International Journal of

ISPYS Geo-Information MD\Py

Article
Hierarchical Behavior Model for Multi-Agent System
with Evasion Capabilities and Dynamic Memory

Aydin Cetin *© and Erhan Bulbul

Faculty of Technology, Gazi University, Ankara 06500, Turkey; erhan.bulbul@gazi.edu.tr
* Correspondence: acetin@gazi.edu.tr

check for
Received: 26 February 2020; Accepted: 22 April 2020; Published: 23 April 2020 updates

Abstract: The behavior of an agent may be simple or complex depending on its role. Behavioral
simulation using agents can have multiple approaches that have different advantages and
disadvantages. By combining different behaviors in a hierarchical model, situational inefficiencies
can be compensated. This paper proposes a behavioral hierarchy model that combines different
mechanisms in behavior plans. The study simulates the social behavior in an office environment
during an emergency using collision avoidance, negotiation, conflict solution, and path-planning
mechanisms in the same multi-agent model to find their effects and the efficiency of the combinational
setups. Independent agents were designed to have memory expansion, pathfinding, and searching
capabilities, and the ability to exchange information among themselves and perform evasive actions
to find a way out of congestion and conflict. The designed model allows us to modify the behavioral
hierarchy and action order of agents during evacuation scenarios. Moreover, each agent behavior
can be enabled or disabled separately. The effects of these capabilities on escape performance were
measured in terms of time required for evacuation and evacuation ratio. Test results prove that all
mechanisms in the proposed model have characteristics that fit each other well in situations where
different hierarchies are needed. Dynamic memory management (DMM), together with a hierarchical
behavior plan, achieved a performance improvement of 23.14% in escape time without providing
agents with any initial environmental information.

Keywords: multi-agent; behavior modeling; spatial exploration; emergency evacuation;
pathfinding; simulation

1. Introduction

Most multi-agent applications and studies aim to replicate specific human behaviors such as
herding [1], negotiation [2], and cooperation [3]. Humans are complex organisms with a dynamic
behavior and inference structure that can change in case planned actions do not give the anticipated
results. It is quite difficult to create an agent model that will infer and decide at the human level.
However, it is possible to provide predefined actions to the agent within a certain hierarchy and thus
obtain an agent model that can make decisions dynamically. Providing an agent with the ability to
consider different actions increases its overall capability, but it is quite a difficult task to implement
human behaviors for all possible situations. A goal-driven approach that defines behaviors for specific
cases may contribute to the solution of this problem. For instance, Greco et al. [4] proposed an
agent-based methodology for seismic vulnerability assessment. Cao et al. [5] studied the problem of a
leader following the consensus and proposed a leader switching procedure. Su et al. [6] proposed
consensus protocols with connected and jointly connected switching networks. Mendoza-Silva et al. [7]
modeled agents as drivers to develop a smart parking system. Eivazy and Malek [8] offered an
agent-based solution for flood management. Several simulations with multiple agents were performed
for emergency evacuations [9-16].
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Emergency evacuation (also known as emergency egress) is a problem that requires determining
the safest plan or approach for evacuating in an emergency. Safely evacuating masses of people from
a place when danger is occurring is a difficult task. The evacuation problem has two main analytic
dimensions: the physical environment and the behaviors of people who require egress. The emergency
evacuation problem has a complex nature in a crowded environment, particularly due to the behavior
of people under stress. This situation may become even more complicated depending on the physical
structure of the environment. Emergency evacuation studies have been simulated for environments
such as ships [17], stadiums [18], airports [19], public transport terminals [20], and foundation pits [21].

As a workspace, an office environment is usually designed for a large group of people to work in
a considerably small space. Such a crowded workspace may raise serious safety concerns, which could
cause delays or unforeseen consequences during an emergency.

The evacuation process usually has a time constraint, hence requires fast decision-making and
traversing mechanisms due to the imminent danger in the environment. The estimated routes of some
agents may intersect with others and thus create bottlenecks, collisions, and conflicts depending on
the crowd. These cases require solution mechanisms. Different methodologies have been offered
for this task by various studies. Niyomubyeyi et al. [22] compared metaheuristic approaches to the
evacuation problem. Musharraf et al. [23] used lecture-based training to develop a decision tree for
evacuating agents. Golas et al. [24] proposed a method for long-range collision avoidance using a
multi-agent system with local collision avoidance mechanisms and global path planning. Berg et al. [25]
precomputed a path to foresee collisions and used velocity changes to avoid them. Foudil et al. [26]
suggested actions such as changing directions, moving forward or backward, and waiting to avoid
collision. Wu et al. [27] emphasized the relationship between commuting and traffic congestion and
proposed a speed management model for agents to decrease the congestion ratio. Since there are
multiple agents in the same environment, interactions between agents can also be used to solve conflicts.
Sycara [28] suggested using negotiation to solve noncooperative multi-agent conflicts. Mechanisms
involving the transfer of environmental information have also been used [29]. Zhao et al. [30]
defined static information depository points in their work and proved that agents improved their
evacuation performance when using the proposed tools. Choi et al. [31] defined different types of
agents representing impairments and disabilities, which are responsive to different kinds of markers.

Most evacuation scenarios are stressful because they are the result of apparent or possibly
dangerous situations. Therefore, the psychological aspects of the problem should also be considered.
Dosey and Meisels [32] stated that humans tend to create buffer zones to serve as protection from
perceived threats. These buffer zones expand under stress conditions. Sommer et al. [33] pointed
out that violation of personal space may result in higher levels of stress and agitation. Different
mechanisms [34] for maintaining personal space have been simulated using multi-agent models.
Amaoka et al. [35] built a personal space simulation while handling the spacing of agents depending
on their relationship, which can be on the friend, business, or stranger level. A Geographic Information
System (GIS)-based work [36] limited occupation of grid cells to a certain number to maintain personal
space between agents during earthquake/tsunami evacuation. The grid-graph approach allows
representation of spatial data and objects as grids [37] and is used in many egress models [38]. This
approach is proven to be useful for creating an analytical model [39,40] and is especially applicable
to indoor environments [41]. The grid-graph approach also provides scalability [42] and ease of
optimization [43].

