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Abstract: Combining misaligned spatial data from different sources complicates spatial analysis
and creation of maps. Conflation is a process that solves the misalignment problem through
spatial adjustment or attribute transfer between similar features in two datasets. Even though
a combination of digital elevation model (DEM) and vector hydrographic lines is a common practice
in spatial analysis and mapping, no method for automated conflation between these spatial data
types has been developed so far. The problem of DEM and hydrography misalignment arises not
only in map compilation, but also during the production of generalized datasets. There is a lack
of automated solutions which can ensure that the drainage network represented in the surface
of generalized DEM is spatially adjusted with independently generalized vector hydrography.
We propose a new method that performs the conflation of DEM with linear hydrographic data
and is embeddable into DEM generalization process. Given a set of reference hydrographic lines,
our method automatically recognizes the most similar paths on DEM surface called counterpart
streams. The elevation data extracted from DEM is then rubbersheeted locally using the links
between counterpart streams and reference lines, and the conflated DEM is reconstructed from
the rubbersheeted elevation data. The algorithm developed for extraction of counterpart streams
ensures that the resulting set of lines comprises the network similar to the network of ordered
reference lines. We also show how our approach can be seamlessly integrated into a TIN-based
structural DEM generalization process with spatial adjustment to pre-generalized hydrographic lines
as additional requirement. The combination of the GEBCO_2019 DEM and the Natural Earth 10M
vector dataset is used to illustrate the effectiveness of DEM conflation both in map compilation and
map generalization workflows. Resulting maps are geographically correct and are aesthetically more
pleasing in comparison to a straightforward combination of misaligned DEM and hydrographic lines
without conflation.

Keywords: digital elevation models; hydrographic network; conflation; rubbersheeting; topographic
mapping, generalization; terrain analysis; hydrological analysis; map algebra; algorithms; automatic

1. Introduction

Conflation is a process of combining (merging) information from two data sources into a single
source, reconciling disparities where possible [1]. Saalfeld [2] identified conflation as a distinct
GIS method and set its mathematical and technological foundations. Basically, conflation employs
identification of corresponding features in two datasets using spatial and semantic attributes, and then
performs spatial adjustment of the features or transfers attributes between them. One of most widely
used techniques for spatial adjustment is so-called rubbersheeting, during which conflated features are
first triangulated and then triangulation vertices are locally shifted according to conflation links that
connect similar points in two datasets [3].
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Conflation is not a straightforward process, since identification of corresponding features is always
uncertain to some degree. A standard approach is to use a minimax strategy, in which corresponding
features are identified using the minimum or the maximum value of some similarity measure.
In particular, Stanislawski et al. [4] used maximum overlap area and minimum distance in conflation
of waterbody and transport (stream) reaches between two hydrographic datasets. Cobb et al. [5]
emphasized the importance of using attribute information to make conflation more reliable while
Walter and Fritsch [6] demonstrated that determination of the most probable object pairs for matching
can be laid on statistical background. The problem of object matching is often formulated in terms
of optimization which seeks for the best solution that maximizes the total similarities between all
matched pairs [7] or minimizes the measure of total discrepancy between datasets [8]. Since conflation
is performed mostly on linear features, special similarity measures like the Fréchet distance (see the
definition in Section 3.3.1), which respect the continuity of lines, have become of a particular interest in
recent research [9,10].

Conflation methods are traditionally focused on road network data [11,12] and snapping of
mobile/GPS tracking data to road networks [13,14]. National mapping agencies list conflation as
one of the technologies incorporated into map generalization processes [15]. Ordnance Survey GB
employs conflation in production of OS VectorMapTM District data [16]. While most of the conflation
methods focus on vector features, it is possible to conflate discretized spatial fields too. In particular,
Kyriakidis et al. [17] developed a geostatistical approach to conflation of digital elevation models
where the combined result is represented as a realization of the stochastic spatial process.

Increasing variety of spatial data sources during the recent decades raised the value of conflation
as one of the key technologies in spatial data processing [18]. Among the most influential technological
drivers is a wide adoption of crowdsourcing, which exploded the range and variance of spatial
data quality [19]. Consequently, conflation methods spread to a variety of spatial data types and
have become in demand even for imprecise sketchy spatial datasets [20]. Spatial databases like
OpenStreetMap [21] are often updated using heterogeneous and imprecise sources, and reconciling
topological misalignments in overlapping coverages is essential to keep the data consistent [22].
Currently, conflation instruments are available as specialized modules for general-purpose GIS
platforms such as ArcGIS [23] and QGIS [24], as well as in a form of a standalone open-source [25] and
proprietary [26] solutions.

Terrain and hydrography are often analyzed and mapped together due to their genetic
relationships. A natural hydrographic network follows locations along the negative terrain forms
which have high value of flow accumulation and comprise so-called drainage network [27,28].
When hydrographic and terrain data come from different sources, this relationship is often violated.
The reasons of this can be multiple, starting from mismatch in levels of detail and data acquisition
techniques, and ending in inaccurate information about geodetic datums. However, the consequence
always manifests itself in a similar way: hydrographic lines do not coincide with drainage
network implicitly represented in elevation data. A typical example of misalignment between
DEM and hydrographic line is shown in Figure 1. It is clear that such cartographic representation is
geographically incorrect and aesthetically unpleasing. A misalignment observed here has another
negative effect: it does not allow the direct enrichment of hydrological DEM analysis with real
hydrographic data. This problem is usually solved with specialized techniques such as stream
burning [29]. These techniques enforce flow direction in a way that corresponds to configuration
of a real hydrographic network. However, a DEM modified in such way is still inappropriate for
cartographic purposes, since misalignment between hydrographic lines and DEM surface actually
remains uncorrected.

To solve the problem, a specialized conflation method which aligns elevation and hydrography
data should be applied. Alignment is needed not only for map compilation, but also during the
production of generalized datasets. In particular, generalized DEM must be spatially adjusted with
generalized vector hydrography. Up to date, no algorithms have been developed to solve this task.
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In this paper, we propose a new method that performs automatic conflation of DEM with reference
hydrographic lines and can be easily embedded into structural DEM generalization workflow.

Figure 1. Misalignment between digital elevation model and hydrographic line.

The paper follows the tradition established in GIS software, which tends to use the term stream to
name the path belonging to a drainage network. While the more correct term is drainage path [27] or
drainage line [28], we will use the term stream for the sake of brevity, having in mind that not all such
lines correspond to real streams. Also, we will use the term pixel to name the rectangular element of a
raster DEM associated with each of its nodes. This avoids the confusion associated with the ambivalent
term cell, which, depending on the context, is also used to name the cohesion of the four neighboring
DEM nodes in subpixel computations (e.g., bilinear resampling).

The rest of the paper is organized as follows. The next section briefly discusses related research.
Then the proposed method is described in detail within the corresponding paper section. The Results
section demonstrates the effectiveness of our approach on the example of conflating GEBCO_2019
DEM [30] and river/lake centerlines from Natural Earth 1:10,000,000 dataset [31]. The Discussion
section provides the detailed analysis of the performance of the method and its limitations. Finally,
the most important insights as well as directions of the future research are briefly summarized in
the Conclusion.

2. Related Research

The problem of misalignment between vector hydrographic data and automatically extracted
drainage network is paid a great attention in hydrological applications of DEMs. It is particularly
important in the tasks where DEM is used to enrich the existing hydrographic datasets [32,33].
To ensure that flow distribution on a DEM is consistent with real hydrography multiple techniques for
so-called stream burning are developed. The standard approach to stream burning involves lowering
DEM pixel values under the hydrographic features so that they accumulate most of the flow [34–36].
Wu et al. [37] modified priority flood procedure [38], which fills artificial depressions by least-cost path
search technique, to implement drainage network extraction algorithm with drainage enforcement
along existing hydrographic features. Lindsay [29] developed the elaborate procedure for stream
burning which redirects the flow on a DEM surface in a way that concentrates its accumulation along
given vector hydrographic lines. While his method is effective for hydrological applications, it does
not displace terrain features encoded in the source DEM elevations and therefore is not suitable for
solving the problem from a cartographic point of view.

A mapping-oriented approach to automated extraction of hydrographically corrected contours
has been recently presented by Arundel et al. [39]. Their method conflates National Elevation Dataset
(NED) raster DEM with independently produced National Hydrography Dataset (NHD). It does that
by reinterpolating DEM pixel centers as elevation points with smoothing and drainage enforcement
along NHD features using the ANUDEM program [40]. While the method showed itself effective to
produce contours aligned with hydrographic data, it still uses the direct approach to burn streams
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into the surface. Therefore, it tends to be ineffective when elevation and hydrography data are poorly
aligned [39].

Yadav and Hatfield [41] explored the alternative case when the DEM is considered to be of a better
quality than vector hydrographic network. They offered DEM-Stream-Conflation (DSC) algorithm
which identifies the streams corresponding to real hydrographic features by tracing them automatically
from the start point of each hydrographic line. However, if the data are not aligned, the start point
(the source) of a vector hydrographic feature may fall within the wrong watershed. The method also
does not consider the case when tracing the corresponding stream is not possible due to different
drainage pattern on a DEM.

Drainage network is traditionally paid a special interest in DEM generalization research since it is
one of the most desirable features in terrain analysis and therefore should be adequately represented
after generalization [42]. Structural lines, mainly streams and ridges, but also other breaklines, form a
skeleton of terrain, which can be explicitly treated during generalization to derive more geographically
sounding results. Weibel [43] proposed an adaptive methodology combining filtering and structural
generalization in which generalized version of DEM is derived by simplification of structural lines
when the desired degree of generalization is significant. Research conducted by Fan et al. [44] and
Leonowicz et al. [45] showed that filtering can be guided by terrain slope, curvature or stream proximity
to enhance representation of ridges and valleys in generalized DEM.

There is a family of drainage-constraining DEM generalization methods, which allow preservation
of selected streams based on constrained triangulation [46–48]. Drainage network has its natural
companion—a system of watershed lines that represent hydrologically important ridges. Algorithms
proposed by Jordan [49] and Ai and Li [50] are based on the idea of filling the small watersheds and
thus removing minor valleys from the DEM. Samsonov [51] evolved this approach and combined it
with adaptive filtering which ensured that remaining valleys and watersheds are sufficiently wide.
Chen et al. [52] used tree model construction considering the nested relationship of watersheds to
extract representative terrain feature points for generalization.

