenges [11]. These tools can assess not only SAV
distribution, but also its quantity and productivity, with high accuracy [12–14]. Numerous satellites that
could be used to support managers in their planning for sustainable economic and social development
exist, with many offering high spatial resolution, return rates, and numbers of bands [15–17].

Recently, scientists have used aerial photography, and satellite remote sensing techniques to
examine SAV ecosystem characteristics and several of these studies have been published [18–28].
Setyawidati et al. (2006) assessed temporal changes to SAV in Chwaka Bay, Zanzibar (Tanzania),
using Landsat satellite imagery over the period 1986–2003 without water deep correction [18],
while Phinn et al. (2008) mapped seagrass distribution, ground coverage and biomass in Moreton Bay,
Australia based on Hydrolight radiative-transfer model by three data sources, including Quickbird-2,
Landsat-5 and Compact Airborne Spectrographic Imager type 2 (CASI-2) [19]. Noiraksar et al.
(2014) applied depth invariant index (DII) and supervised classification method for ALOS AVNIR-2
(Advanced Land Observation Satellite-The Advanced Visible and Near Infrared Radiometer type 2)
to determine the distribution of SAV in Sattahip marine area, Chon Buri province, Thailand [20].
Hoang et al. (2016) also used this method to map the distribution of SAV, surrounding Rottnest Island,
Western Australia by WorldView-2 images [21]. Agnestesya et al. (2017) used WorldView-2, in this
instance, Agnestesya et al. applied DII and principle component analysis using support vector machine
classification to develop a distribution map for the SAV extant in the vicinity of Kotok and Bangkok
islands, Indonesia [22].

In Vietnam, studies of marine species, substrate coverage, and biomass have helped build a
database for each species and area [23–25]. In Khanh Hoa province, SAV ecosystems have been
studied for some time; however, most of these studies have focused on the coastal area of Nha Trang,
while studies on contiguous areas—such as Van Phong, Cam Ranh, Thuy Trieu or Nha Phu —remain
limited [1,8]. Overall, there have generally been few studies in Vietnamese coastal areas where
remote sensing and GIS techniques have been used to map SAV ecosystems, with Khanh Hoa being
particularly neglected [1,9,10]. It is also noticeable that there have not been any studies using data from
the first Vietnamese satellite—Vietnamese Natural Resources, Environment, and Disaster Monitoring
Satellite (VNREDSat-1)—to map SAV ecosystem distribution in Vietnamese coastal waters. We noted
as well that the majority of SAV mapping projects employed just one satellite data source [15,21,26,27],
with few using two or more satellite data sources in their SAV status assessment [28]. Noting this,
in the study reported here, the authors compared three different satellite data sets—as provided by
Landsat-8, Sentinel-2, and VNREDSat-1—to map SAV ecosystems in the Khanh Hoa coastal area.
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The objectives of the study reported here were therefore: (i) to evaluate the accuracy of three
satellite remote sensing imagery sources for interpreting the distribution of SAV ecosystems; (ii) to
define SAV ecosystem distribution in the Khanh Hoa coastal area; and (iii) to assess spatial and
temporal changes to SAV ecosystems in the Khanh Hoa coastal area, thereby providing a baseline for
improved monitoring of Khanh Hoa SAV, and to support their sustainable protection.

2. Materials and Methods

2.1. Study Area

The study area is located in South-Central Vietnam (Figure 1). Khanh Hoa province has the
longest coastline in Vietnam, approximately 385 km from the edge of Dai Lanh commune to the South
end of Cam Ranh Bay. The Khanh Hoa coast is diverse and complex, with a system of bays, islands,
lagoons, and estuaries, and includes the continental shelf. Khanh Hoa has ~ 200 islands along its
coast, and includes five lagoons and bays, including Van Phong Bay, Nha Trang Bay, Cam Ranh Bay,
Nha Phu Lagoon, and Thuy Trieu Lagoon [7]. Of these locations, Van Phong Bay is in the North,
while Cam Ranh Bay lies in the South, and has greater potential for use, as it is wider and deeper,
with less sedimentation and fewer storms, than the former. Despite its name, Nha Phu Lagoon is not
really a “lagoon”, like, say, Thuy Trieu Lagoon, being simply a small shallow bay, while Thuy Trieu
Lagoon itself forms one of the 12 typical lagoons found along the central Vietnamese coast [7].
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Figure 1. Study area with submerged aquatic vegetation (SAV) assessment sites.

The climate in Khanh Hoa province is dominated by the tropical monsoon climate and the nature
of the ocean climate, so climate was relatively mild. There are two seasons in Khanh Hoa province:
rainy and dry season [29]. The rainy season is short, from about mid-September to mid-December,
rainfall often accounts for over 50% of the annual rainfall. From January to August are in the dry season,
with an average of 2600 h of sunshine annually. The average annual temperature of Khanh Hoa
is about 26.7 ◦C [29]. The relative humidity is about 80.5%. In the dry season, the early months
from January to April are cool, the temperature is 17–25 ◦C. However, from May to August are hot,
temperatures can reach 34 ◦C (in Nha Trang) and 37–38 ◦C (in Cam Ranh). In the rainy season,
the temperature varies from 20–27 ◦C (in Nha Trang) and 20–26 ◦C (in Cam Ranh) [29].
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2.2. Materials

2.2.1. Satellite Data

Data from three satellites were used to identify and monitor SAV distribution in the Khanh Hoa
region: Landsat-8 (L8), Sentinel (S2), and VNREDSat-1 (V1). In Vietnam, remote sensing has been
used since the 1960s, but the results have been limited by the absence of the technical support systems
necessary to conduct research. Since the 2000s, more resources have become available, and more
attention has been paid to remote sensing and GIS, which are now the focus of Vietnam’s National
Remote Sensing Center [1,8,25].

The L8 satellite includes two instruments—its Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS). The L8 has 12 bands with a 16-day repeat cycle. Radiometric resolution of L8 is
12-bit (16-bits when processed into Level-1 data products); Compared to previous Landsat satellites,
L8 has new features and improved capabilities, such as the addition of two new spectral bands, one of
which can be used to correct for atmospheric effects, while the other enables extraction of information
from water masses, such as oceans, lakes, and rivers [30–32].

The S2 satellite includes a Multi-Spectral Instrument (MSI). Two S2s are currently in
orbit—Sentinel-2A (S2A), which was launched on 23 June 2015, and Sentinel-2B (S2B), launched on 7
March 2017—with 180◦ phase separation between them. They have the same technical characteristics,
including 13 bands in the visible and infrared spectra with a 10-day repeat cycle. Radiometric resolution
is 12-bit. The signal to noise ratio of S2 is in the range 50–168. S2 satellites were the first optical
Earth observation satellites to have three spectral bands located in the “red edge” band, providing
important information about the state of plants, although these bands have not been commonly used,
compared to the remaining bands. Data from L8 and the S2s have been applied to agriculture, geology,
and land use–land change mapping, and to the assessment of air and water quality in various
ecosystems, including lakes, rivers, and coastal ecosystems [33].