The concept of agents capable of changing their behavior, role, or approach has been handled
in several studies [44-46]. Pires et al. [44] developed a hybrid decision system in which agents can
change roles or goals according to the situation. Al-Yaseen et al. [45] offered an adaptive behavior
model in which agents change their behavior according to instant observations or inputs. Adaptation
can also be achieved by using machine learning or neural networks [46]. Studies on emergency egress
mostly focus on physical environmental conditions, with an assumption that either agents have prior
information about the environment or information is provided to them during evacuation. Besides,
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they mostly focus on a single behavior model rather than combining behavioral characteristics of
agents. Simulations with some missing attributes may not represent real-world situations. Therefore,
models with combined behaviors that have more attributes are needed to reflect real-world cases
more accurately.

This paper offers a parametric agent model that simulates memorization and social behavior in
an office environment during an emergency using collision avoidance, negotiation, conflict solution,
and path-planning mechanisms. In the model, multiple evasion and conflict solution mechanisms
were defined as elements of a decision tree (a hierarchical model) to eliminate their characteristic
disadvantages. The memory management algorithm was developed to mimic the “memorization by
exploration” behavior of humans providing a solution to the problem that arises due to the absence
of prior spatial information. The proposed multi-agent model enables us to measure and tune the
performance using parametric controls. These controls provide a calibration mechanism so that the
model can adapt to different environments. To find the effects of agents on each other and the efficiency
of the parametric setups, observations via simulations were carried out using the proposed model.
These setups were tested to observe the success of the parameter sets that provide optimally designed
behavior models for safe evacuation.

2. Materials and Methods

The overall process diagram of the hierarchical behavior model of the study is shown in Figure 1.
The environment model was developed at the initial stage of the study. At this stage, a graph
model was created by placing an office layout on this model. Later, the 3D model of the simulation
environment was developed. In the second stage, the agent behavior model to be run on the designed
graph model was developed. In the model, negotiation, cooperation, and reasoning mechanisms were
programmed with dynamic memory management (DMM) for agents. At the same time, the pathfinding
algorithm that the agents would use on the move was programmed. The simulation environment
was developed in the Unity3D environment with C# programming language. In the third stage,
the model was tested with the simulation environment. In the simulation environment, agent behaviors
were tested taking into account their initial physical position (e.g., worst case and homogeneously
distributed case scenarios) by parametric calibration. In the fourth stage of the study, the model
was evaluated. At this stage, the evacuation performance of the agents was evaluated concerning
their spatial knowledge and the use of behavioral hierarchy states including information exchange,
sidestepping, and reconsideration mechanisms.

Environment Model

|
1o Graph Model }
i o Office Model }
e 3D Model i

Agent & Behavioral Model

o Dathfinding

o Dynamic Memory Management

o Negotiation (Sidestepping)

o Cooperation (Information Exchange)
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Figure 1. Overall process diagram of hierarchical behavior model of the study.
2.1. Environment Model

The ability to grow in size or complexity and find an optimal solution for the model to be developed
and ease of implementation are among the criteria used in the environment model. Grid-graph
applications provide scalability and ease of optimization. Micro or small-scale grid—graph models can
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be extended to macro- or large-scale space models. Therefore, the grid—graph model is preferred, as
in [23,24] for simulating the environment model.

An office layout usually has a symmetrical geometric design and is easy to implement on a
grid-graph. Components used in office design are implemented in a hierarchy. Rooms and corridors
are subgroups of the complete graph representing the office. Figure 2 shows the hierarchy of entities in
an office.

Office

o ot o

‘TileHTileHTﬂeHGate"TﬂeHTﬂeHTﬂeHGate"TﬂeHTﬂeHExit‘

Figure 2. Hierarchy of entities in an office.

The environment model for the simulation has layouts consisting of the floor, rooms, entrances,
gates, corridors, and exit points. The floor is the base of the graph. For simplicity, the office floor
consists of 64 tiles in the form of an 8 x 8 grid with equal size, which is 5 X 5 units. Each node (regular
nodes, gates, or exits) belongs to either a room or a corridor. Since gates consist of at least two nodes
and serve as passages between rooms or corridors, they can belong to more than one entity. In the
model, the office area is divided into tiles, and each tile represents a node of the graph. All tiles are
connected by edges (Figure 3).
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Figure 3. Layout of tiles: (a) Tiles with unique identifier numbers. Each tile represents a node of the
graph. (b) Eight-way graph structure of nodes; eight-way connection defines left, right, up, down,
and diagonal movements. Adjacent nodes are interconnected by the edges to make agents move toward
one another.

In the model, walls are located on the borders of tiles and prevent agents from passing over
them. Blocks are implemented by removing the edges in the block area connecting the tiles. Rooms
are enclosed areas surrounded by walls. All rooms have at least one opening, representing the door.
Entrances are modeled basically as edges that connect room nodes to the whole graph. Some rooms
can have more than one entrance. Entrances are designed to be wide enough to let a single agent
out or in at a time. Gates are modeled by pairs of nodes connected by the entrance edge. Figure 4a
shows the nodes of gates and an entrance represented by an edge. Exits are modeled as single tiles and
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marked as exits, while corridors are modeled as connected nodes of lines. Each node is connected with
edges. In the graph, weights of the edges are defined by the distance of points they connect. Weights
of edges represent the unit length, which is a measure of agents’ movement between nodes. All edges
are assumed to be linear. Therefore, the weights are equal to the Euclidean distance of two endpoints
of the edges. Diagonal edge weights are greater than orthogonal ones (Figure 4b).

