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Abstract: The detection of objects in very high-resolution (VHR) remote sensing images has become
increasingly popular with the enhancement of remote sensing technologies. High-resolution images
from aircrafts or satellites contain highly detailed and mixed backgrounds that decrease the success
of object detection in remote sensing images. In this study, a model that performs weighted ensemble
object detection using optimized coefficients is proposed. This model uses the outputs of three
different object detection models trained on the same dataset. The model’s structure takes two or more
object detection methods as its input and provides an output with an optimized coefficient-weighted
ensemble. The Northwestern Polytechnical University Very High Resolution 10 (NWPU-VHR10) and
Remote Sensing Object Detection (RSOD) datasets were used to measure the object detection success
of the proposed model. Our experiments reveal that the proposed model improved the Mean Average
Precision (mAP) performance by 0.78%–16.5% compared to stand-alone models and presents better
mean average precision than other state-of-the-art methods (3.55% higher on the NWPU-VHR-10
dataset and 1.49% higher when using the RSOD dataset).
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1. Introduction

At present, with the enhancement of remote sensing technologies, remote sensing image object
detection has gained popularity thanks to its successful civil and military applications (e.g., urban
monitoring, traffic monitoring, agricultural applications, and landscape planning). However, various
difficulties remain in the field of remote sensing object detection, such as complicated and diverse
views, the high costs of manual annotation, and differences in the instant detection of large scene
images. Besides that, a typical feature of high-resolution images from planes or satellites is a highly
detailed and mixed background. Object detection methods that use deep learning methods (which are
increasing in popularity) have reached a state-of-art level [1].

Many studies on the detection of objects in remote sensing images are available in this field of study.
For instance, Peicheng et al. [2] proposed a novel and effective approach to train a Rotation-Invariant
Convolutional Neural Network (RICNN) model for advancing the performance of object detection,
and Wang et al. [3] used a skip-connected encoder–decoder model to extract multiscale features from a
full-size image. Wu et al. [4] detected remote sensing objects using Fourier-based rotation-invariant
feature boosting (FRIFB). Dong et al. [5] used the Sigmoid Nonmaximum Suppression (Sig-NMS)
method instead of the traditional nonmaximum suppression (NMS) to reduce the rate of undetectability
for small targets. Gong et al. [6] introduced an object detection model that enriches feature representation
and adopts the basic context information between objects. Cheng et al. [7] proposed a multiclass
object detection feedback network (MODFN) using a top-down feedback mechanism based on a
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traditional feedforward network. Wang et al. [8] achieved object detection using a unified framework
that can gather contextual information at multiple scales along with feature maps at the same scale.
Zhang et al. [9] proposed a Double-Net model with multiple CNN channels, where each channel
corresponds to a certain direction of rotation, and all CNNs share the same weights. Cheng et al. [10]
developed a rotation-invariant framework based on the Collection of Part Detectors (COPD) for
multiclass object detection. Li et al. [11] proposed a dual-channel feature fusion network capable of
learning regional and contextual properties along two independent paths. Wang et al. [12] proposed
a new region proposal network that is anchor-free and sliding-window-free to develop a two-stage
object detection network. Körez et al. [13] improved the Faster R-CNN algorithm via the deformable
convolution and the weight standardization techniques for remote sensing object detection using
low-capacity Graphic Processing Units (GPUs). Qui et al. [14] proposed a novel end-to-end Adaptive
Aspect Ratio Multiscale Network (A2RMNet), which is a multiscale feature gate fusion network used
to adaptively integrate the multiscale features of objects. Xu et al. [15] proposed a CNN structure called
deformable ConvNet, which adds offsets to the convolution layers to address geometric modeling
in object recognition. Zhou et al. [16] proposed an encoder–encoder architecture called a rotated
feature network (RFN), which produces rotation-sensitive feature maps (RS) for regression and
rotation-invariant feature maps (RI) for classification. For a comprehensive and recent survey, see [17].