The Vietnamese Natural Resources, Environment, and Disaster Monitoring Satellite (VNREDSat-1)
was the first Vietnamese satellite, launched on 7 May 2013, and including one instrument, the New
AstroSat Optical Modular Instrument (NAOMI). NAOMI has fewer spectral bands than either L8 or S2,
and includes four multi-spectral bands, each with a spatial resolution of 10 m (Table 1). V1 repeat cycle
is more than L8 and S2, has a 29 days repeat cycle. Data from this satellite have been used for several
environmental monitoring projects; the data are available from the end of 2013, and they has proven
to be effective in several fields, although very few researchers have used them for coastal resources
monitoring [34,35]. There has been one study on wetland ecosystems, carried out by Nguyen [36],
while none concerning SAV distribution have been published. The wavelengths and spatial resolution
characteristics of each sensor are listed in Table 1.

2.2.2. Data Collection

Maps and other documentation related to SAV studies, such as annual statistics, natural and
socio-economic data, and reports on the status and planning of Khanh Hoa province, were collected from
the Department of Natural Resources and Environment, People’s Committee of Khanh Hoa province.

Multi-spectrum remote sensing data from V1, L8, and S2 were also acquired. L8 and S2 imagery
were collected from the Glovis and EarthExplorer image databases (The United States Geological Survey
(USGS), USA), while V1 data were supplied by the Vietnamese Centre for Control and Exploitation
of Small Satellites. Landsat data have two images each year, and these were used to create the SAV
distribution map for 2018, while S2 data, with three images, were used to create an SAV status map for
2019. The V1 data source has the highest number of images (nine images), and these were acquired for
2017. The remote sensing data sources used in this study have been summarized as Table 2.
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Table 1. Wavelengths and spatial resolution characteristics of Landsat 8, Sentinel-2, and Vietnamese Natural Resources, Environment, and Disaster Monitoring Satellite
(VNREDSat-1) sensors.

Spectrum

Landsat 8 Sentinel-2A VNREDSat-1

Band Center
Wavelength (µm)

Spatial
Resolution (m) Band Center

Wavelength (µm)
Spatial
Resolution (m) Band Center

Wavelength (µm)
Spatial
Resolution (m)

Coastal B1 0.433 30 B1 0.443 60 - - -
Blue B2 0.483 30 B2 0.490 10 B1 0.490 10
Green B3 0.560 30 B3 0.560 10 B2 0.550 10
PAN B8 0.640 15 - - - - -
Red B4 0.660 B4 0.665 10 B3 0.660 10
Red edge 1 - - - B5 0.705 20 - - -
Red edge 2 - - - B6 0.740 20 - - -
Red edge 3 - - - B7 0.783 20 - - -
NIR B5 0.865 30 B8 0.840 10 B4 0.830 10
Red edge 4 - - - B8a 0.865 20 - - -
Water aerosol - - - B9 0.945 60 - - -
SWIR-1 B6 1.650 30 B10 1.375 60 - - -
SWIR-2 B7 2.200 30 B11 1.610 20 - - -
SWIR-3 - B12 2.190 20 - - -
Cirrus B9 1.375 30 - - - - - -
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Table 2. Satellite image data used for SAV mapping and changes detection.

Year Satellite Sensor No Image ID Acquired Date Time (GMT time) Spatial Resolution (m)

2008 Landsat-5
1 LT05_L1TP_123051_20080717_20161030_01_T1 17/07/2008 02:47 30 × 30
2 LT05_L1TP_123052_20080717_20161030_01_T1 17/07/2008 02:48 30 × 30

2015 VNREDSat-1
1 VNREDSAT_1_2015218_11982_3074_MS.lv0

_ V20150806_031919X_1A 06/08/2015 03:19 10 × 10

2 VNREDSAT_1_2015218_11982_3074_MS.lv0
_ V20150814_032202X_1A 14/08/2015 03:22 10 × 10

2017 VNREDSat-1

3 VNREDSAT_1_2017191_22274_3076_MS.lv0
_ V20170710_031455_X1A 10/07/2017 03:14 10 × 10

4 VNREDSAT_1_2017191_22274_3076_MS.lv0
_ V20170710_031457_X1A 10/07/2017 03:14 10 × 10

5 VNREDSAT_1_2017191_22274_3076_MS.lv0
_V20170710_031500_X1A 10/07/2017 03:15 10 × 10

6 VNREDSAT_1_2017191_22274_3076_MS.lv0
_V20170710_031502_X1A 10/07/2017 03:15 10 × 10

7 VNREDSAT_1_2017191_22274_3076_MS.lv0
_V20170710_031505_X1A 10/07/2017 03:15 10 × 10

8 VNREDSAT_1_2017191_22274_3076_MS.lv0
_V20170710_031507_X1A 10/07/2017 03:15 10 × 10

9 VNREDSAT_1_2017191_22274_3076_MS.lv0
_V20170710_031510_X1A 10/07/2017 03:15 10 × 10

2018 Landsat-8
1 LC08_L1TP_123051_20180510_20180517_01_T1 10/05/2018 03:00 30 × 30
2 LC08_L1TP_123052_20180510_20180517_01_T1 10/05/2018 03:00 30 × 30

2019 Sentinel-2A
1 L1C_T49PBP_A018805_ 20190128T031602 28/01/2019 06:07 10 × 10
2 L1C_T49PCQ_A018805_20190128T031602 28/01/2019 06:07 10 × 10
3 L1C_T49PCP_A018805_20190128T031602 28/01/2019 06:07 10 × 10
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2.3. Methods

2.3.1. Field Surveys

Investigations were conducted from Van Phong Bay to Cam Ranh Bay, in two phases: phase 1
covered 18–22 June 2018, and phase 2 from 17–21 October 2018. Survey sites can be seen in Figure 2.
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Figure 2. Survey sites along the Khanh Hoa coast, with pictures of various substrates (the blue lines in
the ocean are isobaths).

SAV distribution at the study sites was observed using a motorboat and diving along transects
in the direction from the shore seaward, until either water column depth reached 10 m, or SAV was
no longer seen. Global Positioning System (GPS) positions were recorded for each survey point,
and the substrate form and structure were also logged for each area. Substrates were classified as
being either SAV, rock–coral, or sandy/mud bottom, as shown in Table 3. A total of 155 sample sites
were established, including 18 deep water sites, 47 sandy sites, 54 SAV sites, 16 mud–sand sites,
and 20 rock–coral sites. The positions of the 155 sample sites were located by GPS, and used as ground
truthing points for later satellite image interpretation.
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Table 3. Characteristics of ground truthing points in the Khanh Hoa coastal area.