Drainage-constraining DEM generalization algorithms rely on drainage network derived from
DEM using automated methods such as masking or tracing the flow accumulation raster [27]. However,
this approach does not guarantee that extracted streams represent the features in the generalized
hydrographic network. As a solution to this kind of problems, Gaffuri [53] developed a general GAEL
model for simultaneous agent-based generalization of vector features and fields. For the particular case
of vector hydrography and elevation field his approach is based on determination of spatial relations
between hydrography and elements of triangulated DEM in the source dataset. If a river is shifted
during generalization, then these changes can be propagated to elevation field by corresponding shift
in triangle coordinates. However, this is only possible when the elevation and hydrography data are
initially aligned, which is not the case investigated in our research.

Our overview shows that numerous methods to resolve inconsistencies between DEM and vector
hydrography have been developed. However, existing approaches are not motivated by visualization
quality, and therefore do not involve spatial conflation of DEM and hydrographic lines. At the same
time, data combined on maps often come from different sources. Existing free spatial databases
such as Natural Earth [31] and OpenStreetMap [21] do not include layers for representing land
elevation. Missing elevation data can be easily extracted from global DEMs, such as GMTED2010 [54]
or GEBCO_2019 [30], but the resulting elevation layer will be misaligned with hydrographic vector
features from the database, since these datasets are generated independently. Eventually, this will
lead to geographically incorrect and aesthetically unpleasing cartographic representations. Therefore,
the development of a specialized method for conflation of DEM with reference hydrographic lines
is needed. This method should be automated as much as possible and should be embeddable into
cartographic generalization processes.
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3. Method

3.1. General Principles and Workflow

We have developed a new method that performs conflation of DEM with reference hydrographic
lines. The method is based on the following principles:

1. A resulting terrain surface represented by elevations in conflated DEM must be spatially adjusted
with reference hydrographic lines.

2. Conflation is performed by displacing the elevation data. No new terrain features are created or
burned into the surface. Reference lines are not considered to be of a better quality than DEM,
but have primary importance in the conflation process and therefore remain at their locations.

3. Elevation data must be represented by vector features, either points or lines. Both raster and
triangulated DEMs can be easily represented as a set of elevation points and lines without loss
of information. Also, linear representation can be used when breaklines represent a structural
skeleton of the surface extracted from the source DEM to derive its generalized version. Thus,
vector-based representation abstracts the format of elevation input and serves different conflation
scenarios.

4. Displacing the elevation data is performed by rubbersheeting the corresponding vector features
along links directed towards reference hydrographic lines and originating from the most similar
paths on the DEM surface—counterpart streams (or counterparts). Each reference hydrographic line
is associated with one counterpart stream.

5. Counterpart streams are automatically extracted from the source DEM and must comprise a
topologically correct network similar to the network of the ordered reference lines. A method
of extraction of counterpart streams must be robust in case of existing errors in DEM and
hydrographic lines (artificial depressions, incorrect line directions) as well as in cases of
non-standard stream configurations (braided streams, deltas, channels).

6. Conflated DEM is reconstructed from the rubbersheeted elevation data.

The developed conflation method itself consists of seven stages, which are illustrated in Figure 2:

1. Order reference hydrographic lines (Figure 2b).
2. Trace counterpart streams (Figure 2c).
3. Generate rubbersheet links (Figure 2d).
4. Extract elevation data as vector features (Figure 2e).
5. Rubbersheet elevation data (Figure 2f).
6. Create triangulated DEM (TIN) from rubbersheeted elevation data (Figure 2g).
7. Reconstruct conflated DEM from TIN (Figure 2h).

The following paragraphs explain each stage of the method in detail.

3.2. Ordering of Reference Hydrographic Lines

Ordering is a pre-processing stage of the method, which is executed to reveal existing
topological relations between hydrographic lines and to organize them into the hierarchical structure,
which minimizes the number of elements in hydrographic network and establishes subordination
between them. Ordering is needed to provide inambiguous sequence in which counterpart streams
are traced, and to enable replication of topological relations existing in a network of reference lines by
similar relations in a network of counterpart streams.

To establish hierarchy of the streams we applied Hack ordering procedure [55] also known as
natural stream ordering. According to this procedure the longest upstream path from each outlet in a
river network obtains 1st order. Next, longest tributaries of 1st order streams are traced upstream
and the resulting lines are assigned 2nd order. The process continues until all hydrographic lines are
chained into the streams of a known order. Additional information such as drainage basin area (or flow
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accumulation) can be used to weigh stream lengths and prioritize rivers with large basins. The main
advantage of Hack stream ordering is that it establishes subordination between rivers in a network.
Also, it minimizes the number of streams by joining them during the ordering process, which reduces
the number of counterparts that need to be extracted.

Figure 2. DEM conflation method at a glance: (a) input DEM and hydrographic lines, (b) ordering
of hydrographic lines, (c) extraction of counterpart streams, (d) generation of rubbersheet links,
(e) extraction of vector elevation data, (f) rubbersheeting of elevation data, (g) triangulation of
rubbersheeted elevation data, (h) reconstruction of output conflated DEM. Reference hydrographic
lines are depicted in light blue color. Counterpart streams are depicted in red color.

The standard Hack ordering scheme needs to be refined for river sections with braided streams,
because all distributaries inside the braid are considered to be of the same order. In a modified scheme,
the longest stream passing through the braid keeps its order, while its tributaries are classified as if
they do not outflow from the main stream. Therefore, direct tributaries of the main stream receive the
same order incremented by one, and the process continues recursively for tributaries of tributaries
until the whole braid is processed. The ordering scheme refined in such way is called modified Hack
ordering in this paper.

Ordering of the streams relies on the knowledge of their initial topological relations, which
requires an additional preliminary processing step. Therefore, the ordered network of reference
hydrographic lines is obtained using the following sequence of steps:

1. Split hydrographic lines at intersections and construct a raw stream network with stream relations
and outlet nodes identified.

2. Reorganize the raw stream network using the modified Hack ordering.
3. Describe the topological structure of the resulting network in a tabular form.

The result of the first step is illustrated in Figure 3. Three special stream configurations are
highlighted in this figure. Braided streams, deltas (a) and channels (c) will have an additional constraint
on preservation of bifurcation topology during the search for their counterparts. Incorrectly digitized
streams (b) are treated per se. Our pre-processing algorithm does not try to identify and correct such
cases, because this procedure is unreliable. A possible misalignment between hydrographic lines and
DEM does not allow using the underlying elevation information to detect the correct direction of
the stream. Fortunately, as we will show later, this issue does not diminish the quality of conflation,
since the least-cost path strategy can be effectively used to trace counterparts against the flow direction
on DEM surface.



ISPRS Int. J. Geo-Inf. 2020, 9, 334 7 of 40

Figure 3. Reference hydrographic lines split at intersections. Non-standard configurations: (a) braided
streams and deltas, (b) incorrect direction of the line, (c) artificial channel connecting two rivers.

The resulting network of reference lines which establishes the modified Hack ordering of the
input hydrographic lines is represented in Figure 4. This network is supplemented by Table 1 that
summarizes the topological relationships between streams and defines the sequence in which their
counterparts should be traced. The table contains six variables:

• ID (unique identifier of the stream);
• CONFL (ID of the stream that current stream outflows to);
• BIFUR (ID of inflowing stream to the current stream);
• ITER (number of iteration during which a counterpart for the current stream should be extracted);
• ORDER (modified Hack order);
• TYPE (stream type with respect to bifurcation process).

The first three variables (ID, CONFL and BIFUR) are calculated during the ordering. The values of
the CONFL and the BIFUR variables encode topological relations between streams which incarnate in
four types of network nodes listed in the legend of Figure 4:

• outlet (end node of the stream with CONFL = −1);
• source (start node of the stream with BIFUR = −1);
• confluence (end node of the stream with CONFL 6= −1);
• bifurcation (start node of the stream with BIFUR 6= −1)

There are also two types of streams with respect to bifurcation process:

• main (streams with BIFUR = −1);
• distributary (streams with BIFUR 6= −1).

These stream types are encoded in the TYPE variable of Table 1 and in the legend of Figure 4.
Non-zero values of the CONFL and the BIFUR variables establish dependencies in the network of

reference hydrographic lines. In particular, if CONFL = j and/or BIFUR = k for some stream with ID = i,
then i is considered subordinate to j and/or k, which means that location of its start and/or end point is
tied to these streams. Consequently, j and/or k are considered to be superordinate to i. Preserving the
topological relations in hydrographic network requires that counterparts of superordinate streams
must be extracted prior to the counterparts of subordinate streams.
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Figure 4. Reference hydrographic lines arranged according to the modified Hack ordering.

Table 1. Attributes of ordered reference hydrographic lines.

ID CONFL BIFUR ITER ORDER TYPE

1 −1 −1 1 1 Main
2 −1 1 2 1 Distributary
3 1 −1 2 2 Main
4 1 −1 2 2 Main
5 1 −1 2 2 Main

6 1 1 2 2 Distributary
7 4 −1 3 3 Main
8 3 1 3 3 Distributary
9 −1 −1 1 1 Main

10 −1 9 2 1 Distributary

11 10 −1 3 2 Main
12 −1 −1 1 1 Main
13 −1 12 2 1 Distributary
14 12 −1 2 2 Main
15 12 −1 2 2 Main

16 12 −1 2 2 Main
17 14 −1 3 3 Main

The ITER variable in Table 1 establishes the sequence in which this process can be arranged.
The algorithm for generating the sequence starts from setting ITER = 1 for the streams with CONFL = −1
and BIFUR = −1. Then the corresponding streams are excluded from the list and iterations begin
starting with i = 2 as cycle variable. At each i-th iteration ITER = i is set for the streams with
CONFL 6⊂ ID and BIFUR 6⊂ ID. The corresponding streams are excluded from the list and iterations
continue with i = i + 1 until all streams are processed.

As can be seen from Table 1, the number of iteration is not necessarily equal to the modified Hack
order. Moreover, it does not depend on the type of the stream. At the same time, the order in which
the streams with equal ITER are processed during each iteration does not matter, since these streams
are independent from each other. With the sequence of iterations defined, we may proceed to the core
stage of the method—extraction of counterpart streams.
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3.3. Extraction of Counterpart Streams

The term counterpart stream is used in this paper to name the path on DEM surface most similar
to the reference hydrographic line (hereinafter, the definitions of the terms are highlighted using the
bold font). Since similarity is a general concept, we must now specify it in a way that allows automated
evaluation. This is done in terms of distances defined in the following paragraph.