Node 4 Node 3
5
I 7

Node 2 Node 1

5

() (b)

Figure 4. Nodes of gates and weights of edges: (a) nodes of a gate (red circles) and entrance edge
(dashed line); (b) weights of edges.

2.2. Agent Model

The individuals simulated in this work were programmed as autonomous agents. Once the
simulation started, the main goal of all agents was “to reach the exit node at once.” Agents used the A*
search algorithm [47] to find their targets.

The A* algorithm is a well-known heuristic search algorithm. It provides the convenience of
solving multidimensional problems with the help of a predictive heuristic function. In its most basic
form, the cost of optimal path f(n) is

f(n) = g(n) +h(n), ©)

where (1) is the next node on the path, and g(n) is the actual cost of an optimal path from the starting
point to node n. The heuristic function h(n) is the cost estimate of an optimal path from node n to
a preferred goal node of n. The algorithm has a fairly simple structure. It follows a path of the
lowest known cost, keeping a sorted priority queue of alternate path segments along the way. The
A* algorithm selects the lowest-cost node, the node with the lowest f(n) value, as the starting node
and keeps following the path with the lowest known cost until it reaches the target node. If the cost
of a path segment at any node is higher than the other, it chooses the lower-cost one as an alternate
path. This process continues until the goal is reached. The pseudo-code of A* algorithm is given in
Appendix A (Table Al).

There are two heuristic functions commonly used in geographic information systems (GIS)
to calculate the distance between two points, Manhattan and Euclidean distances. Compared to
Manhattan, Euclidean distance always guarantees the shortest distance between two points if the
distance between the two points is not remote. Euclidean distance was chosen as the heuristic function
in the agent model.

The heuristic function (k) is evaluated in 3-dimensional space as the Euclidean distance to the
target that can be calculated using distance vector (dx, dy, dz) as in Equation (2):

h= \/(&x)2 + (9y)* + (92)*. )

The heuristic function has another critical use other than effecting path cost calculations during
A* search. Agents make their decisions on the next targets entirely depending on the heuristic function
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values where multiple target options are available. This design choice aims to mimic the loss of
planning ability under stress.

In the model, an agent was allowed to occupy only one tile (node) at a time due to the personal
space constraints to mimic the loss of planning ability under stress. All agents were programmed to
have the same movement speed, 4 units/s. This provides the agility to traverse a nondiagonal edge in
1.25 s. Revisiting Figure 4b, this also implies that an agent can change its node diagonally in 1.25+/2 s.

Agents can distinguish gates and exits from other tiles. At the start, all agents check their spatial
map memory for any exit positions. If they find one or more exits, they determine the nearest exit
as a target. Otherwise, they search for known gates and select the nearest unexplored gate as the
target. As the office gets crowded, agents may block each other. This blocking may occur in two forms,
congestion and conflict. Figure 5 shows the nature of congestion and conflict.

eoo -

o0o0 o 0.

L

(a) (b)

Figure 5. The nature of congestion and conflict: (a) congestion in nodes x and y; (b) conflict situation.
Both agents tend to move toward the space occupied by the other at the same time.

When agents start to move to reach a certain target (e.g., exit, gate) at the same time, this mass
movement might create congestion. In case of congestion, agents may have to wait until it is removed.
A crowd-threshold parameter was defined for the situation to be perceived by the agent as congestion.
When an agent stops, it starts to count obstructing agents. If there are more obstructing agents than a
predefined crowd-threshold value, agents perceive it as congestion and set a crowd flag. Since multiple
agents search the same map, their lower-cost paths may intersect at some nodes. Let A and B be
adjacent nodes that are connected with an edge and agents 1 and 2 are on these nodes. When agents 1
and 2 try to move to nodes A and B, as seen in Figure 5b, a conflict occurs and is detected by the first
agent that checks if its target node is occupied. Once a conflict is detected, agents set a conflict flag and
stop their movement.

The most important difference between congestion and conflict is that congestion is usually a
temporary setback while a conflict is permanent if no precaution is taken or alternate plan is defined.
The agent’s movement, interaction, conflict, and congestion solution abilities are controlled with four
parameters: spatial knowledge, information exchange, sidestepping, and reconsideration.

2.3. Behavioral Model

The proposed behavioral model to be used by agents has a hierarchical structure that consists
of DMM, negotiation, cooperation, and reasoning actions. The behavior model combines different
mechanisms hierarchically. In the model, each mechanism can be controlled parametrically. These
mechanisms are presented under three subsections: dynamic memory with spatial knowledge, evasion
mechanisms, and behavioral action hierarchy.

2.3.1. Dynamic Memory Management

Dynamic memory management (DMM) is controlled by the binary spatial knowledge parameter.
Spatial knowledge sets the initial state of the agents” knowledge of the office layout. If the spatial
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knowledge parameter is false, agents start their search without any initial spatial knowledge (empty
memory) and tend to use their memorization ability as they explore the map.

Exploring and memorization are built on a simple dynamic memory expansion mechanism.
Figure 6 shows the memory expansion process during exploration. Similar to humans, agents are
designed to be able to perceive the room they are in. So, when an agent is in a room, it can gain
information on all nodes of the room. When a node is in sight of an agent, it is immediately added to
that agent’s memory. The agent expands its spatial knowledge on the map by memorizing the room
once it reaches the gate of an unexplored room. If the spatial knowledge parameter is set to true, every
agent starts the simulation knowing every room, gate, and exit in the office. Therefore, all agents
directly select the nearest exit as their target.

(a) (b)

(c)

Figure 6. Memory expansion process during exploration: (a) agent has gained knowledge about 9
nodes; (b) agent changed its position and added 3 more nodes to memory; (c) agent has moved to
another room and added 12 more nodes to its memory, expanding initial memory to 24 nodes.