Layers Images Locations Characteristics
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Data collection, analysis, and processing were carried out using ENVI 5.5 and MapInfo 12.0
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Geometric correction: this step was done after imagery had been obtained from suppliers,
to register the satellite image coordinates [14,19]. In this study, the Universal Transverse Mercator
(UTM)-The World Geodetic System 84 (WGS84)-Zone 48 projection system was used for the Landsat and
S2 imagery, while the GEOGRAPHIC-WGS84 system was applied to V1 imagery. We therefore needed
this step in order to unify the geographic coordinates of the imagery according to the UTM-WGS84-Zone
48 projection system. V1 imagery also contained geometric distortions, as received from the satellite,
and so prior to atmospheric correction, it was corrected geometrically, to reduce the deviations
encountered during photography, and to convert them into local geographic coordinates using other
reference data sources (UTM project, WGS84 datum).

Radiometric correction: the purpose of this step was to convert the digital number of each image
pixel into spectral radiation, using Equation (1) [37]:

Radλ = aλ * DN + bλ, (1)

where Radλ represents Top of atmosphere (TOA) spectral radiance (as Watts/(m2*srad*µm)), DN refers
to the digital number of the band to be corrected, aλ (gain value) stands for a band-specific, multiplicative
rescaling factor from the image header, and bλ (offset/bias value) represents a band-specific, additive
rescaling factor from the image header. Gain and offset/bias values were provided in Landsat, S2 and
V1 metadata files.

Atmospheric correction: the purpose of this step was to remove contributions from the
atmosphere—which could include aerosols, dust, gas and air molecules [38]—to the total signal
measured by the remote sensor, in order to obtain just that part of the signal referring to the sea.
Use of atmosphere corrected image is to potentially improve the extraction of surface parameters and
to produce more accurate surface reflectance. In this study, Landsat and S2 imagery were corrected
using the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) method, in ENVI 5.5 [39].
For V1 imagery, the atmospheric impact was removed using the QUick Atmospheric Correction
(QUAC) model because FLAASH method was no supporting V1 image.

The FLAASH model corrects the atmosphere for data in the visible through near-infrared and
shortwave infrared ranges, up to 3 µm, for super-spectral or multi-spectral imagery, calculating the
atmospheric radiation transmission pattern using the most recent MODerate resolution atmospheric
TRANsmission (MODTRAN) information [39].

The QUAC model is an atmosphere correction method for multi-spectral imagery applied through
the shortwave infrared band (VNIR-SWIR). Unlike the FLAASH method, it determines atmospheric
compensation parameters directly from information contained in the scene, without needing supporting
information. QUAC performs a more accurate atmospheric correction than FLAASH, which usually
produces spectral reflectance within approximately +/− 15%, based on physical methods [39].

Water column correction: the purpose of this step was to remove influencing factors stemming
from dissolved or solid particles in the water column—including phytoplankton, colored dissolved
organic matter (CDOM), and total suspended solids (TSS) [40]—which reduce light transmission from
the surface to the euphotic depth. This step was based on calculating the depth invariant index (DII),
which is the linear relationship (logarithm) between the surface reflectance spectrum of band i and
band j, according to the randomly selected sandy bottom points at different depths. The principle of
applying DII is that when light penetrates the water, its intensity decreases exponentially as the depth
increases [41].

This index allowed conversion of surface reflectance and bottom reflection, and we had a
total of 101 points, including 47 sandy points and 54 SAV points, from which to build the linear
relationship between the reflection spectra of image band pairs. The linear relationship of band pairs,
using randomly selected sand beds at different depths, formed the basis of the DII calculation,
which was completed using Equation (2) [40]:

Li = Lsi + Ai*Ri*exp(−Ki*f*Z) (2)
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This index was developed by Lyzenga in 1981; it does not require measuring the reflectance at the
survey points but rather determines it through information directly on the image band. An improved
formula was introduced by Lyzenga (2003), using a combination of multiple image bands, as shown in
Equation (3) [40].

DIIij = ln(Li) −
Ki

Kj
× ln

(
Lj

)
, (3)

where DII stands for the depth invariant index, Li and Lj represent the outputs from atmospheric
corrections for bands i and j respectively, Ki/Kj denotes the ratio of the water attenuation coefficients in
bands i and j, and was calculated using Equation (4):

Ki

Kj
=

σii − σii

2σi,j
+

√(
σii − σii

2σi,j

)
∗

(
σii − σii

2σi,j

)
+ 1, (4)

in which σii and σjj represent the variance of bands i and band j respectively, and σj stands for the
covariance of band i and band j.

We calculated Ki/Kj coefficients for the Landsat, V1, and S2 bands from the spectral reflection
variance, and then selected the three band pairs with the best correlation. Table 4 shows the Ki/Kj
ratios of the V1, L8, and S2 band pairs.

Table 4. Band pair Ki/Kj ratios.

Ki/Kj VNREDSat-1 Landsat-8 Sentinel-2

K1K2 1.06517 1.13717
K1K3 0.83167 1.47007
K1K4 2.79363 1.46777
K2K3 0.78698 1.28919 0.84158
K2K4 3.05801 1.27390 2.94201
K3K4 4.07538 0.97352 1.53698

Depth invariant indexes, estimated using the different Ki/Kj coefficients for V1, have been
presented in Figure 4.
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DII12 = Ln (B1) − 1.065169* Ln (B2); R2 = 0.941
DII13 = Ln (B1) − 0.831672* Ln (B3); R2 = 0.895
DII14 = Ln (B1) − 2.793626* Ln (B4); R2 = 0.587
DII23 = Ln (B2) − 0.786978* Ln (B3); R2 = 0.941
DII24 = Ln (B2) − 3.058009* Ln (B4); R2 = 0.469
DII34 = Ln (B3) − 4.075378* Ln (B4); R2 = 0.536

The correlation coefficients for the reflectance spectra of band 1 and 2, band 1 and 3, and band 2
and 3 were the highest, so we selected three new DII bands (DII12, DII13, DII23) for further classification.
The same procedure was then applied to S2 and L8 data, and the correlation coefficients for each image
channel have been listed in Table 5.

Table 5. Reflectance spectrum correlation coefficients for each band pair.