3.3.1. Distances

Given the two subsets A = {a} and B = {b} of a metric space M with distance d defined, the
Hausdorff Distance dH(A,B) is calculated as [56]:

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}

Commonly the standard Euclidean distance d(a, b) =
√
(xa − xb)2 + (ya − yb)2 is used when dH

is estimated in two-dimensional space.
In practice, where A and B are finite point sets, the discrete version of dH is calculated. For each

point a inA the closest point ba in B is found and ~dH(A,B) = max
a

d(a, ba) is taken as an approximation

of supa∈A infb∈B d(a, b). Similarly, ~dH(B,A) = max
b

d(b, ab) is calculated as an approximation of

supb∈B infa∈A d(a, b). Finally, the discrete Hausdorff distance is derived as:

dH(A,B) = max
{
~dH(A,B), ~dH(B,A)

}
The distance ~dH is called the Directed Hausdorff Distance, since it measures the maximum

nearest neighbor distance from one set to another, but not the vice versa. Therefore, generally
~dH(A,B) 6= ~dH(B,A). Since both dH and ~dH are minimax measures, they are sensitive to outliers is
sets. This property is useful to limit the maximum spatial deviation of a counterpart stream and a
reference line from each other.

The Modified Hausdorff Distance dM introduced in [57] for image matching is based on the
similar idea, but replaces the maximum of nearest neighbor distances with their average:

dM(A,B) = max

{
1
|A|∑a

d(a, ba),
1
|B|∑b

d(b, ab)

}
,

where |A| and |B|mean the number of elements in A and B respectively. In comparison to dH and ~dH ,
dM is insensitive to outliers and provides the knowledge about the average proximity between curves.
This property is useful to select the counterpart stream among multiple candidates.

The three distances described above are not the best measures of proximity between two paths,
because they do not respect the continuity of lines. A stronger proximity measure for comparing two
lines is the Fréchet distance defined as [58]:

dF(A,B) = inf
α,β

max
t∈[0,1]

{
d
(
A
(
α(t)

)
, B
(

β(t)
))}

,

where A(u), B(v), u, v ∈ [0, 1] are the parametric descriptions of lines and α(t), β(t), t ∈ [0, 1] are
so-called reparameterizations that are optimized to find such u = α(t) and v = β(t) that minimize the
maximum distance between A(u) and B(v) for the common t. The parametric description implies that
A(0) is the start point of A, A(1) is the endpoint of A, and A(u) represents some intermediate point
on the curve, which moves continuously along A from its start until its end when u changes from 0 to
1. Being defined in a complicated way, the Fréchet distance is usually explained as the minimum length
of the leash that is needed for a man to walk his dog, while both of them follow their separate ways and these
ways must be traversed from the start to the end. While the Hausdorff distance and its modifications can
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be calculated in a straightforward manner, the Fréchet distance is not so easy to calculate. Methods
developed by Alt and Godau [59] and Eiter and Mannila [60] can be used to obtain dF and its discrete
version. The latter is represented as a short algorithm which we use in the current paper.

With these distances defined, we may proceed to formalization of conditions that can be used
to trace the counterpart of a single reference line. After these conditions are defined, we will briefly
discuss how they should be extended in case of multiple reference lines comprising the network.

3.3.2. Single Reference Line

A counterpart stream candidate s for the reference hydrographic line h is the path on DEM
surface that satisfies the following three conditions:

d
(
s(0), h(0)

)
≤ r,

d
(
s(1), h(1)

)
≤ r,

~dH(s, h) ≤ r,

(1)

where r is a distance threshold called the catch radius.
The first condition in (1) means that s must start not farther than r from the first point of h.

All locations that satisfy this condition are within the circle-shaped buffer zone of h(0) called the start
neighborhood and induced by offset distance r from h(0). The second condition in (1) sets the similar
constraint that relates the end points of s and h. Correspondingly, the circle-shaped buffer zone of h(1)
is called the end neighborhood. Finally, the third condition in (1) requires that s may deviate from h
not farther than r. All locations that satisfy this condition are within the buffer zone of h called the
counterpart stream corridor and induced by offset distance r from h.

The definition of counterpart stream candidate is illustrated in Figure 5.

Figure 5. Definition of counterpart stream candidate: reference hydrographic line (h), counterpart
stream candidate (s), catch radius (r), Directed Hausdorff distance (~dH) from s to h.

Since ~dH(s, h) limits only the distance of a counterpart candidate from the reference line, but not
the opposite, it is the weakest possible distance constraint. The quality of the candidate can be
additionally restricted by using the Hausdorff and the Fréchet distances. In particular, we distinguish
the three following classes:

• strong: dF(s, h) ≤ r;
• regular: dH(s, h) ≤ r;
• weak: ~dH(s, h) ≤ r.

It is important to note that if weak constraint is applied, it is still possible that counterpart candidate
fits strong and/or regular constraints, but that cannot be guaranteed. For that reason, these classes
are used not only for selection of candidates, but also for assessment of the quality of resulting paths
(Table 2).
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Let S = {s} be a set of counterpart stream candidates. To formalize the conditions used to select
counterpart stream from S we need to represent each candidate as a parametric curve indexed by t:

s(t) =
(
x(t), y(t)

)
, t ∈ [0, 1]

Let p = (x, y) be a tuple of coordinates representing the center of a pixel (a DEM node) and
F(p) = F(x, y) be a flow accumulation field. The flowline counterpart stream c is then selected by
finding s that satisfies the following three conditions:

min
∀p∈s

F(p) ≥ a,

F
(
s(u)

)
≥ F

(
s(v)

)
| u > v,

dM(s, h) = min
∀sj∈S

dM(sj, h).

(2)

The first two conditions in (2) constrain s to be a member of the drainage network on DEM surface:
it is required to pass through the pixels with flow accumulation greater than the defined threshold
(min F(s) ≥ a) in direction of the monotonous flow accumulation increase (F

(
s(u)

)
≥ F

(
s(v)

)
| u > v).

The third condition in (2) forces s to be the closest candidate to the reference line in terms of the
Modified Hausdorff Distance.

The technical details of flowline counterparts extraction can be found in the Appendix A.
In particular, Algorithm A2 contains the pseudocode which implements the developed method.
An example of one extracted flowline counterpart stream is shown in Figure 6 (parameter values
and the data are the same as in the Results section). This figure additionally highlights DEM pixels
belonging to the drainage network defined by the first condition in (2).

Figure 6. Flowline counterpart stream.

The variety of spatial data produces situations in which flowline counterpart streams cannot be
traced. Among the common cases inverse direction of a reference line and incorrect flow distribution
on DEM surface caused by artificial depressions should be noted. Also, unfortunate selection of r and
a parameters or using a strong or regular candidate constraint instead of weak may prohibit obtaining
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the flowline counterpart. To overcome this problem, our method includes an alternative least-cost path
strategy explained below.

Let E(p) = min
(x,y)∈h

d(p, h) be the field of Euclidean distances to h, and h(t) =
(
X(t), Y(t)

)
, t ∈ [0, 1]

be a parametric description of reference hydrographic line with h(0) as the start point and h(1) as
the end point. Then the least-cost counterpart stream c is found by tracing the candidate s which
minimizes the following functional:

∫ 1

0
W
(
s(t)

)[
E
(
s(t)

)
+ 1
]
dt→ min (3)

under conditions: {
s(0) = h(0),

s(1) = h(1),

where W(p) is the offstream penalty function defined as:

W(p) =

{
1 if F(p) ≥ a,

wẐ(p) if F(p) < a,
Ẑ(p) = Z(p)−min(Z) + 1. (4)

The constant w ≥ 1 in Equation (4) called the offstream penalty weight is set as one of conflation
parameters. It increases the cost of the path when it passes through pixels that do not belong to the
drainage network on DEM (F(p) < a).

The offstream penalty function also prioritizes the paths with similar or lower elevations by
multiplying w on the relative elevation Ẑ(p) in Equation (4). This variable is calculated as a vertical
offset above the minimum elevation on DEM plus 1, which is added to ensure that the pixel with
Z(p) = min(Z) does not automatically receive the zero cost.

In comparison to the flowline counterprarts, least-cost counterparts start and end exactly at pixels
that contain the specified points, but considered to be of a lower quality, since they are allowed to pass
through DEM pixels that do not belong to the drainage network. The technical details of least-cost
counterpart extraction can be found in the Appendix A. In particular, Algorithm A3 contains the
pseudocode which implements the developed method. An example of the least-cost counterpart
stream is shown in Figure 7. Alongside the reference line and its counterpart, this figure contains
the cost surface visualized with stretched color gradient. Pixels belonging to the drainage network
have the cost value equal to 1 and are assigned the darkest color. The cost rapidly increases with the
distance from the reference line and gradually decreases with elevation. This forces counterpart stream
to be as close as possible to the reference line and to seek for the path that goes downslope.

Figure 7. Least-cost counterpart stream. The rectangle outlines the area represented in Figure 9.
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3.3.3. Multiple Reference Lines

When multiple reference hydrographic lines are given as the input, additional efforts must be
undertaken to preserve their topological relations. In particular, each confluence and bifurcation
junction must be represented as a similar counterpart junction between resulting counterpart streams.
Let h1 and h2 be the reference hydrographic lines, from which h1 is superordinate and h2 is subordinate.
Also let c1 and c2 be their corresponding counterparts, and s2 be some counterpart candidate for
h2. Both counterparts and candidates consist of the points which are essentially the centers of the
pixels through which these lines were traced. Then the following five topological rules represented in
Figure 8 are applied:

Topological rule 1. If h2 is tributary to h1 at some confluence junction γ, then the end neighborhood
of s2 must be centered at point v on c1 which is closest to γ. For the flowline candidate it means that
the condition d

(
s2(1), h2(1)

)
≤ r transforms into d

(
s2(1), v

)
≤ r. If the least-cost method is used for

tracing, then the condition s2(1) = h2(1) transforms into s2(1) = v. Resulting counterpart junction is
labeled as γ′ in Figure 8a.

Topological rule 2. If h2 is distributary from h1 at some bifurcation junction λ, then the start
neighborhood of s2 must be centered at point u on c1 which is closest to λ. For the flowline candidate
it means that the condition d

(
s2(0), h2(0)

)
≤ r transforms into d

(
s2(0), u

)
≤ r. If the least-cost method

is used for tracing, then the condition s2(0) = h2(0) transforms into s2(0) = u. Resulting counterpart
junction is labeled as λ′ in Figure 8b.

Topological rule 3. If c2 is flowline and does not have common points with c1, then it should be
extended to reach c1 exactly using the least-cost approach. Figure 8c illustrates the case in which h2

is tributary to h1, but the similar rule applies when h2 is distributary from h1. Resulting counterpart
junction is labeled as γ′′ in Figure 8c.