In recent years, studies using ensemble models have been prominent for object detection in remote
sensing images [18–23]. In these studies, multiple multilayer perceptions, conditional random fields,
or CNN ensembles were used to create structurally complete models. Then, the models were trained,
and object detection was performed.

All existing models are based on specific structural conditions. Therefore, it is difficult to make
changes to the models. This led researchers to focus on training ensemble models. However, training
an ensemble model is not practical. However, in all of these studies, training was carried out on
such ensemble models. A training-independent ensemble operation would be more practical and
effective. In this study, we propose a flexible and training-independent weighted ensemble object
model that uses three different object detection models (Single Shot Multibox Detector (SSD) [24],
RetinaNet [25], and Improved Faster Regional Convolutional Neural Network (Faster R-CNN) [26])
that are independently trained on the same dataset. The SSD, RetinaNet, and Faster R-CNN models
have achieved state-of-art success in object detection and are pioneers in the field. We chose the
SSD, RetinaNet, and Improved Faster R-CNN models because they can optimize Faster R-CNN
and previously achieved very successful results on the Northwestern Polytechnical University Very
High Resolution 10 (NWPU-VHR10) and Remote Sensing Object Detection (RSOD) datasets. Our
contributions are as follows:

• A weighted ensemble object detection model using three different object detection models trained
on the same dataset is proposed;

• The proposed model is independent of the object detection models it uses as input. This means
that two or more different types of object detection models can be used in the proposed model.
Since our model has a weighted ensemble structure, the number of different structures of the
models used as input will not affect the overall structure of the model;

• Our study is the first to perform object detection of remote sensing images using multiple
object detection models as coefficient-weighted ensembles with optimized coefficients that are
independently trained on the same dataset.

In the second section of this study, the materials and methods we used are described. In the third
section, the proposed optimized coefficient-weighted ensemble model is outlined. The fourth section
focuses on the test environment, evaluation criteria, and explanation of the datasets (NWPU-VHR10
and RSOD) that we used to measure the performance of our proposed model, as well as experiments
using different coefficients (including optimal coefficients) and a comparison of our model with other
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studies using the same datasets. The conclusions of the study are summarized in Section 5, and Section 6
discusses future work.

2. Methods

In this section, the structures and concepts used by the remote sensing object detection model
introduced in our study are explained.

2.1. Single Shot Multibox Detector (SSD)

The SSD divides the output area of the bounding boxes into a series of default boxes with different
aspect ratios and scales for each feature map location [24]. While making predictions, the algorithm
generates points for the presence of each category of objects in the default box and adjusts the sizes
of the boxes to better match the shape of the object. In addition, predictions from multiple attribute
maps with different resolutions are combined so that objects of different sizes can be handled easily
(Figure 1).

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 3 of 16 

 

2. Methods 

In this section, the structures and concepts used by the remote sensing object detection model 
introduced in our study are explained. 

2.1. Single Shot Multibox Detector (SSD) 

The SSD divides the output area of the bounding boxes into a series of default boxes with 
different aspect ratios and scales for each feature map location [24]. While making predictions, the 
algorithm generates points for the presence of each category of objects in the default box and adjusts 
the sizes of the boxes to better match the shape of the object. In addition, predictions from multiple 
attribute maps with different resolutions are combined so that objects of different sizes can be 
handled easily (Figure 1). 

 

Figure 1. Block diagram of the Single Shot Multibox Detector (SSD). 

2.2. RetinaNet 

RetinaNet is a single unified network consisting of a backbone network and two task-specific 
subnets. To increase the object detection success, RetinaNet uses Focal Loss [25], which is a new type 
of loss that reduces the relative loss of well-classified samples and pays more attention to difficult-
to-detect and misclassified samples. In RetinaNet, the backbone is responsible for calculating a 
convolutional property map over the entire input image. The first subnet classifies the backbone 
output, and the second subnet performs the convolution, thereby limiting box regression (Figure 2). 

 

Figure 2. Architecture of RetinaNet: (a) first subnet and (b) second subnet. 

2.3. Improved Faster R-CNN 

Figure 1. Block diagram of the Single Shot Multibox Detector (SSD).

