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Abstract: Wi-Fi and magnetic field fingerprinting-based localization have gained increased attention
owing to their satisfactory accuracy and global availability. The common signal-based fingerprint
localization deteriorates due to well-known signal fluctuations. In this paper, we proposed a Wi-Fi
and magnetic field-based localization system based on deep learning. Owing to the low discernibility
of magnetic field strength (MFS) in large areas, the unsupervised learning density peak clustering
algorithm based on the comparison distance (CDPC) algorithm is first used to pick up several
center points of MFS as the geotagged features to assist localization. Considering the state-of-the-art
application of deep learning in image classification, we design a location fingerprint image using Wi-Fi
and magnetic field fingerprints for localization. Localization is casted in a proposed deep residual
network (Resnet) that is capable of learning key features from a massive fingerprint image database.
To further enhance localization accuracy, by leveraging the prior information of the pre-trained Resnet
coarse localizer, an MLP-based transfer learning fine localizer is introduced to fine-tune the coarse
localizer. Additionally, we dynamically adjusted the learning rate (LR) and adopted several data
enhancement methods to increase the robustness of our localization system. Experimental results
show that the proposed system leads to satisfactory localization performance both in indoor and
outdoor environments.
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1. Introduction

In recent years, the demand for location-based services (LBSs), both indoors and outdoors, has
been gaining attention and has massive demand in industry and academia [1]. Successful application
of the Satellite Navigation Positioning System (SNPS), such as Global Positioning System (GPS) and
the Galileo Navigation System, provides great convenience for traveling people. However, in indoor
or complex outdoor environments, GPS cannot provide accurate LBS [2]. Multiple sensors equipped
with a smartphone have brought new advances for indoor LBS. By measuring with the received signal
measurements, localization with Wi-Fi or a magnetic signal becomes possible [3].

Traditional localization methods rely on signal Time of Arrival (TOA), Time Difference of
Arrival (TDOA), and Angle of Arrival (AOA) to determine the position of the User Equipment (UE).
However, special equipment is needed to determine the signal round-trip time or angle. Therefore, it
is inconvenient and impractical in many applications. In contrast, most of the fingerprint-based
positioning methods do not require any dedicated equipment or infrastructure, and it can be
implemented just by one ubiquitous smartphone. In addition, low-power sensors equipped with a
smartphone draw much lower energy, even when continuously active [4].

ISPRS Int. J. Geo-Inf. 2020, 9, 267; doi:10.3390/ijgi9040267 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-6683-8258
http://www.mdpi.com/2220-9964/9/4/267?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi9040267
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2020, 9, 267 2 of 15

As illustrated in Figure 1, the proposed fingerprint localization system normally consists of two
phases: the offline phase and the online phase. During the offline phase, UE collects a series of Wi-Fi
Received Signal Strength Indications (RSSIs) from all access points (APs) or magnetic signal magnitude
at known locations, known as Reference Points (RPs), to build a fingerprint database. Therefore,
each RP has its own fingerprint, containing the known locations and the received RSSI or magnetic
signal magnitude. Then, the proposed deep learning model is used to train with the pre-constructed
fingerprint database. At the online phase, the well-trained deep learning model is used to match the
currently received signals against the fingerprint database, and the location of UE is determined by the
best-fitted RP [3,5].
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Figure 1. Illustration of the proposed fingerprint-based localization system. 113 
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Figure 1. Illustration of the proposed fingerprint-based localization system.

The initial fingerprint-based localization approach relies on K-Nearest Neighbor (KNN) to find the
RPs that match best with the fingerprint database. Later, the Bayesian algorithm, Weighted-K-Nearest
Neighbors (WKNN), and Support Vector Machine (SVM) are proposed to improve the robustness
of the positioning system [6–8]. In [9] a magnetic-based indoor subarea localization approach was
proposed using an unsupervised learning algorithm. A multi-hop approach was leveraged to solve
inaccuracies in the localization problem [10].

However, the main problem in achieving accurate fingerprint localization lies in the signal
fluctuation, such as the adverse impact of multipath fading and signal attenuation by furniture, walls,
and people. In addition, accurate positioning requires collecting more RPs; therefore, the workload
of constructing a fingerprint database tends to be tremendous. Consequently, the main challenge in
fingerprint-based localization is how to develop a model that can extract reliable features and accurately
map massive numbers of RPs with widely fluctuating signals [11]. The aforementioned localization
approaches have shallow learning architectures, leading to limited representational ability, especially
when dealing with those massive and noisy data issues. Positioning with MFS is also problematic. The
discernibility of MFS decreases dramatically when considering a large area, which makes it impossible
to use MFS directly for positioning.