Topological rule 4. If c2 = {pk, k = 1, ...|c2|} is tributary and has more than one common point
with c1, then it should be replaced with c2 = {pk ∈ c2 | k = 1, ..., kmin}, where kmin is the smallest index
of the common point. Resulting counterpart junction is labeled as γ′′ in Figure 8d.

Topological rule 5. If c2 = {pk, k = 1, ...|c2|} is distributary and has more than one common point
with c1, then it should be replaced with c2 = {pk ∈ c | k = kmax, ..., |c2|}, where kmax is the largest
index of the common point. Resulting counterpart junction is labeled as λ′′ in Figure 8e.

Applied in the described sequence, these rules ensure that the resulting counterpart streams will
comprise the network with a topological structure similar to the topological structure of reference
hydrographic lines. Technical details of application of these rules are explained in the Appendix A.
In particular, Algorithm A1 contains the pseudocode of the main program which applies topological
rules 1 and 2, then executes tracing of the counterpart stream, and finally applies topological rules 3–5.

Figure 8. Topological rules for tracing the counterparts of multiple reference hydrographic lines:
(a) topological rule 1 (preservation of confluence junction), (b) topological rule 2 (preservation of
bifurcation junction), (c) topological rule 3 (extension of subordinate counterpart), (d) topological rule
4 (trimming of subordinate counterpart near confluence junction) (e) topological rule 5 (trimming of
subordinate counterpart near bifurcation junction).

Figure 9 illustrates how topological rules 1 and 4 act in practice. The counterpart for superordinate
reference line is traced first. Since this counterpart does not pass through reference confluence
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junction, it is not reasonable to seek for subordinate counterpart that ends at this junction. Instead,
the end neighborhood of this line moves to the closest point on superordinate counterpart, and the
counterpart stream corridor extends, respectively. When the least-cost subordinate counterpart is
traced, it enters the superordinate counterpart, and shares a short section with it until reaching the
endpoint. This shared section is trimmed to remove overlap and to obtain the final counterpart
junction.

Figure 9. Derivation of counterpart confluence junction.

3.4. Generation of Rubbersheet Links

Rubbersheet links are generated between each counterpart stream and its reference line to act
as the local force vectors that will guide the rubbersheeting transformation of elevation data. Since
each counterpart stream is extracted from DEM, its vertices are separated by the distance equal to the
DEM pixel size R or

√
2R. To ensure the regular distribution of links, the vertices of each reference line

are preliminarily densified so that the distance between them is not larger than R. Next, the links are
generated as line segments between the vertices of the counterpart stream and the nearest vertices of
the reference line. The technical details of this process are explained in the Appendix A. In particular,
Algorithm A4 contains the pseudocode which implements the developed method. Rubbersheet links
generated for a fragment of the counterpart stream from Figure 7 are shown in Figure 10.

Figure 10. Rubbersheet links.

3.5. Extraction of Vector Elevation Data

The subsequent explanations are supplemented by Figures 11 and 12, which illustrate the cases of
generalized and non-generalized output. The example fragment of the source raster DEM with one
reference line overlaid is presented in Figures 11a and 12a.

To perform DEM rubbersheeting based on generated links, the source elevation data must be
represented as vector features. This requirement allows to avoid dependency of processing workflow
on the actual organization of the data, be it in a form of a raster DEM, triangulated DEM, structural
lines, contours or point elevations. Therefore, at the current stage of processing, if no generalization
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is required, raster DEM nodes (pixel centers) may be converted into vector points. A corresponding
point-based representation is shown in Figure 11b.

Figure 11. Conflation of raster DEM with reference hydrographic line: (a) source DEM and reference
hydrographic line; (b) elevation points (black dots), counterpart stream (red line), rubbersheet
links (white arrows), conflation area (transparent gray polygon) and identity links (white dots);
(c) rubbersheeted elevation points; (d) TIN; (e) rasterized conflated DEM; (f) carved and widened
conflated DEM.

A different approach to DEM vectorization should be taken when a DEM has to be generalized
with preservation of valleys corresponding to the independently generalized hydrographic lines.
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To satisfy this requirement, we can use one of the drainage-constraining DEM generalization
methods [45–51]. These methods have some differences, but all of them include extraction of primary
streams that are preserved in generalized DEM surface. Therefore, to guarantee that the resulting DEM
can be conflated with reference hydrographic lines, we must ensure that their counterpart streams are
included into the set of primary streams.

In particular, one of the abovementioned methods [51] extracts three types of structural lines
based on the flow accumulation and the stream length criteria:

1. Primary streams.
2. Watersheds of primary streams.
3. Watersheds of secondary streams (which are direct tributaries of primary streams).

These structural lines extracted from example DEM fragment for generalized case study and are
shown in Figure 12b.

3.6. Rubbersheeting

With links generated and elevation data represented by vector features, a standard rubbersheeting
approach can be used to conflate the elevation data with reference lines [2,3]. In comparison to
affine, projective or polynomial type of transformation this method is local, which allows the precise
adjustment of the DEM surface. However, since rubbersheeting warps the space not only along
rubbersheet links but also at some vicinity, it is desirable to have the means of limiting the area of
distortion. We implement this by reconstructing the conflation area A as a buffer of the polygon
enclosed by reference lines, counterpart streams and rubbersheet links. Catch radius r is used as
a default offset distance, but can be parameterized to another value. Conflation area is shaded by
transparent gray color in Figures 11 and 12. The points generated along the boundary of this area
define so-called identity links LI . Identity links are equally distributed with separation distance equal
to DEM resolution. These points, which are depicted as white dots in Figures 11 and 12, establish
locations that remain fixed during the rubbersheeting process and do not allow the transformation to
be propagated outside the conflation area.

Examples of rubbersheeted elevation points and structural lines are represented in
Figures 11c and 12c, respectively. Rubbersheeting is performed at once using the full set of generated
links. It is important to note that outside of conflation area no rubbersheeting is performed and
elevation data features remain at their locations.

3.7. Reconstruction of Conflated DEM

If the input digital elevation model is in a raster form, then the output of the conflation process
can be derived by triangulating the rubbersheeted elevation data and rasterizing the obtained TIN
surface. A note should be taken that if the output raster dimensions (at least pixel size and offset) are
the same as the dimensions of the input raster DEM, then both the linear and the natural neighbor
TIN rasterization methods will produce the same elevation values at raster pixels which are located
outside of the conflation area. This is guaranteed since the centers of these pixels will be coincident
with elevation points fed into the rubbersheeting algorithm.

Triangulations of conflated points and structural lines, as well as the resulting raster DEMs are
represented in Figures 11d,e and 12d,e, respectively. Misalignment between the DEM and the reference
lines is removed in both cases, while in the generalization case the presence of the counterpart stream
is additionally enforced in the resulting surface.
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Figure 12. Conflation of raster DEM with reference hydrographic line (during generalization): (a) source
DEM and reference hydrographic line; (b) streams (black lines), watershed boundaries (gray lines),
counterpart stream (red line), rubbersheet links (white arrows), conflation area (transparent gray
polygon) and identity links (white dots); (c) rubbersheeted streams and watershed boundaries; (d) TIN;
(e) rasterized conflated DEM; (f) carved and widened conflated DEM.

3.8. Post-Processing

Generally, the previous stage finishes the horizontal conflation process. However, both cartographic
and analytical purposes require that the DEM and the reference hydrographic lines must be aligned in
vertical dimension. From a cartographic point of view, it means that elevations along each hydrographic
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line must decrease monotonically, i.e. there should be no depressions or hills on its pathway. Otherwise,
the cartographic DEM representation will be unrealistic and aesthetically unpleasing. In the current
implementation we perform a simple procedure that carves the positive terrain features existing in
conflated DEM along each reference hydrographic line using the linear interpolation. The carved
DEM can be additionally widened along the reference lines to ensure the visibility of corresponding
valleys in DEM surface [45,51]. The final results obtained both by carving and widening procedures
are represented in Figures 11f and 12f.

It should be noted that if the DEM is planned to be used in hydrological analysis, the constraints
must be stronger. In addition to the monotonous elevation decrease, the hydrographic lines must
be fully represented in a drainage network of the DEM. Since this task is usually solved by stream
burning operation, the same procedure can be applied to the conflated DEM. The potential advantage
of burning the conflated DEM is that it will not create the new negative terrain features in DEM surface,
but will instead redirect the flow towards existing ones which are already aligned with reference lines.

3.9. General Workflow

The entire workflow for a raster DEM as the input data is represented in Figure 13. It handles both
cases of non-generalized and generalized output during Extract vector elevation data operation,
which can be adopted to the task. For the sake of brevity, some intermediate operators and data are
omitted from the scheme. In particular, a preliminiary artificial depressions removal is needed to
obtain high-quality flow direction and flow accumulation rasters from DEM. Also, a triangulated DEM
and a raster DEM are the hidden results of Triangulate and Rasterize operations, respectively.Ordered hydrographic lines Raster DEMExtract counterparts Counterpart streamsGenerate rubbersheet linksRubbersheetlinks RubbersheetElevation data Rubbersheeted elevation dataRasterize Post-processConflated raster DEMPolygonize Conflation area Identity links TriangulateFlow accumulationINPUT

OUTPUT

Extract vector elevation dataGenerate points along boundaryINPUT Raster dataVector dataOperatorNotationReference hydrographic linesOrder Buffer Flow direction
Figure 13. General workflow for conflation of raster DEM with reference hydrographic lines.

4. Results

We have implemented the method in Python programming language using numpy [61] and
arcpy [62] modules. The software is open-access and can be downloaded from GitHub repository [63].
Implementation was tested on the example of the two widely used open-access spatial datasets: the
GEBCO_2019 raster DEM [30] and the Natural Earth vector database [31]. The GEBCO_2019 Grid is the
latest global bathymetric product released by the General Bathymetric Chart of the Oceans (GEBCO) in
2019 and has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. Its ground
resolution is 15 arc-seconds, which estimates to approximately 500 m along equator. The Natural Earth
dataset contains spatial data for mapping at 1:10,000,000, 1:50,000,000 and 1:110,000,000 scales. For our
experiment we used hydrographic data from 1:10,000,000 level of detail as a set of reference lines
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(version 4.1.0). These lines are much more generalized than GEBCO model, which creates the case of
distinctively misaligned data and is useful for testing the method.