2.2. RetinaNet

RetinaNet is a single unified network consisting of a backbone network and two task-specific
subnets. To increase the object detection success, RetinaNet uses Focal Loss [25], which is a new type of
loss that reduces the relative loss of well-classified samples and pays more attention to difficult-to-detect
and misclassified samples. In RetinaNet, the backbone is responsible for calculating a convolutional
property map over the entire input image. The first subnet classifies the backbone output, and the
second subnet performs the convolution, thereby limiting box regression (Figure 2).
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2.3. Improved Faster R-CNN

The present model is based on the latest Faster R-CNN (Figure 3) [26], a state-of-the-art object
detection system. The deformable convolution [27] technique is used to overcome the weaknesses
of the regular convolution structure used in the Faster R-CNN model for detecting small and mixed
objects in remote sensing images [13]. With the Feature Pyramid Network (FPN) [28] technique,
the high-resolution features in the shallow layers of the remote sensing images are transferred to the
network. The Weight Standardization (WS) [29] technique, which reduces the batch size to provide
deep learning training without performance problems on low power / single GPU systems, such as
those using a single GPU, was also added to the model.
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2.4. General Concepts of Object Detection

In this subsection, the concepts we use within the scope of object detection are briefly defined.
Those are;

• Bounding Boxes: These are the rectangular boxes drawn around the objects to make the detected
objects more prominent after the object detection is complete;

• Common Box: This is the box used to express the bounding boxes from three different object
detection models, which are used as the input for the Weighted Ensemble Block; a single bounding
box is called common box;

• Confidence Score: This is the probability that an anchor box contains an object and is usually
predicted by a classifier. The confidence score contains cut-off predictions [26–28].

3. Proposed Model

In this section, we describe the ensemble algorithm that we used to combine the included object
detection models, the optimization of the coefficients, and the outputs of these object detection models.
Figure 4 shows a block diagram of the object detection model that we propose in our study.
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3.1. Object Detection Models

In the proposed model, three different object detection models trained on the same dataset are used.
These models are Single Shot Multibox Detector (SSD), RetinaNet, and Improved Faster R-CNN for
remote sensing images. Improved Faster R-CNN is a two-stage object detection model, while SSD and
RetinaNet are single-stage object detection models. These object detection models are independently
trained. Details of the training process are described below:

• Twenty-four Epoch training was performed, and the batch size was 64;
• Learning rate = 0.0025 and momentum = 0.9. A gradual learning rate technique was applied by

reducing the learning rate. This was done by dividing 10 by the 16th epoch and 22nd epoch;
• Batch Normalization was used for the SSD and RetinaNet models, and Weight Standardization

was used for the Improved Faster R-CNN model;
• Transfer learning was utilized for the trained Resnet50 model.

3.2. Weighted Ensemble Block

This algorithm corresponds to the Weighted Ensemble Block in Figure 4. It takes three different
object detection results as the input from this algorithm and produces a single object detection result.
The object detection concept involves the task of determining the position and category of multiple
objects in an image. An object detection model is a function that, when given an image, returns a list of
detections (D = [d1, . . . , dN]), where each di is given by a triple [bi, ci, si] that consists of a bounding
box, bi, the corresponding category, ci, and the corresponding confidence score, si.

The input of our ensemble algorithm is a List of Detections (LD) for a given image using three
different object detection models (LD = [D1, D2, D3]). Each LD has different bi, ci, and si values.
The algorithm steps are as follows:

(1) The detections in LD are grouped according to the class values and the overlap of the bounding
boxes. Taking the two bounding boxes as b1 and b2, the following IoU equation is used to find the
overlapped region between them.