2.3.2. Evasion Mechanisms

Three evasion mechanisms were defined for the model: information exchange, sidestepping,
and reconsideration.

Information exchange is a simple agent cooperation mechanism to handle conflict or congestion.
In case of conflict or congestion, if information exchange is allowed and spatial knowledge is false,
agents that are on adjacent nodes may communicate to share their spatial knowledge on the map.
During the information exchange, both sides check whether one of them has information on the grid
that is unknown by the other. When one has new information, it is added to the other agents” spatial
map memory. Room and corridor layouts are the smallest office elements during memory expansion
and thus are considered as the smallest piece of exchangeable information.

When a conflict occurs, the agent detecting the conflict (agent 1) sends a signal to the other agent
(agent 2) to confirm the conflict and demands to know its current target node (t2). If agent 1 has
information about the target of agent 2 in its memory (M), it starts an information exchange procedure
and shares its information with agent 2. Then the exchange procedure updates the memory collection
of agent 2 as in Equation (3). After the exchange, agent 1 checks if agent 2 has changed its target. Using
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newly gained information, agent 2 may change its destination path to solve the conflict. Otherwise,
agent 2 follows the same procedure to inform agent 1.

the M = M, = MzU(Ml —Mz) 3)

Sidestepping is a negotiation mechanism that is effective for conflicts. However, it is not effective
in resolving congestion. The sidestepping procedure starts according to the behavior plan. The
procedure consists of four steps:

1.  To detect the conflict, the agent first searches adjacent nodes in order of increasing heuristic value
to find an unoccupied tile.

2. If thereis an unoccupied slot, it sets the slot as its temporary target. With this move, the conflict
condition no longer exists and can be considered as solved.

3. If the first agent cannot find an unoccupied slot, this means it is surrounded. In this case, the agent
raises a crowd flag and the other agent starts the same scan.

4.  If the second agent finds an unoccupied slot, it sets the slot as its new target. If not, both agents
are surrounded and they have to wait until there is an opening or the next action in the plan
is triggered.

Reconsideration is a simple agent reasoning mechanism where multiple goals are evaluated
depending on the surrounding agents’ situation. If reconsideration of a path is allowed, when an
agent’s path is blocked by more agents than the crowd-threshold limit, it temporarily stops moving,
sets its crowd flag, and starts to wait. The waiting time is defined by the time-to-wait parameter. When
a crowd flag is set, it checks whether the current situation is a deadlock or a temporary setback caused
by relatively small congestion.

In decision-making, reconsideration of a path is closely related to the time-to-wait and
crowd-threshold parameters. As the crowd-threshold value declines, agents tend to raise the crowd
flag more often. On the other hand, if time-to-wait is set to higher values, it is more likely that the
number of activated reconsideration procedures will be decreased due to the increased possibility
that the congestion will be resolved. If the path is still crowded and blocked after a certain amount of
time, the agent starts the reconsideration procedure. Pseudo-code for triggering the reconsideration
procedure is given in Appendix A (Table A2).

When reconsideration is triggered, the agent checks the occupation status of eight nodes (Oadj)
neighboring the current node. Then, it considers that the crowd is likely to move to the same target and
keep the congestion status and calculates crowd coefficient (CCy) as in Equation (4) by counting the
occupied nodes. Pseudo-code for the crowd-coefficient calculation is given in Appendix A (Table A3).

8
CCy = ) Oadij; )
k=1

The agent then re-evaluates the cost of the target (C;) as in Equation (5) by modifying the heuristic
value (k). The heuristic value is modified simply by multiplying it with the crowd-coefficient for
the target.

Ct = h .CCy ®)

After the temporary cost is calculated for the target, the agent starts searching for its new target
for the updated situation. The decision of the alternate target is made by comparing the heuristic
values (h;) and target (T) with minimum cost.

T = {Ti[Cr, = min(Ci)} (6)

Since the crowd coefficient is always greater than 1, modifying the heuristic value of the current
target raises its cost. In this case, the current target is not expected to be re-selected. However, if
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the agent is marginally closer to this target than the other possible ones, its cost still may be the
lowest. As a result, the agent may insist on its current decision. Once the new target is selected by the
reconsideration process, modifications of heuristic values will be rolled back and the new path will be
constructed using the A* algorithm.

2.3.3. Behavioral Hierarchy Plan

Agents are designed to execute one action at a time, which yields a conflict/congestion solution
plan. Behavior plans define the hierarchy of solution mechanisms and agents’ decision flows. The
conflict resolution mechanisms are triggered in order according to the order of the selected behavior
plan. A procedure or action can be used only if the previous ones fail to resolve the conflict or
congestion. If all actions in the plan fail, the agent waits and starts its behavior plan again in the next
time step. Six behavior plans (I-5-R, I-R-S, S-I-R, S-R-1, R-I-5, and R-5-I) can be created with the three
conflict-congestion resolution actions. A flowchart of the I-5-R plan is shown in Figure 7. The plan
executes information exchange, sidestepping, and reconsideration procedures sequentially.