Bands
Reflectance Spectrum Correlation Coefficient (R2)

Landsat-8 Sentinel-2 VNREDSat-1

b1b2 0.925 - 0.941
b1b3 0.965 - 0.895
b1b4 0.855 - 0.587
b2b3 0.948 0.934 0.941
b2b4 0.918 0.561 0.469
b3b4 0.922 0.703 0.536

Analyzing and processing images: after water column correction, the remote sensing data were
processed through further steps, such as clipping, increasing quality, and masking. Clipping allowed
us to remove non-study areas covered by the imagery, focusing on just the main Khanh Hoa coast,
while masking allowed us to hide land layers not involved in our work. These processing steps
contributed to improving image quality in preparation for classification.

Supervised classification: the Maximum Likelihood method was used for classification, based on
survey points for different bottom types [42]. This method allocates each pixel to the most probable
class from the variance–covariance matrix, statistical indicators, and mean vector of each category,
based on Bayes theorem. This resulted in creation of five classified layers, using Equation (5) [16,43].

P(X
∣∣∣∣Wi) = (2π)−0.5n

|Si|−0.5 exp[−0.5
(
X −Xi

)T
1× nS−1n× n

(
X −Xi

)
n× 1], (5)

This probability density function applies (x) as an arbitrary pixel, (Wi) as class (i), and (S) as the
variance–covariance matrix of class (i), derived from training samples, and characterized as the basic
function in the Maximum Likelihood Classification algorithm by assuming that the values in each
spectral band were normally distributed. The five classes were characterized in Table 3.

Assessing the accuracy of the classification: the accuracy of the classification was based on
a standard confusion matrix. Accuracy was checked using four coefficients, User accuracy (Ua),
Producer’s accuracy (Pa), Overall Accuracy (OA), and the Kappa coefficient (Ҡ). Kappa coefficients
range from 0 to 1, and a desired value is usually > 0.7 [44,45]. Ua occurs when pixels separating a
single class are allocated into other classes, while Pa is the ratio of the pixels in a column (the total
pixels not correctly classified for each class in the reference data) and the total pixels in the column
(the total pixels for that class in the reference data). OA is the ratio between the total number of correct
pixels and the total number of pixels in the confusion matrix—which is shown in Table 6 [44,45].
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Table 6. Confusion matrix table for calculating Overall, User, and Producer accuracies.

Object
Classes Class 1 Class 2 Class 3 Total (xi+) User accuracy (%)

Class 1 x11 x12 x13 x1+ =(x11/x1+)*100
Class 2 x21 x22 x23 x2+ =(x22/x2+)*100
Class k x31 x32 x33 x3+ = (x33/x3+)*100

Total (x+i) x+1 x+2 x+3
N = x1+ + x2+

+ x3+

Producer
accuracy (%) = (x11/x+1)*100 = (x22/ x+2)*100 = (x33/ x+3)*100

Ҡ and OA were calculated using Equations (6) and (7) respectively [29]:

K′ =
N

∑r
i=1 xii −

∑r
i=1(xi+ ∗ x+i)

N2 −
∑r

i=1(xi+ ∗ x+i)
, (6)

OA =

∑r
i=1 xii

N
, (7)

where N represents the total number of pixels in the confusion matrix, r stands for the number of class
objects, Xii denotes the sum of correctly classified pixels in the confusion matrix, Xi+ stands for total
number of pixels in column I, and X+I represents the total number of pixels in row i.

Assessment the temporal change of SAV distribution: after validation of the classification,
Landsat-5 and Landsat-8 data were used to map SAV distribution changes for the ten-year period
2008–2018 (Figure 3). MapInfo 12.0 software was used to prepare general SAV distribution mapping
for the Khanh Hoa coast, at a scale of 1:50,000, and in more detail for the five study areas, at the scale of
1:25,000.

3. Results

3.1. Assessing the Accuracy of Classification Results

The accuracy of image classifying depended not only on sample area selection accuracy but also
on the coverage and distribution of SAV. The results achieved on assessing classification accuracies
have been listed in Tables 7 and 8 (the confusion matrix for each sensor is shown in the Appendix A).

Table 7. The Kappa coefficient and overall classification accuracy for images sourced from three
different satellites.

Image Kappa Coefficient (Ҡ) Overall Accuracy (OA)

VNREDSat-1 0.87 89.40
Landsat-8 0.85 88.27
Sentinel-2 0.84 87.21

Table 8. The Producer’s accuracy and User’s accuracy in estimating the five substrate types (classes)
from the three satellites.

Classes
VNREDSat-1 Landsat-8 Sentinel-2

Pa (%) Ua (%) Pa (%) Ua (%) Pa (%) Ua (%)

SAV 79.02 77.93 79.58 91.87 79.86 92.00
Sandy bottom 97.83 99.26 95.45 88.98 92.86 94.20

Deep water 97.46 100.00 91.53 94.74 88.98 88.98
Mud–sandy bottom 80.36 77.59 87.38 77.59 86.24 79.66
Rock–coral bottom 93.55 94.57 89.80 88.00 88.89 79.28
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As shown in Table 7, all satellites were found to be able to provide accurate SAV distribution
estimates. The Kappa coefficient and Overall Accuracy accuracies exceeded 0.84 and 87%, respectively,
with V1 showing the best results (Ҡ = 0.87), followed by L8 (Ҡ = 0.85), and then S2 (Ҡ = 0.84).

Considering the Pa and Ua coefficients, sandy bottom and deep water were the most accurately
identified bottom classes, for all three satellites, achieving both Pa and Ua values > 88%. The next
most accurate identification was for rock–coral bottom (>79%), followed by detection of mud–sandy
bottom, with SAV showing the lowest accuracies, although with both Pa and Ua still better than 77%.
The reflected spectrum of sandy bottom and deep water may be higher and less confusing than the
others, explaining its higher Pa and Ua values. The reason why SAV achieved the lowest Pa and Ua
was that it could be confused with rock–coral or mud–sandy substrates, and if there was algae growing
on rocks, dead corals, or several areas with high turbidity, this could lead to similar reflectance spectra
between SAV and mud or rock (Appendix A).

3.2. Spatial Distribution of SAV in Selected Sections of the Khanh Hoa Coastal Area

The SAV distribution mapping results from L8, S2, and V1 have been depicted in Figure 5,
with the SAV areas for each sub-section listed in Table 9. It was found that SAV was mainly distributed
in the center of Khanh Hoa province, typical in Nha Trang Bay, with approximately 49.6 ha, and in
Nha Phu Lagoon, with 70.1 ha of SAV (using V1 data). The coastal areas to the S and N of the province
also showed well-developed SAV resources, with Van Phong Bay, Cam Ranh and Thuy Trieu lagoons
showing SAV beds extending over 380.18, 144.4 and 155.5 ha, respectively (using V1 data).
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Table 9. SAV areas in Khanh Hoa coastal subsections, determined using data from three satellites.