IoU(b1, b2) =
area ( b1 ∩ b2 )

area (b1 ∪ b2 )
(1)
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(2) An IoU threshold value of 0.5 is frequently used in related object detection studies, including
the studies mentioned in the introduction. Thus, bounding boxes with IoU > 0.5 are assigned to a
new Output List (LO). The LO has bi and Si values for each detection. It is necessary to recalculate a
common box (X1, Y1, X2, Y2) and confidence score (S) using the weight coefficients (ki) for the multiple
different boxes in the LO clusters. These calculations are made with the following equations:

S =
k1 ∗ S1 + k2 ∗ S2 + k3 ∗ S3

k1 + k2 + k3
(2)

X1 =
k1 ∗ X11 + k2 ∗ X12 + k3 ∗ X13

k1 + k2 + k3
(3)

X2 =
k1 ∗ X21 + k2 ∗ X22 + k3 ∗ X23

k1 + k2 + k3
(4)

Y1 =
k1∗ Y11 + k2∗ Y12 + k3∗ Y13

k1 + k2 + k3
(5)

Y2 =
k1 ∗ Y21 + k2 ∗ Y22 + k3 ∗ Y23

k1 + k2 + k3
. (6)

When calculating the confidence score in Equation (2), the weight coefficients and multiplication
results of all confidence scores are averaged. In the same way, the coordinates of the bounding box are
calculated by multiplying the individual weight coefficients in each of them (Equations (3)–(6)).

(3) If least two of the detections in the LD overlap, the above operations are performed. The resulting
ensemble detections are added to the Predictions List (PL). At this point, some detections may not
overlap at all. Those with a confidence score of (c)> 0.5 are also assigned to the PL.

(4) The detections in the PL are considered the final predictions, and the weighted ensemble
process ends.

3.3. Optimizing Coefficients

This is the process for calculating the optimal coefficients according to the detection results
obtained from the three models we used. In this process, the coefficients that converge the X1, Y1, X2,
and Y2 coordinate values of the three models closest to the X1, Y1, X2, and Y2 coordinate values of the
labels in the test dataset are calculated via nonlinear programming [30]. In this process, optimization is
achieved by considering all test data as a whole. The calculations are as follows:

Ŷi =
3∑

n=1

kn ∗ Xin
ksum

, Xin = (X1n , Y1n , X2n , Y2n) (7)

ksum = k1 + k2 + k3 (8)

Constraints :
3∑

n=1

kn = 1 , kn ≥ 0 (9)

Zmin =
K∑

i=1

(
Yi − Ŷi

)2
). (10)

In Equation (8), Ŷi represents the sum of the estimates, kn denotes the coefficients, and Xin refers
to the coordinate values (X1, Y1, X2, Y2) of the ith prediction of the nth model. Equation (9) is the
formula for the sum of coefficients, and Equation (10) is the optimization objective function that
minimizes the sum of the squares of the difference between the real coordinate values and the estimated
coordinate values. The constraints of this optimization objective function are given in Equation (9).
For the optimization objective function to find the minimum value, the Mean Squared Deviation
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(MSD) [31] technique is used. The values of k1, k2, k3 that provide the Zmin value are considered the
optimal coefficients.

4. Results and Discussion

An experimental setup environment was created to evaluate the performance of the proposed
model on the NWU-VHR10 and RSOD datasets. Three object detection models used as the input for the
ensemble model and ensemble object detection results under different combinations of coefficients were
compared. Then, a comparison was carried out with other related studies using the NWPU-VRH10
and RSOD datasets to evaluate how successful the proposed model was.

4.1. Environment and Evaluation Criteria

For the physical environment, the PC used for the experiments features an Intel®Core ™ i5
2.4 GHz CPU, with 6 GB RAM, a Geforce GTX 1080 graphics card, and the Ubuntu 16.04 LTS operating
system. The proposed model was written in the python programming language using the pytorch
deep learning library. To evaluate the performance of the proposed model, the precision–recall curve
(PRC) and mean average precision (mAP) [32] criteria, which are used to measure the success of many
object detection models [33–39] in this area, are used.

• Precision–Recall Curve (PRC): Precision is used to indicate the accuracy of the detection rate of true
positive values, and recall is used to indicate the ratio of true positive values detected correctly [40].
The number of true positives is TP, the number of false positives is FP, and the number of false
negatives is FN. The precision–recall curve value is calculated with the following formulas:

Precision =
TP

(TP + FP)
(11)

Recall =
TP

(TP + FN)
) (12)

where the TP value used in Equations (11) and (12) refers to the situations where the area between
the box overlaps, and the Ground Truth (GT) box is greater than 0.5 as a result of the detection. The
opposite case is considered to be the FP. Further, if multiple detections coincide with the same GT box,
only one is considered the TP, and the others are FP.