Congestion
or conflict

v

Information
Exchange

Congestion or
Conlflict

Yes

No

.. Congestion or

Sidestepping

No

Congestion or
Conflict

Yes

Congestion or

Conflict LI —

Reconsideration—Yes

Figure 7. Flowchart for information exchange-sidestepping—reconsideration (I-5-R) behavior plan.
2.4. Testing the Model

To test the proposed approach, a simulation environment of a 3D office model was designed
and programmed. The designed office consists of 4 rooms connected by 2 corridors and has 2 exits.
Sixteen agents representing office workers were placed on different starting positions. Agent programs
were designed to run as independent threads. Meanwhile, all agents were programmed to have the
same size, speed, and behavior plans and to be controlled by Boolean flags that enable or disable their
information exchange, memory expansion, sidestepping, and reconsideration abilities. A timer is
programmed to start with the initiation of the simulation and end when all agents in the office reach
one of the exits.
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Agent behaviors were simulated concerning their initial physical positions and spatial knowledge
to test the model. However, there is an initial positioning problem of agent replacement on the office
layout when the numbers of agents and tiles are considered. The number of possible initial positions
of the agents can be calculated as in Equation (7):

n!
Cl = ———, 7
Torl(n=r) @
where 7 is the number of tiles representing agents’ personal space and r is the number of agents. The
simulation environment has 64 tiles and 16 agents; 2 of the 64 tiles represent exits, and 62 tiles can be
used to define an initial position (personal space) for each agent. In this case, Equation (8) results in
approximately 2.73 x 10'* combinations of where agents can be located initially:

62!

n __
= 16!(62 - 16)!

)

It should also be noted that each combination has 28 scenarios. Therefore, the problem becomes a
positioning problem for the simulations.

One of the approaches to solve this problem is to start the simulation with randomly located
agents. However, this approach may not be realistic or represent a real case. Thus, for the simulation,
we chose 2 realistic physical positioning scenarios for the agents: the worst case and a homogeneously
distributed case, as shown in Figure 8. In the worst case (Figure 8a), all agents were initially positioned
in 2 rooms farthest from the exit. It can be considered as an analogy of the situation that there were
2 parallel meetings or events in these rooms just before an emergency evacuation. This layout also
enabled us to evaluate the evacuation performance when the agents behave under stress. In the
homogeneously distributed agent case (Figure 8b), all agents were positioned as they would be in their
usual positions in the office.

(@ (b)

Figure 8. Office layout and starting points of agents (black: border; blue: walls; green: exit/goal): (a)
case 1: worst-case layout of agents; (b) case 2: homogeneously distributed agents (normal layout).

During the simulation, we also took into consideration the following situations related to
sidestepping, reconsideration, and information exchange mechanisms along with the agents’ initial
locations:

e To observe the effect of the sidestepping mechanism, there should be empty nodes around the
agents to lead to the area in which they conflict.

e  The reconsideration mechanism evaluates alternative routes in case of congestion. When multiple
agents are placed in a room with a single door, congestion will naturally occur at the door. In this
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case, the effects of this mechanism cannot be observed since agents cannot find an alternative exit
by running the reconsideration procedure.

e  The spatial information in their memory is usually almost the same when all agents start in nearby
locations. In this case, the impact of the information exchange mechanism tends to decrease.

If the agents are placed where the office doors are located, they will proceed directly to the exit
without the need for an evasion mechanism. In this case, meaningful data may not be obtained from
the simulation. Color coding was assigned to the agents for each procedure to visually monitor their
movements and active procedures during the simulation (Figure 9).

Figure 9. Agents performing different procedures. Yellow: default; blue: information exchange; gray:
reconsideration; green: sidestepping.

3. Results and Discussion

Simulations were performed to evaluate (i) the effect of spatial knowledge on evacuation
performance for both cases depicted in Figure 8; (ii) calibration of the reconsideration mechanism
along with (i) for each case to evaluate evacuation performance; and (iii) hierarchical behavior model
performance for both cases with 28 possible behavior plans.

3.1. Effect of Spatial Knowledge

Having information on the map layout is the most effective boost in the model. Since the goal
is to reach the exits, knowing their locations contributes significantly to the agents” performance.
All parameters contributing to agent behavior were set to false to evaluate only the effect of spatial
knowledge on escape performance. Then, the simulation was run with a different number of agents
having spatial information for both cases. Table 1 shows the effect of spatial knowledge on evacuation
performance. In a successful evacuation scenario, it is intended that all agents escape in the shortest
possible time interval. Therefore, in the study, average escape time was measured only if all agents
arrived at the exit.

As shown in Table 1, successful evacuation with an average escape time of 38.07 s was observed for
case 1 when at least 15 of 16 agents had spatial knowledge. Similarly, for case 2, successful evacuation
with an average escape time of 32.99 s was observed when 11 of 16 agents had spatial knowledge.
When all or at least 15 of 16 agents had spatial knowledge on the map, successful evacuation with
different average escape times was observed for both cases. The average escape time, as expected, was
higher in case 1, which represents the worst-case situation, compared to case 2.
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Table 1. Effect of spatial knowledge on evacuation performance.

No. of Agents with No. of Agents Evacuation of All Avg. Escape Time (s)
Spatial Knowledge Evacuated Agents (case 1/case 2)
(case 1/case 2) (case 1/case 2)

0 2/7 Fail/Fail -/-

1 2/8 Fail/Fail -/-

2 2/9 Fail/Fail -/-

3 3/9 Fail/Fail -/-

4 3/12 Fail/Fail -/-

5 4/12 Fail/Fail -/-

6 5/12 Fail/Fail -/-

7 6/13 Fail/Fail -/-

8 6/13 Fail/Fail -/-

9 7/13 Fail/Fail -/-

10 7/13 Fail/Fail -/-

11 8/16 Fail/Succeed -/32.99

12 8/16 Fail/Succeed -/33.02

13 9/16 Fail/Succeed -/30.24

14 11/16 Fail/Succeed -/30.24

15 16/16 Succeed/Succeed 38.07/30.24
16 16/16 Succeed/Succeed 35.39/28.50

Case 1: worst-case layout of agents; case 2: homogeneously distributed agents (normal layout).

The results in Table 1 show that when all agents were informed about the layout, the problem
took a straightforward form and agents evacuated the office in the shortest time interval. In this case,
performance was not affected by any other parameters, because when agents are set to reach the same
target, the model will not generate any conflict or congestion. Therefore, solving mechanisms for
conflict and congestion will not be needed. Thus, the smallest successful average escape time can be
interpreted as an optimal value for the model.