Both datasets were clipped to the extent of the territory in Central Europe located mainly in
the basin of Donau (Danube) river and represented in Figure 14. The size of the clipped DEM is
1358× 1007 pixels, while the clipped river network contains 28 features. To enable processing in metric
units, both datasets were transformed into the equidistant cylindrical (plate carrée) projection, which
keeps the raster geometry unwarped. High-quality D8 flow direction and flow accumulation rasters
were derived after processing the source DEM with depression breaching procedure [64]. To control
the conflation process, we used the catch radius r = 6000, the minimum flow accumulation a = 10 and
the offstream penalty weight w = 30 as optimal parameter values found through experiment. Weak
candidates constrained by Directed Hausdorff Distance ~dH were considered by default.

Unique identifiers of reference hydrographic lines are labeled near each feature in Figure 14.
Two features are of particular interest here: the distributary line with ID = 9, which forms a braided
section of Donau river near Budapest, and the line with ID = 36, which is in fact two rivers from Elbe
and Donau basins wrongly joined into one feature. We have deliberately not corrected this error to test
the robustness of our approach in non-standard situations.

The map on the bottom part of Figure 14 represents the raw GEBCO_2019 DEM with counterpart
streams overlaid. Since the Natural Earth data is already digitized according to the Hack order for
cartographic purposes (with main streams being contiguous from the source to the outlet), we have
not modified the initial geometry, but calculated stream orders and iteration numbers according to
the pre-processing algorithm described in section 3.2. The derived counterpart streams comprise a
topologically correct network with structure identical to the network of reference lines (the end of each
stream is indicated by arrow). There are two types of counterparts indicated using a special symbol
in Figure 14: distributary least-cost streams (ID = 9, 34) and extended flowline stream (ID = 17),
for which the compliance with topological rules 2 and 3 was carefully ensured by the algorithm.

Table 2 summarizes the results of extraction of counterpart streams. The first six columns are
generated during hydrographic lines ordering stage and correspond to Table 1. The last five columns
reveal the type and similarity of resulting counterpart streams to their reference prototypes. For each
stream the Directed Hausdorff Distance ~dH , the Hausdorff Distance dH and the Fréchet Distance
dF was calculated, and the quality of the counterpart was estimated in terms of classes introduced
in Section 3.3.1. Even though weak constraint was used to filter candidates, all streams except
one fall into the strong class limited by the Fréchet distance, and the values of three distances are
mainly quite close to each other. This result advocates our decision to use weak constraint as default.
Despite that similarity measures other than the Fréchet distance do not respect the continuity of lines,
their application can be justified by practical considerations: weaker constraints can be satisfied by
simpler and faster processing procedures, which is important in case of large datasets. The fact that
counterpart stream with ID = 15 does not satisfy regular and strong constraints is caused by applying
the topological rule 4: this counterpart reached the superordinate one outside end neighborhood and
its final overlapping section was trimmed.

The top image in Figure 14 is a map with hydrography data overlaid upon the conflated
DEM, which was generalized by structural method [51] to match the level of detail of hydrographic
data. The minimal length of a primary stream was set to 45 DEM pixels, while for a secondary
stream it was set to 15 DEM pixels during generalization. The resulting map in Figure 14 clearly
demonstrates that the generalized DEM is perfectly aligned with the reference hydrographic lines,
and a high-quality cartographic output can be achieved using our method. The map also demonstrates
that the abovementioned incorrect line with ID = 36 poses no problem to the method, and the resulting
DEM is aligned with this reference line.
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Figure 14. Top: reference hydrographic lines and generalized conflated DEM. Bottom: counterpart
streams and the source DEM.

To illustrate the effectiveness of our method in detail we have selected four regions conventionally
named after the largest city located inside. These regions are indicated by rectangles at the bottom
map in Figure 14. The first two regions, I. Linz and II. Prague are represented in Figure 15, while the
remaining two, III. Bratislava and IV. Budapest, are shown in Figure 16. Both figures are arranged in a
similar layout, where the top image shows the source DEM, the middle image shows conflated DEM,
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and the bottom image shows conflated generalized DEM. The minimal length of a primary stream
during generalization was set to 9 DEM pixels, while for a secondary stream it was set to 3 DEM pixels.
In all images reference hydrographic lines are the same. These cartographic representations prove the
effectiveness of the developed method both for non-generalized and generalized output. While in case
of the source DEM the misalignment with reference lines is evident, this problem is effectively solved
by conflation procedure. Resulting DEM can be used to produce high-quality cartographic images at
different scales.

Table 2. Summary of counterpart streams extraction results.

ID CONFL BIFUR ITER ORDER TYPE COUNTERPART dF , m dH , m ~dH , m QUALITY

2 6 −1 2 2 Main Least-cost 4065 4065 4065 Strong
3 −1 −1 1 1 Main Flowline 3202 3202 3202 Strong
6 −1 −1 1 1 Main Flowline 4412 4384 4384 Strong
7 −1 −1 1 1 Main Least-cost 4705 4472 4472 Strong
8 7 −1 2 2 Main Least-cost 2809 2809 2809 Strong

9 32 32 2 2 Distributary Least-cost 2357 2357 2356 Strong
11 32 −1 2 2 Main Least-cost 2375 2375 2375 Strong
12 32 −1 2 2 Main Flowline 5166 5136 5136 Strong
13 36 −1 5 4 Main Flowline 4586 4477 4477 Strong
14 35 −1 3 3 Main Least-cost 3307 3307 3307 Strong

15 32 −1 2 2 Main Least-cost 6264 6264 4277 Weak
16 15 −1 3 3 Main Least-cost 2884 2884 2884 Strong
17 3 −1 2 2 Main Flowline 4737 4737 4737 Strong
18 2 −1 3 3 Main Least-cost 2501 2501 1754 Strong
19 2 −1 3 3 Main Flowline 2510 2510 2510 Strong

20 32 −1 2 2 Main Least-cost 3341 3341 2581 Strong
21 6 −1 2 2 Main Least-cost 1987 1987 1987 Strong
22 32 −1 2 2 Main Flowline 4604 4604 4604 Strong
23 −1 −1 1 1 Main Flowline 1378 1378 1378 Strong
25 32 −1 2 2 Main Flowline 2519 2519 2320 Strong

26 32 −1 2 2 Main Least-cost 4185 4185 4185 Strong
27 16 −1 4 4 Main Least-cost 4408 4408 4408 Strong
28 32 −1 2 2 Main Least-cost 2998 2998 2998 Strong
30 −1 −1 1 1 Main Flowline 4059 4059 4059 Strong
32 −1 −1 1 1 Main Least-cost 4206 4206 4206 Strong

34 12 −1 3 3 Main Least-cost 4417 4417 4417 Strong
35 32 −1 2 2 Main Least-cost 3689 3689 3689 Strong
36 2 34 4 3 Distributary Least-cost 4032 4032 4032 Strong

Finally, we have numerically estimated the alignment between DEM and reference lines using
Cohen’s Kappa index of agreement [65]. For this we extracted a drainage network from both the source
and the conflated DEM using a = 10 as the minimum flow accumulation threshold. Resulting streams
were expanded by one pixel in both cases to compensate for inavoidable discrepancy between the TIN
and the resulting raster elevations conditioned by a limited pixel size. Then the reference hydrographic
lines were rasterized on the same raster grid and the overlap between the rasterized lines and the
expanded streams was analyzed. The resulting kappa statistic depends on the fraction of reference
line pixels contained in the expanded set of drainage network pixels. Table 3 includes the identifier of
each stream, the values of kappa index of agreement κ0 and its asymptotic standard error (ASE) σ̂0

for the source DEM, and similar statistics κc and σ̂c for conflated DEM. Resulting values show that
our method systematically improves the alignment between the reference hydrographic lines and the
drainage network implicitly represented in DEM surface. The average value of index of agreement
increased from 0.56 (moderate) to 0.98 (almost perfect) as a result of conflation. Thus, both the visual
and numerical assessment of results indicate that the goal of our research has been achieved.
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Figure 15. Cartographic images for I. Linz (left) and II. Prague (right) fragments: (a) source DEM,
(b) conflated DEM, (c) conflated generalized DEM.
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Figure 16. Cartographic images for III. Bratislava (left) and IV. Budapest (right) fragments: (a) source
DEM, (b) conflated DEM, (c) conflated generalized DEM.
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5. Discussion

The current section provides information which is necessary to facilitate the practical application
of the developed method and to understand its limitations. In particular, we analyze the method from
four perspectives: parameterization (how to select the parameters), processing time (how long does it
take to process the data), displacement and accuracy (how much distorted the resulting DEM is and
how to minimize the distortion), and robustness (how effectively the method performs on different
data). All conclusions are based on elevation and hydrography data used in the Results section.

Table 3. Statistics of agreement between the reference hydrographic lines and the drainage network
extracted from DEM.

ID κ0 σ̂0 κc σ̂c

2 0.758 0.015 0.991 0.003
3 0.830 0.018 0.992 0.004
6 0.560 0.024 0.993 0.003
7 0.415 0.018 0.998 0.001
8 0.457 0.021 0.966 0.006

9 0.433 0.047 1.000 0.000
11 0.620 0.018 0.992 0.003
12 0.396 0.022 0.998 0.002
13 0.577 0.029 1.000 0.000
14 0.539 0.026 0.977 0.007

15 0.457 0.021 0.982 0.005
16 0.382 0.024 0.929 0.010
17 0.470 0.033 0.977 0.008
18 0.549 0.050 1.000 0.000
19 0.509 0.027 1.000 0.000

20 0.463 0.027 0.985 0.005
21 0.646 0.030 1.000 0.000
22 0.567 0.024 0.997 0.002
23 0.591 0.059 0.978 0.015
25 0.862 0.031 0.877 0.030

26 0.621 0.030 1.000 0.000
27 0.513 0.026 0.993 0.004
28 0.553 0.028 1.000 0.000
30 0.820 0.021 0.964 0.010
32 0.449 0.013 0.997 0.001

34 0.589 0.021 0.994 0.003
35 0.484 0.018 0.958 0.006
36 0.556 0.019 0.985 0.004

5.1. Parameterization

Catch radius r limits the maximum spatial deviation of a counterpart stream from its reference
prototype. The minimum possible value for catch radius is equal to DEM pixel size R. In such case
counterpart streams will follow DEM pixels exactly under the reference lines. The values of r smaller
than R will prohibit extracting of counterpart streams except in artificial case where reference line
follows exactly the centers of DEM pixels. Larger values of r will guarantee that counterpart stream
will be extracted, but finding the flowline counterpart can be problematic if r value is set close to R.