Location
Submerged Aquatic Vegetation Areas (ha)

VNREDSat-1 (2017) Landsat-8 (2018) Sentinel-2 (2019)

Van Phong Bay 390.2 270.2 324.2
Nha Phu Lagoon 70.1 63.6 62.6
Nha Trang Bay 49.6 49.8 63.4

Thuy Trieu Lagoon 155.5 209.2 155.3
Cam Ranh Bay 144.4 178.4 193.9

Total 809.8 771.2 799.4

As shown in Figure 5 and in Table 5, the SAV distribution results from the sensors differed slightly.
This was particularly true for small areas, such as Nha Phu Lagoon and Nha Trang Bay. The largest
SAV distribution area according to the V1 (2017) data was approximately 809.8 ha, whereas S2 (2018)
and L8 (2018) data indicated maximum SAV distribution areas of 799.4 and 771.2 ha, respectively
(Table 9).

Van Phong Bay: SAV here was usually distributed in shallow water, over a depth range of 0–1.5 m,
and could be found over various substrates, including sand, mud–sand, or sand mixed with coral.
Seaweed developed to over 5 m on rocky bottoms, or on dead coral. SAV was found to be growing
strongly in the coastal areas of Van Tho and Van Thanh cities, with distribution sparser around Ninh
Thuy and Ninh Hai cities, and around several small islands (Bip and Lon islands), with total area
estimates for the sub-section ranging from 270.2 to 390.2 ha (Figure 6, Table 9). The total acreage
reported by the V1 and S2 imagery differed slightly (390.2 ha vs 324.2 ha), while L8 showed a more
significant disparity, with a value of 270.2 ha.
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Nha Phu Lagoon: this sub-section supported the least amount of SAV compared to the other
locations in the province, with the SAV mainly distributed around islands—such as Thi, Lao,
and Giua islands—with additional small areas observed in the coastal area near Ninh Van city.
The total SAV acreages reported for this sub-section ranged from 62.6 to 70.1 ha (Figure 7, Table 9).
Several small vegetation beds (smaller than 0.09 ha (1 pixel of L8)), were not reported in the L8 data,
while they were detected by both the S2 and V1 platforms. This emphasized the importance of spatial
resolution for detecting small SAV beds, with the L8 spatial resolution being lower than both S2 and V1,
and this issue became most apparent in the SAV distribution reported around Giua, Lang, and Nua
islands. The total SAV acreage and distribution reported for this sub-section by the three satellites
were very similar, ranging from 62.6 (S2) to 70.1 ha (L8).
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Nha Trang Bay: SAV was shown as being distributed in the shallows and around the islands
in this sub-section (Figure 8), mainly around Vinh Hai ward, Phuoc Dong city, and Tre Island.
Small SAV areas were also reported in the shallows (depth from 1.5–3 m) around Mieu, Mun, Mot,
and Tam islands. The total SAV area reported ranged from 49.6 (V1) to 63.4 ha (S2), as shown in Table 9.
Similarly to Nha Phu lagoon, several small vegetation beds in this sub-section (<0.09 ha) were not
reported by L8.
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(2018), (b) Sentinel-2 (2019), (c) VNREDSat-1 (2017).

Thuy Trieu Lagoon: Rhodophyta were found to dominate this area, being distributed together
with SAV, creating mixed seaweed and seagrass vegetation beds. The SAV was reported to be
concentrated mainly in the upper (N) reach of the lagoon, constituting dense beds, with this
area consisting of shallow water (0–1.5 m), with mud or mud–sand substrates, around Cam Hoa,
Cam Hai Dong, Cam Thanh Bac, and Cam Phuc cities (Figure 9). The total reported acreage of seagrass
beds in the lagoon was approximately 155.5 ha (V1) (Table 9). The SAV acreages and distribution
reported by the three satellites differed at the northern head of the lagoon, while distribution records
for other sub-section localities, including Cam Hai Dong, Cam Thanh Bac, and Cam Duc cities, showed
no noticeable differences. The N area of the lagoon showed high turbidity, which made it difficult to
estimate SAV distribution, and was probably the cause of the varying SAV acreage and distribution
estimates here (Table 9).

Cam Ranh Bay: in this sub-section, SAV distribution was restricted to shallow waters and the
area around Binh Ba Island (Figure 10), with an estimated total acreage of 144.4 ha (V1 image, Table 9).
In the coastal areas, SAV was mainly found near Cam Hai Dong city, while around Binh Ba Island,
it was concentrated in a few small beds off the N end of the island. The SAV bed acreage estimates for
this sub-region varied between the satellites, ranging from 144.4 (L8) to 193.9 ha (S2). SAV distribution
reports were relatively consistent between the satellites (Figure 10).
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3.3. Assessment of the Temporal Changes to SAV in the Khanh Hoa Area

We compared data from Landsat-5 (2008) and L8 (2018) to study variations in SAV distribution
and acreage, with the results listed in Table 10 and illustrated in Figure 11.

Table 10. SAV area change over the period 2008–2018, estimated using data from Landsat 5 and 8.

Location
Submerged Aquatic Vegetation Area (ha)

Landsat-5
(2008)

Landsat-8
(2018) Unchanged Gained SAV Lost SAV Average Lost

(ha/year)

Van Phong Bay 424.5 270.2 85.9 184.2 338.5 33.9
Nha Phu lagoon 144.3 63.6 15.3 48.3 129.0 12.9
Nha Trang Bay 110.2 49.8 16.1 33.7 94.1 9.4

Thuy Trieu
lagoon 345.3 209.2 120.2 89.0 225.1 22.5

Cam Ranh Bay 282.7 178.4 100.1 78.3 182.6 18.3

Total 1307.0 771.2 337.7 433.5 969.3 97
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developed using data from Landsat-5 (2008) and Landsat-8 (2018).

The total SAV area along the Khanh Hoa coast, in 2008, was approximately 1307 ha, which had
decreased to 771.2 ha, by 2018 (Table 10). Van Phong Bay lost the most SAV, with a decline of 338.5 ha,
at an average annual loss rate of 33.9 ha. The other regions which lost SAV included Van Phong Bay,
in the Van Ninh coastal area, and My Giang, Thuy Trieu and Cam Ranh bays, with losses of 225.1 ha
and 182.6 ha, respectively. In Nha Phu Lagoon and Nha Trang Bay, the area of SAV lost was 5–8 times
greater than the area gained.

Over the period 2008–2018, the Khanh Hoa coastal area lost approximately 74.2% of its SAV,
in term of acreage, corresponding to a loss of 969.3 ha, while it gained new SAV beds covering just
33.2% (433.5 ha), compared with 2008 coverage. The SAV area gains constituted less than half of SAV
area losses in the Khanh Hoa coastal zone.
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The average annual SAV acreage lost in the area has been 97 ha. In general, the losses tended
to occur in the shallows and along shorelines in areas such as the Van Ninh district (Van Phong),
Nha Trang city and from Cam Ranh city, My Giang (Van Phong Bay).