3.2. Calibration of Reconsideration Mechanism

As discussed in Section 2 on evasion mechanisms, the reconsideration procedure is triggered
when a congestion state is detected. The count of the procedure run by the agents gives an idea about
the size of the congestion. Activation of the reconsideration procedure is solely related to time-to-wait
and crowd-threshold parameters. The crowd-threshold parameter defines how an agent perceives
whether it is a crowd, and the time-to-wait parameter tells an agent how long it is supposed to wait
before continuing its movement in case a conflict/congestion is detected. It was expected that during
the simulation a higher crowd-threshold value would lower the reconsideration procedure triggered
by agents. Similarly, it was expected that as the time-to-wait increased, the reconsideration procedure
would be triggered because the possibility of resolving congestion increases since agents wait longer
before searching for an alternate path.

The reconsideration mechanism can be calibrated and optimized by tuning the parameters. In
optimization, time-to-wait and crowd-threshold parameters were tuned by considering the office layout.
To adjust the optimal time-to-wait and crowd-threshold values for the reconsideration procedure, tests
were performed while spatial knowledge, sidestepping, and information exchange were disabled. The
average time for all agents to escape was used as the performance criterion of the model. Then the
evacuation performance was analyzed as time-to-wait and crowd-threshold parameters changed until
optimal values were obtained. The effects of the two parameters on reconsideration performance are
given in Table 2.

As shown in Table 2, the optimal combination of values for reconsideration guaranteeing the
shortest evacuation time was observed in case 1 when time-to-wait and crowd-threshold were 0.2 s
and 1, respectively, and in case 2 when time-to-wait and crowd-threshold were 0.4 s and 2, respectively.
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Table 2. Effects of time-to-wait and crowd-threshold parameters on reconsideration performance.

Crowd-Threshold

Time-to-Wait (s) 1 2 3

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

0 43.86 38.49 45.45 37.46 43.36 35.68
0.2 42.20 38.82 47.22 43.62 42.65 39.12
0.4 46.85 36.37 43.25 33.57 44.40 38.03
0.6 43.33 37.73 49.75 35.85 46.16 36.47
0.8 50.84 38.11 50.25 35.41 46.82 38.71
1 46.65 37.15 44 .45 37.45 48.55 38.95
1.2 50.77 38.72 51.10 39.23 49.37 40.17
14 50.43 38.53 49.95 40.83 50.20 41.03
1.6 50.69 42.01 50.49 40.71 50.58 42.01
1.8 56.12 40.37 53.94 40.79 54.90 41.03
2 59.61 42.11 61.09 42.25 58.67 42.61
2.2 64.91 44.42 60.79 4443 57.04 45.02
2.4 67.00 45.62 64.40 44.49 55.43 46.02
2.6 67.34 46.81 71.21 43.07 55.45 46.91
2.8 71.63 48.03 63.52 48.04 55.53 48.70
3 74.08 50.76 73.61 50.65 55.57 51.76

Case 1: worst-case layout of agents; case 2: homogeneously distributed agents (normal layout).

The relation between the number of reconsideration procedures triggered during evacuation and
the time-to-wait parameter for the worst-case scenario is given in Table 3. As seen in Table 3, when
the spatial knowledge parameter was set to true, all agents immediately determined the lowest-cost
path to the exit and started to move. In the worst-case scenario, since most agents were in the same
room, they may have chosen the same lowest-cost path as others. In this case, when time-to-wait was
small, agents frequently showed a tendency to search for an alternate lowest-cost path. As time-to
wait increased, agents followed their lowest-cost path with less frequent searches for an alternate
lowest-cost path. Similar behavior of agents was observed when the spatial knowledge parameter was
set to false.

Table 3. Relation between number of reconsideration procedures triggered during evacuation and
time-to-wait parameter for worst-case scenario.

Crowd-Threshold

Time-to- Wait (s) 1 2 3 1 2 3
Spatial Knowledge True Spatial Knowledge False

0 3685 3396 1172 2425 2058 1165

0.2 475 451 153 452 417 242

0.4 222 214 76 252 224 146
0.6 132 124 46 167 139 96
0.8 87 85 32 146 145 95
1 72 65 24 107 106 71
12 45 42 15 88 85 70
1.4 33 29 10 75 73 70
1.6 25 24 8 73 66 36
1.8 19 18 8 47 46 36
2 17 15 7 46 41 30
22 14 12 7 35 33 29
24 8 8 4 33 32 20
2.6 7 7 2 33 31 15
2.8 5 4 2 19 16 14
3 4 4 2 12 10 6
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On the other hand, it should be noted that if crowd-threshold is set to a value higher than 3,
congestion may occur with fewer agents than the specified value. Consequently, the reconsideration
procedure might not be triggered properly and successful evacuation is not guaranteed.

3.3. Test Results

The simulation was run using all possible parameter settings with all agents using all possible
behavior plans. The simulation runs in real time and agents have their own unique and dynamic
perceptions. Thus, the simulation can be considered to have a non-deterministic structure and this
may have a slight effect on model performance. Tests were repeated several times for each behavior
plan and escape times were recorded during the tests to obtain the average escape time. Table 4 gives
the test results for 29 scenarios for both cases; 24 of the 29 scenarios correspond to 6 behavior plans. In
Table 4, T and F stand for true and false, respectively. Test 0 was derived from Table 1, representing
the data for both cases with the shortest evacuation times. In test 1, all parameters were set to false,
representing the condition in which agents did not have spatial knowledge and the behavior plan was
not defined. Tests 2-4 show the average escape results when only one mechanism was active.

Table 4. Test results.