• Mean Average Precision (mAP): This can be explained as the average of the precision values of all
classes in the area under the PRC. Therefore, the performance of an object detection model is
measured by the height of the mAP value. A higher mAP value indicates better performance.

4.2. Dataset Preparation Phase

In the experiments, the NWPU-VHR10 dataset [41] and RSOD dataset [42] were used.
These datasets are described below.

(1) NWPU-VHR10 dataset: As its name suggests, this dataset has 10 classes (aircraft, ship, storage
tank, baseball diamond, tennis court, basketball court, highway court, port, bridge, and vehicle).
Moreover, this dataset contains 650 positive images and 150 negative images (total 800 images), whose
spatial resolution ranges from 0.5 to 2 m.

In the experiments, positive images in the dataset were used in two different ways
(60% training—390 images, 20% verification—130 images, 20% testing—130 images, and 50%
training—325 images, 20% verification—130 images, 30% testing—195 images). The set of 650 images
containing objects consists of 565 images from Google Earth with a spatial resolution ranging from 0.2 m
to 2 m and 85 sharpened images with a spatial resolution of 0.08 m from the Vaihingen dataset [43].

(2) RSOD dataset: The RSOD dataset contains 976 images downloaded from Google Earth and
Tianditu [44]; the spatial resolutions of these images range from 0.3 to 3 m. This dataset consists of 6950
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total object instances covered by four object classes, including 1586 oil tanks, 4993 airplanes, 180 overpasses,
and 191 playgrounds. In the experiments, images in this dataset were used in two different ways, as in
the NWU-VHR10 dataset (60% training—586 images, 20% verification—195 images, 20% testing—195
images, and 50% training—488 images, 20% verification—195 images, 30% testing—293 images).

The training objects in the NWU-VHR10 and RSOD datasets are few in number, which directly
affects the success of the model. Data augmentation [45] was used to eliminate this disadvantage.
The operations applied in the data augmentation process to the images in the datasets are presented
sequentially in Figure 5.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 8 of 16 

(2) RSOD dataset: The RSOD dataset contains 976 images downloaded from Google Earth and 
Tianditu [44]; the spatial resolutions of these images range from 0.3 to 3 m. This dataset consists of 
6950 total object instances covered by four object classes, including 1586 oil tanks, 4993 airplanes, 180 
overpasses, and 191 playgrounds. In the experiments, images in this dataset were used in two 
different ways, as in the NWU-VHR10 dataset (60% training—586 images, 20% verification—195 
images, 20% testing—195 images, and 50% training—488 images, 20% verification—195 images, 30% 
testing—293 images). 

The training objects in the NWU-VHR10 and RSOD datasets are few in number, which directly 
affects the success of the model. Data augmentation [45] was used to eliminate this disadvantage. The 
operations applied in the data augmentation process to the images in the datasets are presented 
sequentially in Figure 5. 

 
Figure 5. Data augmentation examples: (a) original picture; (b) blur; (c) vertical rotation; (d) horizontal 
rotation; (e) gamma conversion; (f) random image brightness. 

4.3. Results with Different Coefficient Combinations and Optimal Coefficient Values 

For the NWPU-VHR10 and RSOD datasets, the three object detection models used as the input 
for the ensemble model and the ensemble object detection results made with the different 
combinations and optimal values of the coefficients were compared. To better evaluate the 
performance of the proposed model, the comparison process was done according to two different 
train–test ratios frequently used in the literature. A comparison of the results is given in Tables 1 and 
2. 

In Tables 1 and 2, k1, k2, and k3 are the coefficient values for SSD, RetinaNet, and the Improved 
Faster R-CNN models, respectively. 
  