4. Discussion

4.1. Assessing the Accuracy

The V1 data had the highest Kappa coefficient and accuracy for SAV area classification (Ҡ = 0.87;
OA = 89.40), while the lowest results were for S2 (Ҡ = 0.84; OA = 89.40). On the other hand, when the
SAV Pa and Ua results for the three sensors were reviewed, S2 imagery performed better, with the
highest values (Pa > 92%; Ua > 79%) while V1 exhibited the lowest accuracy (Pa > 79%; Ua > 77%).
In general, the accuracy results of three data are relatively high with the water column correction method.
This method can be applied to several coastal areas in central Vietnam which have similar climatic
and hydrological conditions, such as Quang Nam, Quang Ngai, Binh Dinh, Phu Yen, Khanh Hoa,
Ninh Thuan, and Binh Thuan.

Several studies have established SAV coverage with a high degree of accuracy. These include
Yang et al. (2006), who mapped Xincun Bay, China, using QuickBird and China-Brazil Earth Resources
Satellite (CBERS) satellite data, achieving 85% overall accuracy [46], while Ha (2010) classified ALOS
AVNIR-2 imagery, achieving an accuracy of 81.8% in Lap An lagoon [25], and Manuputty et al. (2017)
developed a status map in Kotok, Indonesia, with an accuracy of 84%, using WorldView-2 imagery [22].
Compared with these works, the present study achieved a higher level of accuracy, by using data from
three different satellites. It is also quite likely that our use of the water column correction method
(Lyzenga, 1981) contributed to the accuracy of our results, and it appears that it would be appropriate
to use this correction when SAV mapping in our region.

Environmental factors such as turbidity, depth, and waves influence the outputs of satellite
data processing and classification [22,47,48]. High turbidity is an important factor, as the intensity of
light decreases very quickly with depth, making it harder to detect SAV. Khanh Hoa coastal waters
are affected by high turbidity continental water streams, and, based on the Jerlov (1964) seawater
clarity level assessment scale [12], the coastal waters in Khanh Hoa province could be divided into
two groups: medium turbidity (including Van Phong, Nha Trang, and Cam Ranh bays), and high
turbidity (including Nha Phu, and Thuy Trieu lagoons). Nha Phu Lagoon showed higher turbidity,
making it harder to estimate SAV presence and distribution than it was in other areas. This caused our
Kappa coefficients and accuracy levels to be lower than those reported in several other SAV distribution
studies around islands. These included Hoang et al. (2015), with a classification accuracy of 98.3%
and Kappa coefficient of 0.96, in Rottnest Island, Western Australia [21], and Nguyen (2015) in Ly Son
Island, Quang Ngai province, Vietnam, with high classification accuracy and Kappa coefficients of
94 % and 0.93, respectively [24].

In this study, the Kappa coefficient was higher for L8 (Ҡ = 0.85) than it was for S2 (Ҡ = 0.84),
showing that spatial resolution was not always the answer for improving classification accuracy. It was
of interest to note, however, that Konstantinos et al. (2016) compared S2 and L8 data around Lesvos
Island, Greece when estimating SAV status, and showed that using S2 significantly improved the
SAV classification accuracy, compared to L8, with a Kappa coefficient of 0.9 [27]. The authors did not
need to include any water column correction, since the waters near Lesvos Island were very clear,
which facilitated SAV detection.

4.2. Factors Influencing Interpretation Processes

In general, the classification outputs for bottom types that were established using the Lyzenga
(1981) water column correction method showed high levels of accuracy, but the classification
process developed some erroneous classifications. These may have originated from different factors.
Firstly, the average spatial resolution of the three satellites—L8 (30 m), S2 (10 m), and V1 (10 m)—were
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not high enough to allow detection of SAV areas < 0.01 ha. Moreover, there was a one year discrepancy
between the timing of our field surveys and the selected S2 and V1 satellite imagery. This difference led
to a few discrepancies in interpretation processing, even though it did not lead to noticeable differences
between the closely timed imagery.

Environmental factors such as turbidity, depth, the spatial resolution of the remote sensing images,
and satellite sensor sources were also factors capable of influencing classification results [17,24,27].
Figure 12 is an illustration of how satellite spatial resolution could affect SAV estimation, using two
typical shapes (points and regions) for L8, S2, and V1 imagery for Khanh Hoa province. In this figure,
it is apparent that smaller pixel sizes led to better characterization of fine scale water bodies, and so to
more detailed SAV distribution results. These results showed that spatial resolution plays an important
role in coastal substrate characterization accuracy.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 18 of 26 
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Figure 12. Examples of point and polygon SAV classifications using Landsat 8, Sentinel-2,
and VNREDSat-1 imagery from the Khanh Hoa coastal area. The imagery depicts SAV areas in
(a) Van Phong Bay, and (b) My Giang, Nha Phu Lagoon.

For SAV mapping, misclassification usually relate to the impact of the mixed substrate. The lower
classification accuracy from L8 data might due to situations where the spatial SAV extent was smaller
than its pixel size, leading to unrecognized SAV, and confusion over rock–coral or mud–sandy bottoms
that hosted small SAV patches. Over-classification in S2 was caused by mixed SAV, rock, and water
reflections within a pixel. Meanwhile, the Kappa coefficient and OA for L8 were higher than those
for S2 (Table 3), and this was thought to be due to the difference of satellite sensor spectral bands.
These issues illustrated that spatial resolution was not the only influencing factor for SAV estimation
and substrate type classification in the study area.

All three satellites had blue bands, which were better for detecting sunlight transmission through
the water column than others [12,40,49]. The S2 coastal band could penetrate even better than the
blue band, but was not used in this study due to its 60 m spatial resolution, which was more appropriate
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for the general resolution of S2 data. Hence, bands comprising blue, red, and green were applied to
water column correction for two of the image sources (V1 and S2), while the coastal, blue, and green
bands from L8 imagery were used (Table 5).

V1 and S2 had the same resolution as well as the same bands, and their initial prediction results
showed good similarity; however, V1 achieved the best output accuracy assessment, while S2 achieved
the lowest value (Table 7). This result probably occurred because V1 has a spatial resolution of 10 m
and the band pairs correlation coefficient was quite high (R2 > 0.9), making the V1 bottom classification
accuracy higher than it was for L8 or S2 (Tables 7 and 8). L8 had a lower spatial resolution (30 m),
potentially causing less detail to be available than for V1—and its accuracy was correspondingly
lower. Although L8 had a lower spatial resolution than the other two imagery sources, the image
collection time coincided with our survey time (L8 imagery was acquired in May 2018, and field
surveys were conducted in June and October 2018), and the L8 Kappa coefficient was higher than
that of S2. Furthermore, the S2 spectral band pairs correlation coefficient was lower than the other
image sources (0.93 > R2 > 0.56), meaning its band pairs DII index was relatively poor, leading to
reduced accuracy.