Behavior Spatial Escape Ratio Avg. Escape Time (s)
Test No. I R

Plan Knowledge Casel  Case2 Case 1 Case 2
0 - T F F F 1 1 35.39 28.50
1 - F F F F 0.125 0.5 Fail Fail
2 - F F F T 1 1 42.20 33.57
3 - F F T F 0.125 0.5 Fail Unstable
4 - F T F F 1 1 52.65 40.01
5 I-S-R F F T T 1 1 41.55 34.42
6 I-S-R F T F T 1 1 45.49 39.32
7 I-S-R F T T F 1 1 46.17 30.75
8 I-S-R F T T T 1 1 43.71 35.09
9 S-I-R F F T T 1 1 41.55 34.42
10 S-I-R F T F T 1 1 45.49 39.32
11 S-I-R F T T F 1 1 48.97 32.45
12 S-I-R F T T T 1 1 41.57 36.59
13 R-S-1 F F T T 1 1 43.03 35.11
14 R-S-1 F T F T 1 1 43.98 34.57
15 R-S-1 F T T F 1 1 48.97 32.45
16 R-S-1 F T T T 1 1 43.14 35.49
17 R-I-S F F T T 1 1 43.03 35.11
18 R-I-S F T F T 1 1 43.98 34.57
19 R-I-S F T T F 1 1 46.17 30.75
20 R-I-S F T T T 1 1 42.22 35.22
21 I-R-S F F T T 1 1 41.55 34.42
22 I-R-S F T F T 1 1 43.98 34.57
23 I-R-S F T T F 1 1 46.17 30.75
24 I-R-S F T T T 1 1 41.48 34.78
25 S-R-1 F F T T 1 1 43.03 35.11
26 S-R-1 F T F T 1 1 45.49 39.32
27 S-R-1 F T T F 1 1 48.97 32.45
28 S-R-1 F T T T 1 1 4491 36.1

Case 1: worst-case layout of agents; case 2: homogeneously distributed agents (normal layout). I, information
exchange; R, reconsideration; S, sidestepping.

More than one mechanism is required to create a hierarchical plan. Therefore, the results of the
first five tests should be interpreted independent of the plan. The evacuation process failed when
none of the mechanisms were activated. In tests 1 and 3, 14 of 16 agents for case 1 and half the agents
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for case 2 could not reach any of the exits because of conflicts, thus evacuation failed. Test 3 shows
that information exchange alone is not always enough for a solution. However, when information
exchange was combined with one or more additional conflict solution mechanisms, as in tests 5,
7, and 8, the model was stable and always found a solution. In tests 2 and 4, the reconsideration
mechanism alone achieved successful evacuation for both cases with better performance compared
to sidestepping.

The corresponding behavior plans of 24 of 29 scenarios are summarized as 12 hierarchy plans in
Table 5.

Table 5. Summary of test results with hierarchy plans.

Avg. Escape Time (s)

Hierarchy Plan Tests

Casel Case 2

I-R 59,21 41.55 34.42
R-1 13,17,25 43.03 35.11
R-S 14,18, 22 43.98 34.57
S-R 6,10, 26 45.49 39.32
IS 7,19,23 46.17 30.75
S-1 11,15, 27 48.97 36.59
I-R-S 24 41.48 34.78
S-I-R 12 41.57 36.59
R-I-S 20 42.22 35.22
R-S-1 16 43.14 35.49
I-S-R 8 43.71 35.09
S-R-I 28 4491 36.10

Table 5 shows double and triple combinations of behavior actions in a hierarchy plan. The
evacuation performance of binary combinations in a plan can be compared to evaluate the effect of the
order of actions in a hierarchy, e.g., I-R vs. R-I, and the use of actions with other alternatives such as
I-R vs. I-S. Then, the effect of each action on the evacuation performance of the hierarchy plan with
triple combinations can be evaluated.

For the worst-case layout (case 1), tests 5, 9, and 21 with the I-R plan resulted in the best stable
evacuation performance among binary combinations of actions. On the other hand, the I-S plan (tests
7,19, 23) generated the best stable evacuation performance for case 2. Tests 13, 17, and 25 and tests 5,
9, and 21 demonstrated that if the hierarchy was changed from R-I to I-R, evacuation performance
improved for both cases. Similar results were observed in both cases for hierarchy changes of S-1
(tests 11, 15, 27) to I-S (tests 7, 19, 23) and S-R (tests 6, 10, 26) to R-S (tests 14, 18, 22). When the stable
evacuation performance for binary combinations was sorted in a descending manner, Equation (9) for
case 1 and Equation (10) for case 2 were obtained:

[-R<R-I<R-S5<S-R<I-5<S5-1, )

[-S<I-R<R-S<R-I<S-1<S-R. (10)

A comparison of Equations (9) and (10) suggests that designating information exchange as
the first action improves the evacuation performance by shortening the average escape time. In
other words, information exchange can be considered as the fastest conflict/congestion solution
mechanism only when combined with other mechanisms. However, it is the only mechanism that
does not guarantee a stable solution when used alone. Similarly, a comparison of Equations (9)
and (10) implies that the second most effective mechanism is reconsideration if time-to-wait and
crowd-threshold parameters are optimized. Therefore, the hierarchy can be sorted as information
exchange-reconsideration—sidestepping (I-R-S), where information exchange has the highest rank in
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the plan. Test 24 in Table 5 confirms that the I-R-S plan achieved the best performance for both cases
compared to other triple combinations of behavior actions in a hierarchy plan.

The nature of emergency egress problems can differ in many ways. There are a few emergency
evacuation studies in the literature that could be considered as related to our approach. Table 6
summarizes a comparison of our study with others in terms of evacuation performance. The existing
studies use either spatial knowledge or situational awareness or both as parameters to inform agents
in their models. Situational awareness informs agents as to the locations of danger areas and exits and
thus can be interpreted as similar to spatial knowledge in our study.