Figure 5. Data augmentation examples: (a) original picture; (b) blur; (c) vertical rotation; (d) horizontal
rotation; (e) gamma conversion; (f) random image brightness.

4.3. Results with Different Coefficient Combinations and Optimal Coefficient Values

For the NWPU-VHR10 and RSOD datasets, the three object detection models used as the input for
the ensemble model and the ensemble object detection results made with the different combinations and
optimal values of the coefficients were compared. To better evaluate the performance of the proposed
model, the comparison process was done according to two different train–test ratios frequently used in
the literature. A comparison of the results is given in Tables 1 and 2.

Table 1. Comparison of the results of three different object detection models and different
coefficient combinations for the Northwestern Polytechnical University Very High Resolution 10
(NWPU-VHR10) dataset.

Model Coefficients mAP
(70% Training—30% Testing)

mAP
(80% Training—20% Testing)

SSD - 0.832 0.790
Imp. Faster R-CNN - 0.916 0.889

RetinaNet - 0.920 0.881
Experiment 1 k1 = k2 = k3 = 1 0.931 0.913
Experiment 2 k1 = 2, k2 = k3 = 1 0.924 0.909
Experiment 3 k1 = k3 = 1, k2 = 2 0.933 0.901
Experiment 4 k1 = k2 = 1, k3 = 2 0.930 0.905
Experiment 5 k1 = k2 = 2, k3 = 1 0.929 0.908
Experiment 6 k1 = k3 = 2, k2 = 1 0.932 0.907
Experiment 7 k2 = k3 = 2, k1 = 1 0.927 0.906

Experiments 8 * k1 = 0.0226, k2 = 0.6527, k3 = 0.3246 0.942 -
Experiments 9 ** k1 = 0, k2 = 0.7982, k3 = 0.2017 - 0.921

* Optimal Coefficients for 70% Training—30% Testing ** Optimal Coefficients for 80% Training—20% Testing.
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Table 2. Comparison of the results of three different object detection models and different coefficient
combinations for the Remote Sensing Object Detection (RSOD) dataset.

Model Coefficients mAP
(70% Training—30% Test)

mAP
(80% Training—20% Testing)

SSD - 0.869 0.860
Imp. Faster R-CNN - 0.895 0.884

RetinaNet - 0.907 0.890
Experiment 1 k1 = k2 = k3 = 1 0.922 0.901
Experiment 2 k1 = 2, k2 = k3 = 1 0.917 0.902
Experiment 3 k1 = k3 = 1, k2 = 2 0.923 0.900
Experiment 4 k1 = k2 = 1, k3 = 2 0.918 0.901
Experiment 5 k1 = k2 = 2, k3 = 1 0.921 0.904
Experiment 6 k1 = k3 = 2, k2 = 1 0.914 0.902
Experiment 7 k2 = k3 = 2, k1 = 1 0.917 0.899

Experiments 8 * k1 = 0.0553, k2 = 0.3004, k3 = 0.6442 0.949 -
Experiments 9 ** k1 = 0.0196, k2 = 0.1602, k3 = 0.8200 - 0.921

* Optimal Coefficients for 70% Training—30% Testing ** Optimal Coefficients for 80% Training—20% Testing.

In Tables 1 and 2, k1, k2, and k3 are the coefficient values for SSD, RetinaNet, and the Improved
Faster R-CNN models, respectively.

The most successful results were obtained from the experiments using the optimal coefficients.
Further, all ensemble coefficient combinations achieved high success in the single object
detection models.

4.4. Comparing Proposed Model with Other Studies

In this section, we compare the proposed model to other studies that use both the NWPU-VHR10
dataset and the RSOD dataset.

(1) Comparision of the NWPU-VHR10 dataset: A comparison with other studies that used the
NWPU-VRH10 dataset in this field was carried out to evaluate how successful the proposed model
was. The comparison results are given in Table 3. The most successful results per class are marked
with underlined bold font in the table.