Apart from its advantages in substrate classifying, V1 had a limitation in that, unlike L8 and S2,
it has no coastal band—and so could not acquire information on deep water in coastal areas. In addition,
this is a small satellite type, with a comparatively small image size (17.5× 17.5 km) [34,35]. While Landsat
only used two scenes and S2 needed three images, to cover the study area, V1 required nine images,
each covering a small area and making it difficult to collate all the imagery needed to cover the Khanh
Hoa coast. Moreover, due to the larger number of images, it took much longer to process the V1
imagery than it did for the larger L8 and S2 imagery.

In this study, optical data analyzing satellite imagery were used to map SAV distribution and
temporal change. This method effective for mapping broad areas but it limited to deep waters due to
light attenuation in waters [50,51]. So, the scope of the study is shallow waters, which was < 10 m deep.
Several other methods can detect the distribution of SAV living > 10 m deep, such as the multibeam
echosounder and the side scan sonar. These methods can map SAV depth variations with a large range
from 0 to 25 m [50,52].

Besides this drawback, the optical data also depends on the weather, clouds, rain, seasons, and day
or night [51–53]. This is difficult for collecting satellite data to detect seasonal changes subjects such
as SAV. Because of the method limitation, the study was unable to collect three data sources in the
same months of one year. At present, there are very few studies on seasonal variation of SAV or the
growth of seasonal SAV in Vietnam in particular and Khanh Hoa in general. May-Lin et al. (2013)
studied the seasonal rate of Sargassum species at Port Dickson, Malaysia show that the monthly mean
growth rates with two periods of high growth rates (January–February, and June–July), which mean
that Sargassum in the phase of increasing and stabilization biomass [53]. The climate of Malaysia which
is a tropical rainforest climate is similar to the climate of Vietnam. This led to similarities in the growth
and coverage characteristics of SAV between Vietnam and Malaysia. Another study by Pham (2006) on
the variation of seagrass population in the Khanh Hoa coast also shows that the density, above-ground
biomass, leaf growth rate and leaf production of seagrass beds were often high in the dry season and
often low in the rainy season. In the period May-August, seagrass in the Khanh Hoa coast in the phase
of stabilization biomass includes the late-growth and reproduction stage [54]. Therefore, the growth
and coverage characteristics of SAV can be assessed to be similar and were no significant variation in
the dry season, which can be easily detected to SAV distribution in this period.

In addition to environmental factors and satellite sensor sources, the interpretation process of
SAV was also dependent on the classification method [55,56]. In this study, the maximum likelihood
classifier (MLC) algorithm was applied for substrate type classification. However, when the boundaries
of SAV and other benthic habitats are not well defined, the linear discrimination functions of the
MLC may not work [55]. Besides, conditions of the MCL method require large amounts of training
samples and equal covariance, which may result in misclassification between SAV and other benthic
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habitats [55,57]. The recent technique advances on machine learning (ML) can improve these limitations
and encourage new approaches for SAV maps over various time scales. When comparing traditional
MCL and ML method including random forests, rotation forests, and canonical correlation forests
for SAV mapping using Sentinel-2, Nam et al. (2020) revealed that the ML method outperformed
the MLC [55]. Similarly, Pham et al. (2019) also reviewed the limitations of the MLC method and
suggested ML techniques for mapping coastal vegetation [57]. Although ML techniques have several
benefits, the application of this method is infancy in the field of SAV map [55,57]. Thus, a variety
of algorithms with the development of ML techniques using for multi-source remote sensing image
applied SAV mapping should be encouraged for future studies.

The interpretation processes are affected by a number of factors, so this study has some limitations.
However, this study could be one of the fundamental studies and the first of multi-source remote
sensing data about the assessment of SAV distribution in the coastal areas in Khanh Hoa province and
central Vietnam.

4.3. Temporal Changes to SAV Distribution

Other studies have quantified SAV distribution elsewhere along the Vietnamese coast,
and comparisons show that our study area had less SAV than the Quang Ninh coastal area (1450 ha),
and more than both the Hai Phong (490 ha) and Quang Binh coastal areas (350 ha) (Cao, 2014).
The results from this study mean that SAV distribution in the Khanh Hoa coastal zone can now be
recognized as one of the most extensive along the Vietnamese coast.

In Cam Ranh Bay, the SAV distribution area estimate found in this study was lower than that of
Chen et al. (2015), who estimated that there was approximately 195.3 ha between Cam Hai Dong and
Cam Phuc cities, for 2015 (Table 11). They also reported that an SAV decrease over the period 1996 to
2015 was caused by encroachment of aquaculture-based activities [26]. This encroachment continued
between 2015 and 2019, explaining why our SAV estimate for this location was lower still than theirs
from 2015.

Table 11. Comparison of SAV distribution in Khanh Hoa coastal obtained in this study with the literature.

Location
Area (ha) This Study (2018) Other Studies References

Van Phong Bay 270.2 600 (2013) Nguyen et al. [10]
Nha Phu lagoon 63.6 - -
Nha Trang Bay 49.8 68 (2015) Nguyen et al. [15]

Thuy Trieu lagoon 209.4 547 (2012) Nguyen et al. [9]
Cam Ranh Bay 178.4 195.3 (2014) Chen et al. [26]

Total 771.2 - -

Our findings for Nha Trang Bay were quite similar to those of Nguyen et al. (2015), with values of
49.8 and 68 ha, respectively. Nguyen et al. (2105), reported that, in 2015, SAV was distributed mainly
around Phuoc Dong and Hon Tre city, and over several small regions (under 1 ha) around Mieu, Mun,
and Mot islands [15].

Nguyen et al. (2012) studied wetland ecosystems in Thuy Trieu Lagoon, and assessed an SAV
acreage of approximately 547 ha; two years later, Nguyen et al. (2014) estimated that SAV beds in
Van Phong Bay covered approximately 600 ha [9]. In comparison with the results from these two
studies (Nguyen et al. (2012, 2014), our results for the same areas were much lower (Table 11).

4.4. Temporal Changes in SAV Extent

After assessing the overall accuracy and Kappa coefficients, all three images had relatively high
quality outputs, making it possible to establish SAV distribution status in the study area. Although
V1 data gave the best results for substrate classification, as it was only launched in 2013, earlier data



ISPRS Int. J. Geo-Inf. 2020, 9, 0395 22 of 27

was not available [34,35]. Therefore, selecting Landsat gave us the advantages of not only high levels
of accuracy, but also a longer data record than was available from either S2 or V1.