Since the spatial precision of counterpart extraction is limited by pixel size of the DEM,
we recommend setting the catch radius as R multiplied by some positive integer value k:

r = k× R, k ∈ N∗.
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In our experiment we used r = 6000 m, which for R = 500 corresponds to k = 12. The default
value in the developed conflation software is set to k = 10. However, this value should be refined
by the user based on the visual assessment of actual misalignment between the DEM and reference
hydrographic lines. Excessively large k may lead to identifying the unreliable counterparts. Since r
also defines the extent of the conflation area, increasing its avlue will also lead to the warping of a
larger part of DEM surface, which may be undesirable.

Minimum flow accumulation a defines the lower threshold for possible magnitudes of counterpart
streams. The higher the value of a, the more significant paths in a drainage network will be identified
as counterpart streams. Since counterpart streams must start and end within the neighborhood of the
start and the end point of a reference line, setting a to a large value may lead to situations where no
drainage network pixels will appear inside the neighborhood, and only least-cost counterpart can be
found in such case. Therefore, if a flow accumulation raster represents the number of pixels drained
upstream, the following inequality can be used as a rule of thumb when selecting the value of a:

a ≤ k

In our experiment we used a = 10, which met this recommendation and worked nicely to extract
dense and plausible drainage network suitable for conflation purposes.

Offstream penalty weight w defines how strictly the least-cost counterpart will follow the drainage
network defined by a. The smaller the value of w, the easier would be for algorithm to “jump” from
one stream to another in pursuit of the shortest path. Since such behavior is generally illegal for
a drainage path, the value of w should be set large to increase the penalty. Based on the practical
experience, we recommend setting w as 10 multiplied by some positive integer value m:

w = m× 10, m ∈ N∗.

In our experiment we used w = 30, which corresponds to m = 3. The same value is set as default in the
developed conflation software. Lower values increase the frequency of situations where a counterpart
stream follows exactly the reference line or jumps from one drainage path to another, which leads to
geographically unreliable results.

5.2. Processing Time

The total processing time to conflate the example GEBCO_2019 DEM used in the Results chapter
(without generalization) according to the workflow in Figure 13, was approximately 21.5 min.
Its structure is represented in Figure 17a. The process is initialized by the ordering of lines and
calculation of everything that is neeeded to derive the flow accumulation raster (including depression
breaching and flow direction), which took approximately 1.5 min. The following stage, extraction
of counterpart streams, is the most computationally expensive and took 17 min (79% of the total
processing time). The remaining stages of conflation until post-processing took 2.5 min, and the
post-processing was finished in 0.5 min.

Execution of exactly counterpart tracing functions took about 9 min, while the remaining 8 min of
counterpart extraction was taken by supplementary actions, including quality assessment. Flowline
counterpart candidate tracing (which is executed in obligatory order for each reference line) performed
much faster in current implementation than least-cost counterpart tracing (33 s and 8 min 29 s in total
correspondingly). It is worth noting that flowline_counterpart() was programmed in pure Python,
while leastcost_counterpart() consists of calls to the compiled arcpy map algebra functions that
have some execution overhead.

Duration of tracing the flowline counterpart streams showed power law dependency on the value
of catch radius r. The change in execution time of flowline_counterpart() function for the reference
line with ID = 13 is represented in Figure 17b (r is scaled to kilometers for convenience). At the same
time, duration of least-cost counterpart tracing showed no dependency on catch radius. The process of
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counterpart streams extraction is easily parallelized and can be rewritten using a high-speed compiled
language like C++ to dramatically reduce the overall processing time.

Figure 17. Processing time: (a) total processing time and its structure, (b) flowline counterpart tracing
time for the reference line with ID = 13 as a function of catch radius r.

5.3. Displacement and Accuracy

Since DEM conflation involves rubbersheeting of elevation data, the question arises how much
surface displacement is observed in horizontal and vertical dimensions as a result. To answer
this question, we selected elevation points located inside the conflation area (~29% of all points)
and calculated the actual (dx, dy, dz) displacement vectors between their positions before and after
rubbersheeting. The components (dx, dy) define the magnitude of the horizontal displacement
dxy =

√
dx2 + dy2. The third component dz is a vertical displacement which is the difference between

z value sampled by rubbersheeted elevation point from the resulting conflated DEM and the initial z
value of that elevation point extracted from the source DEM. Therefore, vertical displacement is not
measured at fixed location is space, but keeps the record of the vertical movement of the sampled
surface point.

Table 4 and Figure 18 present displacement statistics in tabular and graphical form. Since actual
displacements are induced by rubbersheet links, we calculated statistics for (dx, dy) and dxy for these
vectors too. Table 4 shows that the magnitude of displacement vector does not exceed the DEM pixel
size in average with both mean and median of dxy smaller than 500 m. Displacement vectors are
generally shorter than rubbersheet links, which is expected, since actual force applied to each point is
a superposition of multiple rubbersheet links, and the magnitude of the force decreases to the zero
value near the identity links.

At the same time, there is a significant asymmetry in displacement, which is reflected in dx and
dy components of the vectors. While dx is slightly negative and close to zero, dy has the pronounced
positive value, which means that generally all rubbersheeted elevation points are moved in the
positive direction of Y axis. This fact is clearly illustrated by the joint probability density plots for
(dx, dy) in Figure 18a,b. A Gaussian kernel with bandwidth σ = 750 m was used for estimation.
The density surface for the horizontal displacement is more excessive around zero value, but both
surfaces have a long tail in Y direction. This observation reveals a systematic shift between DEM and
hydrography, which can be reduced by applying a global (affine) transformation of elevation data
before rubbersheeting.

Though for both rubbersheet links and displacement vectors according to Table 4 the largest
magnitude is close to catch radius (6000 m), the interquartile range (IQR = Q3 −Q1) for displacement
vector magnitude is very compact and close to DEM pixel size. Empirical distribution function of
dxy (Figure 18c) shows that 66% of all elevation points were moved to the distance equal or smaller
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then DEM pixel size, while 95% of all elevation points were not moved farther than 1480 m, which is
approximately the distance covered by three DEM pixels.

The source of vertical displacement is the procedure during which resulting raster is reconstructed
by interpolation on TIN surface. Since resulting pixel centers do not coincide with locations of
rubbersheeted points inside the conflation area, the sampled values differ from those extracted from
the original DEM. According to Table 4 both mean and median values of dz are very close to zero,
while IQR defined by Q1 = −1.52, Q3 = 1.76 is so narrow that can be considered insignificant for a
DEM with such a large pixel size.

Probability density plot for dz in Figure 18d confirms that most of the vertical displacement values
are concentrated in a few meters proximity around zero. The effective range of dz defined by the values
no further than 1.5IQR from Q1 and Q3 is about (−6.5, 6.5) and is indicated by boxplot whiskers in
the bottom part of Figure 18d. Empirical distribution function of |dz| (Figure 18e) shows that 95% of all
elevation points were not displaced in vertical direction farther than 27.42 m in absolute value, which
is also quite acceptable for a coarse-resolution DEM covering mountainous areas.

Table 4. Displacement statistics.

Variable Rubbersheet Links Displacement Vectors

dx [m]
Mean (SD) –49 (761) –28 (397)
Median (Q1, Q3) –16 (–302, 225) –4 (–126, 92)
Range [–5404, 6210] [–4461, 3747]

dy [m]
Mean (SD) 301 (926) 179 (533)
Median (Q1, Q3) 256 (–111, 803) 98 (–22, 389)
Range [–4675, 4390] [–4675, 4390]

dxy [m]
Mean (SD) 936 (808) 467 (506)
Median (Q1, Q3) 726 (334, 1259) 302 (114, 643)
Range [4, 6264] [0, 5137]

dz [m]
Mean (SD) - 0.07 (13.77)
Median (Q1, Q3) - 0.03 (–1.52, 1.76)
Range - [–466.49, 390.49]

Total number 22,606 393,622

To conclude the analysis of displacement statistics, we can state that though rubbersheeting
process can distort the surface significantly, the actual displacements appeared to be very moderate,
which may potentially keep the DEM suitable not only for cartographic purposes, but for analytical
applications too.

A discussion on analytical applications of conflated DEMs require us to switch from impartial
notion of displacement to evaluative notion of accuracy. However, in the context of DEM conflation,
when some parts of the DEM remain fixed, and another are displaced, it is not clear, how the change
in accuracy of DEM should be estimated. Whether the displacement provides a robust estimate of
accuracy change, remains questionable. The estimated change in acccuracy may also depend on
which dataset is considered to have better quality—elevation or hydrography. At the same time, as
we have seen from our own experience, there can be a systematic displacement between DEM and
hydrographic lines. In such cases, adjusting the DEM only locally will decrease its accuracy due to
unnecessary distortions, whether or not it is less accurate than hydrography.

The developed method is greedy in the sense that it seeks for exact superimposition of reference
lines and their counterprarts, and therefore allows any displacement within the defined catch radius.
For analytical purposes, it could be desirable to additionally limit the amount of displacement. That can
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be achieved both by making the catch radius smaller, or by constraining the maximum length of a
rubbersheet link. In the latter case, all links longer than the defined threshold, can be forcedly shortened.
Adaptive change of conflation area size depending on the local deviation of the counterpart stream
from a reference line may also improve the quality of result and reduce unnecessary distortions.

Figure 18.Displacement statistics: (a) probability density of rubbersheet link coordinates, (b) probability
density of displacement vector horizontal coordinates, (c) empirical distribution function of horizontal
displacement magnitude, (d) probability density of vertical displacement, (e) empirical distribution
function of the absolute value of vertical displacement.

It is also clear that rubbersheeting of elevation data must influence the values of geomorphometric
and hydrological characteristics obtained as derivatives of the conflated DEM. Analysis of such
changes is out of the scope of the current research, which is focused on cartographic applications of
DEM conflation. However, such investigation must be one of the primary directions of the further
development and assessment of limitations of the proposed method.

5.4. Robustness

Robustness can be understood as the ability of the method to perform well in different situations,
and to resist complexities that may arise due to combination of input data and selected parameters.
The properties of the input data affecting the performance of the method can be considered from
quantitative and qualitative perspectives.
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We relate the quantitative aspect of input data to its dimensionality, which includes spatial domain,
level of detail and size.

Spatial domain defines a subset of space covered by spatial dataset. For reference hydrographic
lines this domain is equal to the geometry of lines, while for a DEM it is comprised by all pixels with
data values (excluding NODATA pixels). Since conflation can be performed only in areas that contain
both elevation and hydrographic data, this issue is managed by cropping the hydrographic lines to
DEM domain.

Level of detail of hydrographic and elevation data can be defined as amount of information
represented in these datasets per unit area. It depends both on spatial resolution (point density
and pixel size) and peculiarity of line/surface representation given the spatial resolution. In the
Results section we demonstrated that a mismatch between the detailed elevation and the generalized
hydrography is effectively handled by the developed conflation method. However, additional
experiments are needed to assess the quality of results in the opposite situation, where hydrography is
more detailed.