(2) Comparision of the RSOD dataset: A comparison was made with other studies in this field that
used the RSOD dataset to assess how successful our proposed model was, like with the NWPU-VHR10
dataset. Existing studies using the RSOD dataset are less common than those using the NWPU-VHR 10
dataset. The comparison results are given in Table 4. The most successful results per class are marked
with underlined bold font in the table.

Table 3. Success of diverse models on the NWPU-VHR10 dataset.

Class RICNN [2] CACNN [6] DFCCNN [7] FMSSD [8] COPD [10] RICAO [11] DODN [12] Improved Faster
R-CNN [13]

Our
Study

Plane 0.8835 0.9991 0.9085 0.9970 0.6225 0.9970 0.9392 0.9997 1.0000
Ship 0.7734 0.9055 0.9011 0.8990 0.6937 0.9080 0.9297 0.9458 0.9780

Storage Tank 0.8527 0.9001 0.8768 0.9030 0.6452 0.9061 0.9925 0.3670 0.6982
Baseball

Diamond 0.8812 0.9965 0.9882 0.9820 0.8213 0.9291 0.9633 0.9691 0.9680

Tennis Court 0.4083 0.9016 0.8950 0.8600 0.3413 0.9029 0.9612 0.9306 0.9310
Basketball Court 0.5845 0.9091 0.9078 0.9680 0.3525 0.8013 0.7097 0.9295 0.9681

Ground Track
Field 0.8673 0.9091 0.9062 0.9960 0.8421 0.9081 1.0000 0.9989 0.9970

Harbor 0.6860 0.8897 0.8872 0.7560 0.5631 0.8029 0.9688 0.9381 1.0000
Bridge 0.6151 0.7962 0.9034 0.8010 0.1643 0.6853 0.8115 0.6871 0.9030
Vehicle 0.7110 0.8900 0.8773 0.8820 0.4428 0.8714 0.8009 0.9328 0.9340

mAP 0.7263 0.9097 0.9052 0.9040 0.5489 0.8712 0.9077 0.8710 0.9420

Using our weighted ensemble object detection model, we performed object detection for all classes
in the test dataset. The object detection results for the test images of the proposed model are provided
in Appendix A. In Appendix A, true positive detections are marked in green, false-positive detections
are marked in red, and false negative detections are marked with a blue box.
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Table 4. Success of diverse models on the RSOD dataset.

Class SigNMS [5] A2RMNet [14] DConvNet [15] RFN [16] Our Study

Aircraft 0.806 0.942 0.718 0.791 0.947
Oil Tank 0.906 0.964 0.903 0.905 0.936
Overpass 0.874 0.838 0.895 1.000 0.912

Playground 0.991 0.997 0.998 0.997 1.000
mAP 0.894 0.935 0.879 0.923 0.949

4.5. Discussion

In this study, three parameters that can affect the object detection performance of the model relative
to the dataset were considered. These parameters are the number of images containing the object in the
dataset, the number of objects in each image, and the size of the object in the image. As noted in other
studies [2,5,8,10,16] (using the comparisons in Tables 3 and 4), the numbers of positive image sets from
the NWPU-VHR10 dataset (650 images) and the images of the RSOD dataset (976 images) were too few
for deep learning object detection models. We aimed to solve this problem with data augmentation.
However, data augmentation alone was not enough to eliminate class imbalance. To eliminate the
imbalance between classes, we combined the strengths of these models by using coefficients rather
than designing a separate loss function for these three object detection models. Each model was trained
independently using its own loss function. Then, the optimal coefficients were calculated using the
MSD technique. In this way, the proposed model detects objects using the optimal coefficient values.
In our experiments, we observed the effects of these coefficient changes on success.

As shown in Tables 1 and 2, the optimal ensemble coefficients achieved greater success than the
standalone object detection models that we used as input for the proposed model. In addition, other
ensemble coefficient combinations achieved excellent success using single object detection models.
In the conducted experiments, the proposed model increased the performance of classification for the
NWPU-VHR10 and RSOD datasets by 11% to 16.5% for SSD, 0.78% to 6% for RetinaNet, and 0.88% to
4.54% for Improved Faster R-CNN. As shown by the experimental results, the highest improvement
in classification performance was achieved with the SSD model because our model eliminated the
disadvantages of the SSD model by applying the RetinaNet and Improved Faster R-CNN models,
which are more successful than the SSD model.