According to Pham (2006), and hydrological–coastal environment data (2003) in the Khanh Hoa
province in particular, and Central Vietnam in general, the growth and coverage characteristics of SAV
do not change significantly in the dry season, especially from May to August, SAV in the Khanh Hoa
coast in the phase of increasing and stabilization biomass [54,56]. Therefore, this study have selected
the best quality images in the dry months to conduct the interpretation of SAV temporal changes.

In 2008, several decisions of the government approving the overall planning on the socio-economic
development of Central Vietnam up to 2020 focus on economic development to build the coastal
economic infrastructure, comprising the system of seaports, Van Phong international entrepot port,
and tourist development including water sports tourism, coastal landscape tourism and so on [58].
This allowed us to select historical Landsat-5 imagery from 2008 to assess the extent of SAV changes
over the last 10 years.

Khanh Hoa coastal waters have lost approximately 969.3 ha of SAV over the 10 year period
2008–2018, at an average annual loss of ~97 ha. Generally, the losses occurred in shallow water,
near shorelines which could be directly impacted by human activities [8,15,26,27].

Our findings were in accord with those of several previous studies, including Nguyen et al. (2013),
who studied SAV degradation in Van Phong Bay. The identified reasons included damage caused
by locals, who continually dug into the SAV areas with hoes, looking for oysters and mussels, and by
the developing economic sector, with port and ship repair infrastructure such as the Hyundai Vinashin
factory having negative effects on the adjacent SAV beds [9,10]. Similarly, Chen et al. reasoned that
SAV acreage changes in Cam Ranh Bay were caused by infrastructure and aquaculture developments
there [26].

Nguyen et al. (2014) noted that degradation of SAV beds in Thuy Trieu Lagoon was caused by
locals digging on them for shellfish, and by the encroachment of tourism infrastructure buildings [9].
As an example, the Vinpearl Land resort involved golf course construction, which brought about the loss
of 18 ha of seagrass from the area [9,15]. In general, SAV acreage has been reduced by various human
activities, including overexploitation of marine resources, shellfish collection, shrimp pond construction,
tourism, and seaport development, leading to a remarkable reduction in regional SAV [10,15,26].

5. Conclusions

In this study, the authors evaluated the performance of the V1 sensor for detection of SAV along
the coast of Khanh Hoa province, Vietnam, and compared its results to those achieved using S2 and L8
satellite sensors. This has been the first study to apply V1 data to establish SAV distribution status,
and the results showed that all three satellite sensors had relatively high levels of accuracy (Ҡ > 0.83),
and could be used to prepare SAV distribution maps. The L8 Kappa coefficient and overall accuracy
reached 0.85 and 88.27%, respectively, which were better than those achieved by the S2 (Ҡ = 0.84;
OA = 87.21%) and V1 sensors (Ҡ = 0.87; OA = 89.40%).

The SAV bed distribution status results from the three satellites showed differences that
were centered around several small areas, such as Nua, Lao, and Rua islands. Regarding the
SAV acreage estimates for the study area, the estimate were broadly similar, ranging from 771.2
to 809.8 ha, with Van Phong Bay hosting the largest acreage, at ~390.2 ha (V1). Over the period
2008–2018, SAV declined significantly across the study area, with approximately 74.2% of its area lost,
with replacement areas limited to less than half of this. SAV was seen to have almost disappeared
from many shallow areas and from locations close to the shore, to the extent that the overall SAV area
decreased in the study area at an annual average rate of ~97 ha.

Currently, there are no studies using V1 data for coastal resource monitoring and management,
with this being the first study to apply V1 data to SAV detection in coastal waters—with the results
exhibiting high classification accuracy, and demonstrating its potential in this field. To enhance the
applicability of remote sensing technology in Vietnam, it will be important to continue studying
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and applying V1 data to map SAV distribution around islands and in coastal areas. It would also
be beneficial to examine the application of V1 to the determination of SAV species composition,
coverage, and dried biomass, thus establishing an even better understanding of the application of
satellite-sourced data to SAV studies.

This work has identified that V1 imagery has an important shortcoming, in that the area captured
in each scene is relatively small, making development of SAV distribution maps for large coastal areas
complex and time-consuming. This suggests that it would be beneficial to combine V1 data with that
of other satellites, such as WorldView-2, BKA, THAICHOTE, SSOT, ALSAT-2, and so on, in an effort to
overcome this limitation.
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Appendix A. Evaluation Accuracy after Classification

Table A1. Landsat-5 confusion matrix table (2008).

Layers SAV Sand Deep Water Mud Rock–Coral Total UA

SAV 103 0 0 16 1 120 85.83
Sand 0 130 4 0 0 134 97.01
Deep
water 0 0 106 4 6 116 91.38

Mud 30 0 6 92 3 131 70.23
Rock–Coral 11 3 0 2 90 106 84.91

Total 144 133 116 114 100 607

PA 71.53 97.74 91.38 98.57 80.36 OA
85.83

Overall accuracie (OA), user accuracie (UA), and producer accuracies (PA); Kappa coefficient 0.82.

Table A2. VNREDSat-1 confusion matrix table (2017).

Layers SAV Sand Deep Water Mud Rock–Coral Total UA

SAV 113 2 3 21 6 145 77.93
Sand 0 135 0 1 0 136 99.26
Deep
water 0 0 115 0 0 115 100.00

Mud 25 1 0 90 0 116 77.59
Rock–Coral 5 0 0 0 87 92 94.57

Total 143 138 118 112 93 604

PA 79.02 97.83 97.46 80.36 93.55 OA
89.40

Kappa coefficient 0.87.
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Table A3. Landsat-8 confusion matrix table (2018).

Layer SAV Sand Deep Water Mud Rock–Coral Total UA

SAV 113 0 0 7 3 123 91.87
Sand 4 130 2 0 7 143 90.91
Deep
water 0 0 108 6 0 114 94.74

Mud 22 0 4 95 0 121 78.51
Rock–Coral 3 8 4 0 88 103 85.44

Total 142 138 118 108 98 604

PA 79.58 94.20 91.53 87.96 89.85 OA
88.41

Kappa coefficient: 0.85.

Table A4. Sentinel-2 confusion matrix table (2019).

Layers SAV Sand Deep Water Mud Rock–Coral Total UA

SAV 115 2 0 6 2 125 92.00
Sand 3 130 0 2 3 138 94.20
Deep
water 3 0 105 7 3 118 88.98

Mud 18 0 3 94 3 118 79.66
Rock–Coral 5 8 10 0 88 112 79.28

Total 144 140 118 109 99 610

Kappa coefficient: 0.84.
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