Size of the data affects the time of processing. An obvious solution to manage large datasets is
to subdivide them into parts (tiles) and process the tiles separately. Currently, we do not have such
solution, and this performance issue will be one of the most important directions of future research.
As we expect, the problematic part of implementation will be resolution of boundary effects, which
will appear due to independent rubbersheeting of neighboring DEM tiles.

A qualitative aspect of input data relates to its topological correctness, and is mainly inherent
to the hydrographic component of DEM conflation. The developed conflation method does not
impose any restrictions on input hydrographic lines. If the lines are incorrectly digitized or do
not comprise a topologically correct network, the method will still work. This kind of robustness
is achieved by resilient organization of processing workflow. On the ordering stage, non-empty
topological relations between hydrographic lines are respected, but are not required to exist. If the line
is isolated (does not have common points with another lines), it will just receive 1st Hack order. On the
counterpart extraction stage, the tracing process itself is separated from application of topological
rules, and therefore is also independent from spatial relations of input lines. A counterpart stream is
always traced in the direction of reference line, even if it is digitized in a wrong direction. This property
guarantees that rubbersheet links will be distributed in the correct order between the start and the end
points of a counterpart and its reference line. The remaining stages of conflation until post-processing
does not involve hydrographic lines at all. If the input hydrographic lines are carefully prepared,
the method will perform conflation in full compliance with their structure. Therefore, we can say that
it is able to take the best properties of input and is error-resistant.

At the same time, there are some situations, in which the current implementation of conflation
workflow will suffer defeat. Since the standard map algebra operation used to extract least-cost
counterparts cannot respect either the Hausdorff or the Fréchet distance to a given line, only weak
counterparts constrained by the Directed Hausdorff distance can be derived. Figure 19 provides the
example of the situation, where the derived counterpart is unreliable. In such configurations, the river
meanders are densely packed, which, given a large value of catch radius, enables an invalid cost
path shortcut through a self-overlapping section of the counterpart stream corridor. A large section
of the river is not reflected by the counterpart stream as a result. To extract stronger counterparts,
more specific methods developed for map matching and able to construct a shortest path constrained
by the Fréchet distance [9,10] can be used instead. However, since corresponding algorithms are
often based on dynamic programming and recursive procedures, it is also needed to estimate their
computational performance in case of digital elevation models consisting of thousands and millions
of pixels.
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Figure 19. Unreliable least-cost counterpart in meandering river section: reference hydrographic
line (h), counterpart stream (c).

Finally, it must be stressed that if spatial adjustment of hydrographic lines is more preferable
due to the higher accuracy of DEM, it can be easily achieved using the developed method. For this,
rubbersheet links are flipped and hydrographic lines are rubbersheeted instead of elevation data.

6. Conclusions

Digital elevation models are commonly used in conjunction with hydrographic data for spatial
analysis and mapping. The quality and precision of the results depends to a high degree on spatial
alignment between the corresponding datasets. At the same time, the increasing variety of spatial
data sources makes misalignment between heterogeneous data a widespread problem that is usually
solved by conflation. To date, the specific case of conflation between digital elevation models and
hydrographic lines has not received the desired attention. We have developed a comprehensive
solution to this problem, which includes methodology, algorithms and software.

The main insights gained during our research can be summarized as follows:

1. The conflation process can be based on identification of the streams on DEM surface most similar
to reference hydrographic lines—counterpart streams. Multiple measures can be used to estimate
similarity and constrain counterpart candidates, including the Directed Hausdorff, the Hausdorff
and the Fréchet distance, but the weakest constraint (the Directed Hausdorff) can be used by
default for practical reasons.

2. To preserve topological relations of reference hydrographic lines they must be ordered. A proper
ordering allows establishing unambiguous sequence of counterpart extraction, during which
the subordinate and superordinate relations reflecting the topology of reference network can be
ensured. We find Hack ordering to be convenient for this purpose, with refinement on distributary
streams in braided river sections. This ordering also minimizes the number of counterparts to
be traced.

3. A combination of flowline and least-cost approaches allows extraction of counterpart streams in a
variety of cases, including the non-standard ones, such as braided streams and wrong direction of
hydrographic lines.

4. Topological relations between ordered reference hydrographic lines can be reflected by the
network of counterpart streams using a series of topological rules. These rules ensure the correct
location of counterpart stream junctions.

5. Performing conflation on vectorized elevation data (points or structural lines) allows abstracting
from the DEM format and applying the standard rubbersheeting algorithms. Another
advantage of vector-based approach is easy integration of conflation stage into structural DEM
generalization workflow.

Our method effectively aligns DEM with reference hydrographic lines, which is demonstrated on
multiple cartographic examples and substantiated by significant improvement of agreement statistics
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between the reference hydrographic lines and a drainage network on DEM surface. In comparison to
existing conflation and stream burning approaches our method does not create new terrain features
in DEM surface, but instead recognizes the existing features corresponding to hydrographic lines,
which is a major advancement.

Digital elevation models conflated by our method can be used for producing high-quality maps
combining elevation and hydrographic data at different scales. In future research we plan to improve
the performance of method according to multiple issues highlighted in the Discussion section, and to
investigate the possible applications of DEM conflation in hydrological DEM analysis.
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The following abbreviations are used in this manuscript:

DEM Digital Elevation Model
GIS Geographical Information System
IQR Interquartile Range
TIN Triangulated Irregular Network

Appendix A. Algorithms for Extraction of Counterpart Streams

A pseudocode of the main program that is used for extraction of counterpart streams is
represented in Algorithm A1. Counterpart tracing and post-processing functions are represented in
Algorithms A2 and A3 respectively. Algorithm A4 reveals the details of rubbersheet links generation.
Algorithm A5 provides a brief reference to all functions used in Algorithms A1–A4, including those
without pseudocode.

The main program (Algorithm A1) expects reference hydrographic lines H, unique identifiers ID,
confluence identifiers CONFL, bifurcation identifiers BIFUR, elevation raster Z, flow direction raster
FD, flow accumulation raster FA, minimum flow accumulation a, catch radius r and offstream penalty
weight w as input parameters. Counterpart stream features C are the output of the program. The lists
ID, CONFL and BIFUR are taken from Table 1 generated during the ordering stage. These lists, as
well as the reference lines are fed into the program sorted by ITER variable from Table 1.

During the initialization stage (Algorithm A1, lines 1–5) the main program extracts the lists of start
(SP) and end (EP) point coordinates of reference lines and creates the empty list of lists of counterpart
stream coordinates CR. The supplementary variables ce and cs are created to store the coordinates of
downstream and upstream superordinate counterparts. Then for each (n-th) reference hydrographic
line (Algorithm A1, line 6) the algorithm does the following:

1. Generate start and end neighborhoods nbs and nbe of radius r around start (SP[n]) and end (EP[n])
point of a reference line H[n] (Algorithm A1, lines 7–8). See the function pixelneighborhood()
in Algorithm A5 for the reference. Example neighborhoods are indicated in Figure 6.

2. If the current stream is tributary, then replace nbe with similar pixel neighborhood around the
closest point p on superordinate downstream counterpart ce (Algorithm A1, lines 9–14). Since
coordinate tuples returned by pixelneighborhood() function are always sorted by the distance
to the central pixel, the procedure of a linear search for p can be finished at the first pixel in nbe

which is a member of ce as well. This step is the implementation of topological rule 1.
3. If the current stream is distributary, then replace nbs with a similar pixel neighborhood around

the closest point on superordinate upstream counterpart (Algorithm A1, lines 15–20). This step is
the implementation of topological rule 2 and uses the logic similar to the previous one.
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4. Calculate the Euclidean distance raster E for H[n], which is needed on steps 6 and 7 (Algorithm A1,
line 21).

5. Trace a flowline counterpart stream c which satisfies the conditions in Equation (2) (Algorithm A1,
line 22). See explanations on the flowline_counterpart() function below and its representation
in Algorithm A2.

6. If c is empty (no flowline counterpart candidate satisfies Equation (2)), then trace a least-cost
counterpart which minimizes the functional in Equation (3) (Algorithm A1, lines 23–24).
See explanations on the leastcost_counterpart() function below and its representation in
Algorithm A3.

7. If c is flowline, extend it to its superordinate counterpart (Algorithm A1, lines 25–29).
See explanations on the extend_path() function below and its representation in Algorithm
A3. This step is the implementation of topological rule 3.

8. Ensure that c does not have intersections with its superordinate counterparts between its start and
end point (line 30). See explanations on the trim_path() function below and its representation in
Algorithm A3. This step is the implementation of topological rules 4 and 5.

9. Append c to CR (Algorithm A1, line 31).

After the cycle finishes, vector features with counterpart streams are built using the coordinates
stored in CR (Algorithm A1, line 32).

Flowline counterparts are extracted by the flowline_counterpart() function which pseudocode
is represnted in Algorithm A2. The function starts from creating the empty list c of counterpart
coordinates (Algorithm A2, line 2) and initializing the lowest Modified Hausdorff Distance D for
currently selected counterpart candidate with infinity (Algorithm A2, line 3). Then for each pixel p in
the start neighborhood nbs (Algorithm A2, line 4) it performs the following sequence of steps:

1. If flow accumulation at p is larger than minimum value a, then proceed to the next step
(Algorithm A2, line 5).

2. Trace counterpart stream candidate s starting from p using the trace_stream() function
(Algorithm A2, line 6). If the stream does not reach the end neighborhood nbend, then empty set
is returned. See explanations on the trace_stream() function below and its representation in
Algorithm A2.

3. If s is not empty and ~dH(s, h) ≤ r, then proceed to the next step (Algorithm A2, line 7). If only
regular or strong candidates are of interest, then ~dH(s, h) should be replaced with dH(s, h) or
dF(s, h) respectively at this stage.

4. Calculate D′ = dM(s, h) (Algorithm A2, line 8). If D < W, then proceed to the next step
(Algorithm A2, line 9).

5. Replace c with s (Algorithm A2, line 10) and D with D′ (Algorithm A2, line 11).

After iterations are finished, c is returned as a result (Algorithm A2, line 12). If no counterpart
candidate has been found, then empty set (the initial value of c) will be returned.