As mentioned earlier, the small number of images found in the NWPU-VHR10 and RSOD datasets,
which are frequently used in remote sensing literature, is too low for deep learning models. Thus, while
greater success would be expected by training the model with more data under normal conditions, in
our experiments with 80% training data, lower values were obtained than in experiments with 70%
training data. This situation can be explained in two ways:

• Overfitting: The proposed model experienced some overfitting in experiments conducted at a rate
of 80% training, despite the use of data augmentation;

• The Size of the Test Data: The object detection success of the model could be better measured by
testing with more data. Accordingly, better results were obtained in tests with 30% testing data.

The results given in Table 3 reveal that the proposed model provides better results than those
in other studies. Although our method ensures high performance, we observed a discrepancy in
the detection accuracy for the same category of object (e.g., storage tank) as in the DODN [12] and
Improved Faster R-CNN [13] models. This is mainly because of the imbalance among the classes
in the NWPU-VHR10 database. The object detection rate of the classes (e.g., planes) with a large
training dataset is high, while the object detection success of the classes (e.g., storage tank) with a small
training dataset is quite low. Although data augmentation improved the training performance, its
contribution remains limited. Table 4 shows that the proposed model did not experience this problem
with the RSOD dataset. This is because the amount of image data used to train deep learning models
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directly affects the object detection success of the model (the RSOD dataset contains 50% more images
(325 images) than the NWPU-VRH10 dataset).

Despite the inadequacies of this dataset, the proposed model achieved high success in detecting
objects of different orientations and sizes in the test images. Moreover, our model resulted in higher
performance results than those in other studies using the same dataset for object detection. The proposed
model achieved a higher mAP than other studies in six of the ten object classes in the NWPU-VHR10
dataset, while in the RSOD dataset, our model achieved higher mAP success in two of the four object
classes. We believe that the success of the proposed model is the result of the following:

• Our model combines the powerful features of three different models (SSD, RetinaNet, and
Improved Faster R-CNN), which have proven themselves successful for object detection;

• We calculated the optimal coefficients of the object detection models using the MSD technique;
• Each object detection model is subjected to an independent training process, so there is no

overfitting problem.

5. Conclusions

In this study, an object detection model that performs the optimized coefficient-weighted
ensemble operations for the outputs of three different object detection models trained on the same
dataset was proposed. The proposed model was designed to provide an output with an optimized
coefficient-weighted ensemble by taking two or more object detection methods as its input. In addition
to providing an ensemble output by multiplying the most successful determinations of the object
detection models used by the input with the coefficients determined through optimization using the
MSD technique, the results obtained under various coefficient changes were more successful than
the results with the object detection models used as input. The object detection performance of our
proposed model was assessed using the NWPU-VHR10 and RSOD datasets. The highlights of our
model include combining the strengths of SSD, RetinaNet, and Improved Faster R-CNN models
as inputs and training these models separately to prevent overfitting. Therefore, the results of the
experiments reveal that our model can obtain better results than current models that use the same
datasets. In summary, no matter how different the models used as inputs and the hyperparameters of
these models are, our ensemble model, which can use the strengths of the input models most effectively
through optimal coefficients, achieves better results than the models we used as inputs.

6. Future Work

In our future work, studies will be continued on the following topics:

• Different models and their experimental results will be analyzed by multiplying these models with
different coefficients to develop a dataset to measure the success of the coefficients used for the
model. Then, a simple neural network will be trained with this dataset. Using this training, we will
attempt to reveal the predicted success of the network for the purpose of determining the most
successful weighted ensemble method with machine learning. We will also test how successful
the final results of the machine learning are through experiments using the proposed model;

• To increase the object detection success of our model, a future study will be carried out focusing on
reducing the effects of the imbalance between classes by designing the loss functions of the object
detection methods (SSD, RetinaNet, and the Improved Faster R-CNN) as a single loss function.
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