Table 6. Comparison of proposed model performance improvement.

Model Simulated Environment Spatial Knowledge/Situational Improvement

Awareness (%)

Obstacle control [11] Single room Yes 10.4
Parametric [12] High-rise building Yes 24
GAM [13] Vertical ship lift Yes 28.5
Management Building Yes 25,2
Optimization [14] Roads Yes 12
Planned evacuation [15] Santai County (China) Yes 31
PSEP [16] Multi-exit building Yes 30

Office environment Yes 32.78

HBP (multi-exit) No 23.14

GAM, guided evacuation agent model; PSEP, positioned and staged evacuation planning; HBP, hierarchical behavior
plan (proposed in this paper).

A simple approach [11] splitting the flow by using obstacles in front of exits to control congestion
formation managed to decrease evacuation time by up to 10.4%. An evacuation model that was built
for high-rise buildings [12] achieved 24% performance improvement when agents were provided
with situational awareness. The guided evacuation agent model (GAM) [13] resulted in a 28.5%
improvement in evacuation time when crew member agents were used as guides to direct other agents
according to optimal evacuation plans. The simulations provided in [14] highlighted that management
optimization is a key factor in evacuation performance. Evacuation time from the building was
improved up to 25.2% when items on evacuation paths were removed with management optimization.
In research based on a time-extended network model for evacuation with optimization [15], the planned
evacuation model achieved up to 31% faster evacuations. The partitioned and staged evacuation
planning (PSEP) algorithm for multi-exit evacuation [16], which requires evacuation planning to be
divided and processed in smaller groups to reduce the complexity of the problem, had similar efficiency
with reduced computational cost compared to the model in [15].

As shown in Table 6, studies have mostly focused on physical environmental conditions, while this
paper focuses on simulating the social hierarchical behavior of agents in emergencies with both
supervised (with spatial knowledge) and unsupervised (without spatial information) conditions.
The hierarchical behavior planning (HBP) model proposed in this paper achieved a performance
enhancement of 23.14% when spatial knowledge was not available to agents. When agents were
supplied with spatial knowledge, as in the other studies in Table 6, the proposed model demonstrated
up to a 32.78% improvement in evacuation performance in the simulated environment.

4. Conclusions

In this paper, a hierarchical behavior model for a multi-agent system with evasion capabilities
and dynamic memory simulating the social behavior in an office environment during an emergency
was presented. Collision avoidance, negotiation, conflict solution, and path-planning mechanisms
were used to simulate the behaviors of agents.
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The test results prove that the mechanisms in the proposed model have different characteristics
that fit each other well in situations where different hierarchies are needed. Each mechanism contributes
at a different level to evacuation performance. The ranks defining priorities within the hierarchy
can be sorted as information exchange-reconsideration-sidestepping, where information exchange
is ranked highest in the plan. Information exchange contributed the most to conflict/congestion
prevention, reconsideration the most to conflict/congestion resolution, and sidestepping to evacuation
performance, with its conflict resolution property. The degree of contribution depended on the
involvement of either one or both mechanisms. It provided the least contribution when the I-R-S
hierarchy was applied. The contribution of behaviors was also heavily dependent on environmental
circumstances. Mechanisms used in the hierarchical model are loosely coupled and can easily be
modified or completely changed. Thus, the proposed mechanism calibration methods enhance the
model’s ability to adapt to different situations.

The DMM algorithm in the model provides a solution to the problem of the unavailability of prior
spatial knowledge, which most evacuation approaches need. The DDM algorithm explores the map
by coordinating with the information exchange mechanism. DMM with a hierarchical behavior plan
achieved a performance improvement of 23.14% in escape time without providing agents with any
initial environmental information.

Although the proposed model was tested on a grid—graph structure, it is applicable and adaptable
to any graph-based environment structure. In this case, it should be noted that the pathfinding
algorithm and heuristic function may require customization. The simulation results reveal that the
proposed model successfully demonstrates the social behavior of agents. Therefore, the model may be
used to support emergency evacuation planners, providing simulations with different hierarchical
social behaviors of agents. Our further studies will focus on advancing and adapting the hierarchical
behavior models to different environments and scenarios, such as cooperative search and rescue in
disaster situations.
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Appendix A

Table Al. Pseudo-code for A* search algorithm.

Algorithm: Pseudo-code for A* Pathfinding

openlList: stores pending unevaluated nodes in form of a list
closedList: stores visited nodes

w: weight function; consists of weights of connecting edges
g: cost function of the node from the start

h: heuristic function
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Table Al. Cont.

currentNode = node_start
g(node_start) = 0; f(node_start)=h(node_start)
openList. Add(node_start)
While(openList is not empty)
If(currentNode = goal) break;
For each agent in currentNode.agent
If agent is not in (openList or closedList)
openList.add(agent)
agent.Predecessor = currentNode;
if(g(agent) > g(Predecessor) + w(Predecessor,agent))
g(agent) = g(Predecessor) + w(Predecessor,agent)
For each node n in openList
Select n with min(g(n) + h(n))
closedList.Add(currentNode);
openList.Delete(currentNode);
currentNode = n;

Table A2. Pseudo-code for triggering reconsideration procedure.

Algorithm: Pseudo-code for triggering reconsideration procedure

If path is blocked
wait = true;
While (wait)
If path is blocked
time_waited++;
Else time_waited = 0 and wait = false
If time_waited > time_to_wait
Reconsideration();
End While

Table A3. Pseudo-code for triggering reconsideration procedure.

Algorithm: Pseudo-code for crowd-coefficient calculation

for each adjacent node n
if (n is occupied)
seed++
for(i = current_step to path_length)
if (path[i + 1] is occupied)
coefficient + = seed
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