The actual tracing of the flowline stream candidate s is performed by the trace_stream() function,
included in Algorithm A2. This function starts from the point p and tries to reach the end neighborhood
nbe by moving in flow direction. This is performed iteratively with the following sequence of actions
at each iteration (Algorithm A2, line 17):

1. If the current pixel p belongs to nbe, then it is checked if p is closer to the center of nbe than any
previously traced pixel in s. If so, then its number is stored in kend as the end point of the stream.
In addition, the end mode indicating that we entered nbe is set up by end← TRUE (Algorithm A2,
lines 18–23).

2. If the current pixel p does not belong to nbe, but previously we have entered it (end = TRUE), then
iterations stop (Algorithm A2, lines 24–25).
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3. Append p to s. Find the next pixel pnext downslope by downstream_pixel() function,
which expects the D8 pointer raster generated according to [27]. If pnext = p, then iterations stop,
else set p← pnext (Algorithm A2, lines 26–27).

Algorithm A1: Main program.
Data: reference hydrographic lines H: vector lines; unique identifiers ID: list of integers;

confluence identifiers CONFL: numeric list; bifurcation identifiers BIFUR: numeric list;
elevation Z: raster, flow direction FD: raster, flow accumulation FA: raster; minimum
flow accumulation a: numeric; catch radius r: numeric; offstream penalty weight w:
numeric

Result: counterpart stream lines C
1 SP← startpoints(H)
2 EP← endpoints(H)
3 CR ← {}
4 ce ← ∅
5 cs ← ∅
6 for n← 1 to |H| do
7 nbs ← pixelneighborhood(SP[n], r, Z)
8 nbe ← pixelneighborhood(EP[n], r, Z)
9 if CONFL[n] 6= 0 then

10 ce ← CR[k], where ID[k] = CONFL[n] for some k ≤ |CR|
11 forall p in nbe do
12 if p ∈ ce then
13 nbe ← pixelneighborhood(p, r, Z)
14 break;

15 if BIFUR[n] 6= 0 then
16 cs ← CR[k], where ID[k] = BIFUR[n] for some k ≤ |CR|
17 forall p in nbs do
18 if p ∈ cs then
19 nbs ← pixelneighborhood(p, r, Z)
20 break;

21 E = euc(H[n], Z)
22 c← flowline_counterpart(H[n], nbs, nbe, FD, FA, a, r)
23 if c = ∅ then
24 c← leastcost_counterpart(nbs[1], nbe[1], Z, E, FA, a, r, w)
25 else
26 if ce 6= ∅∧ c ∩ ce = ∅ then
27 c← extend_path(c, nbe[1], Z, E, FA, a, r, w, "forward")

28 if cs 6= ∅∧ c ∩ cs = ∅ then
29 c← extend_path(c, nbs[1], Z, E, FA, a, r, w, "backward")

30 c← trim_path(c, cs, ce)
31 CR ← append(CR, c)

32 C ← vectorize(CR)

After iterations stop, kend is checked. If it is empty, then it indicates that the end neighborhood
has not been reached, and the empty set is returned by the function. Otherwise, s is trimmed to kend
and returned as a result (Algorithm A2, lines 33–36).
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Algorithm A2: Flowline counterpart tracing.

1 Function flowline_counterpart (h: list of numeric tuples, nbs: list of numeric tuples, nbe: list of
numeric tuples, FD: raster, FA: raster, a: numeric, r: numeric):

2 c← ∅
3 D = +∞
4 forall p in nbs do
5 if FA[p] ≥ a then
6 s← trace_stream(p, nbe, FD)

7 if s 6= ∅∧ ~dH(s, h) ≤ r then
8 D′ ← dM(s, h)
9 if D′ < D then

10 c← s
11 D ← D′

12 return c

13

14 Function trace_stream (ps: numeric tuple, nbe: list of numeric tuples, FD: raster):
15 p← ps, k← 1, s← {}
16 Dend ← ∞, kend ← ∅, end← FALSE
17 while TRUE do
18 if p ∈ nbe then
19 D ← d(p, nbe[1])
20 if D < Dend then
21 kend ← k
22 Dend ← D

23 end← TRUE
24 else if end = TRUE then
25 break
26 s← append(s, p)
27 pnext ← downstream_pixel(p, FD)
28 if pnext = p then
29 break
30 else
31 p← pnext

32 k← k + 1

33 if kend = ∅ then
34 return ∅
35 else
36 return {pk ∈ s, k = 1, ..., kend}

Least-cost counterparts are extracted by the function leastcost_counterpart() included in
Algorithm A3. The function contains a series of map algebra expressions which operate rasters
of elevation (Z), Euclidean distance to reference line (E) and flow accumulation (FA). The first three
operations (Algorithm A3, lines 2–4) are local, which means that raster arithmetic is performed
pixel-wise [66]. Offstream penalty raster W is calculated by conditional expression implementing
Formula 4 (Algorithm A3, line 3). The cost raster is also generated by conditional expression
that combines the functional in Formula 3 with restriction on passing farther than catch radius
r (Algorithm A3, line 4). Finally, the resulting counterpart stream c is extracted by cost_path()
function, which solves the standard cost path map algebra operation [67] using cost as a friction layer
(Algorithm A3, line 5).
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Algorithm A3: Least-cost counterpart tracing and post-processing.

1 Function leastcost_counterpart (ps: numeric tuple, pe: numeric tuple, Z: raster, E: raster, FA:
raster, a: numeric, r: numeric, w: numeric):

2 Ẑ ← Z−min(Z) + 1

3 W ←
{

1 if FA ≥ a,
wẐ if FA < a

4 cost←
{

W(E + 1) if E ≤ r,
NODATA if E > r

5 c← cost_path(ps, pe, cost)
6 return c

7

8 Function extend_path (c: list of numeric tuples, p: numeric tuple, Z: raster, E: raster, FA: raster, a:
numeric, r: numeric, w: numeric, dir: string):

9 if dir = "backward" then
10 c+ ← leastcost_counterpart(p, c[1], Z, E, FA, a, r, w)
11 c← c+ ∪ c
12 else
13 n← | c |
14 c+ ← leastcost_counterpart(c[n], p, Z, E, FA, a, r, w)
15 c← c ∪ c+

16 return c

17

18 Function trim_path (c: list of numeric tuples, cs: list of numeric tuples, ce: list of numeric tuples):
19 if cs 6= ∅ then
20 kmin ← 1
21 for k← 1 to |c| do
22 if c[k] ∈ cs then
23 kmin ← k + 1

24 c← {pk ∈ c | k = kmin, ..., |c|}
25 if ce 6= ∅ then
26 kmax ← |c|
27 for k← |c| to 1 do
28 if c[k] ∈ ce then
29 kmax ← k− 1

30 c← {pk ∈ c | k = 1, ..., kmax}
31 return c

Extension of counterpart stream, which implements topological rule 3, is performed by the
extend_path() function in Algorithm A3. This simple function applies leastcost_counterpart() to
reach either the bifurcation junction from the start point of the counterpart (Algorithm A3, lines 9–11),
or the confluence junction from the end point of the counterpart (Algorithm A3, lines 12–15). Sections
of current counterpart which overlap with superordinate counterpart, are trimmed by trim_path()
function in Algorithm A3. In particular, compliance with topological rule 4 is ensured on lines 19–24
(Algorithm A3), while topological rule 5 is applied on lines 25–30 (Algorithm A3).

Rubbersheet links are generated using Algorithm A4, which iterates over each point c[i] ∈ c and
creates a series of line segments starting at c[i] and ending on points h[j] ∈ h, which are closer to c[i]
than to any of its successive points c[i + 1], c[i + 2], ....
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Algorithm A4: Generation of rubbersheet links.
Data: reference hydrographic lines H: vector lines; counterpart streams C: vector lines

Result: rubbersheet links LR: vector lines

1 LR ← { }
2 for n← 1 to |C| do

3 c← C[n]

4 h← H[n]

5 l ← { }
6 jmin

i ← 1

7 for i← 1 to |c| do

8 l ← append
(
l, (i, jmin

i )
)

9 f ound← FALSE

10 for j← jmin
i to |h| do

11 for k← i + 1 to |C| do

12 if d
(
c[k], h[j]

)
≤ d

(
c[i], h[j]

)
then

13 jmin
i+1 ← j

14 f ound← TRUE

15 break

16 if f ound = TRUE then

17 break

18 if f ound = FALSE then

19 # all remaining points are farther from h

20 for j← jmin
i + 1 to |h| do

21 l ← append
(
l, (i, j)

)
22 for i← i + 1 to |c| do

23 l ← append
(
l, (i, |h|)

)
24 break

25 else

26 for j← jmin
i + 1 to jmin

i+1 − 1 do

27 l ← append
(
l, (i, j)

)
28 jmin

i ← jmin
i+1

29 LR ← append
(

LR, l
)
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Algorithm A5: List of functions.

1 append(L, p) appends p to the end of the list L

2 cost_path(ps, pe, cost) solves the standard cost path map algebra operation using ps as the start

point, pe as the end point, and cost as the friction layer; the path is prohibited from passing

through the pixels with cost = NODATA

3 downstream_pixel(p, FD) returns the tuple of coordinates of downstream neighbor of p

according to D8 flow direction raster FD; if the pixel has no outflow, then p is returned

4 endpoints( f eatures) returns a list of the last points of every feature in f eatures

5 euc( f eatures, Z) returns a Euclidean distance raster for f eatures with Z as a template raster from

which the dimensions are imported

6 extend_path(c, pe, Z, E, FA, a, r, w) extends counterpart stream c until point pe using least-cost

approach

7 leastcost_counterpart(ps, pe, Z, E, FA, a, r, w) traces least-cost counterpart stream from ps to

pe within the catch radius r, which minimizes the cost defined by the offstream penalty and the

Euclidean distance to the reference hydrographic line

8 pixelneighborhood(p, r, Z) returns the list of numeric tuples representing the coordinates of Z

pixels located within the distance r off the point p; the tuples are sorted by the distance to p,

therefore, the first element of the list holds the coordinates of the pixel which is closest to p

9 flowline_counterpart(h, nbs, nbe, E, FD, FA, a, r) extracts flowline counterpart starting in nbs

and ending in nbe; returns empty set if no candidate is within the given catch radius off the

reference hydrographic line h

10 startpoints( f eatures) returns a list of the first points of every feature in f eatures

11 trace_stream(p, nbe, FD) traces the stream from point p downslope using the D8 flow direction

raster FD; returns the list of path coordinate tuples if the path intersects nbe and empty set

otherwise; the path ends at the pixel in nbe which is closest to the center of nbe

12 trim_path(c, cs, ce) trims counterpart stream c so that it does not intersect cs and ce between its

start and end points

13 vectorize(list) returns a set of linear features based on the list of counterpart coordinates
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