In recent years, deep learning has made great progress both in academics and industry. Deep
learning with multiple layers has beaten other techniques in speech recognition, image classification,
and so on [11,12]. Therefore, in this work, deep residual network (Resnet) and transfer learning are
introduced to develop a highly accurate localization system. Using MFS alone for localization is
insufficient, because of its low discernibility in a large area. Therefore, considering the outstanding
performance of the density peak clustering (DPC) algorithm in feature selection, we propose a novel
density peak clustering algorithm based on the comparison distance (CDPC) algorithm to select several
center points of magnetic field strength (MFS), then combined it with a Wi-Fi signal to improve the
robustness of the proposed localization system. Owing to the state-of-the-art performance of deep
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learning in image classification, the Wi-Fi RSSI and the center points of MFS are converted into images
to build the fingerprint image database.

In order to deal with signal fluctuation, a model with a strong learning ability should be designed.
In this work, a two-level hierarchical architecture training approach, containing a pre-training step and
fine-tuning step, is adopted to obtain the final deep learning model. After finishing the construction of
the fingerprint image dataset, the proposed Resnet is first used to train with the dataset and return a
pre-trained model called the coarse localizer. Then, by leveraging prior knowledge of the pre-trained
model, multiple perception layer (MLP)-based transfer learning is used to further train with the dataset
and return a fine-tuned model called the fine localizer.

During the training phase, multiple data enhancement approaches are leveraged to improve the
localization accuracy. The fingerprint dataset images are standardized into 224*224, so the model
can more easily learn image features. In addition, some of the images are enlarged by 1.25 times or
randomly rotated by 15◦. In batch normalization, a momentum item is added to reduce the vibration
time and accelerate convergence of the model. In addition, the learning rate (LR) is dynamically
adjusted to further optimize the model. For the matching phase, a probabilistic method is leveraged to
indicate the accuracy of the localization system.

The main contributions of this paper can be summarized as follows: (1) the unsupervised learning
CDPC algorithm is first used to pick up center points of MFS, which can represent the distribution of
MFS at each RP. Positioning accuracy can be improved by combining Wi-Fi signals and the selected
MFS. (2) Different from ordinary datasets, these selected MFS and Wi-Fi RSSI are transformed into
images to form the fingerprint image dataset for localization. In order to develop a model with strong
learning ability, Resnet and an MLP-based transfer learning two-level hierarchical training architecture
are proposed for localization. (3) Considering the numerous classification points, we dynamically
adjust the LR and adopted several data enhancement approaches to enhance the generalization ability
of the deep neural network (DNN) model. (4) To verify the effectiveness of the proposed positioning
system, the experiment was conducted in both real indoor and outdoor environments. The experiment
shows that the proposed positioning system can achieve high-precision localization in both indoor and
outdoor environments.

The rest of this paper is organized as follows: Section 2 describes the related works. The proposed
positioning system is presented in Section 3. The experimental part is described in Section 4. Finally,
Section 5 describes the conclusions and future works.

2. Related Work

The great demand for LBS has stimulated the development of localization techniques. The wide
deployment of Wi-Fi signals and magnetic signals can be useful in almost all indoor environments for
localization. Therefore, it has aroused great interest among researchers [13].

Traditional measurement-based localization systems, such as TOA and TDOA, can determine the
UE location. However, these approaches require line-of-sight (LOS) signal propagation, because the
localization approaches depend on trilateration. The localization accuracy will deteriorate greatly in
indoor environments, because the signal will often be blocked by objects and refracted [14]. However,
fingerprint-based localization can overcome these drawbacks, and it has been proven to have a
satisfactory localization performance [12]. Therefore, the fingerprint-based localization technique has
attracted widespread attention. Basically, there are three kinds of fingerprints: visual fingerprint,
motion fingerprint, and signal fingerprint [3]. Improved image and video processing abilities enable
smartphones to handle massive visual searches from a large number of visual fingerprint databases [15].
The application of Google Goggles and Vuforia Object Scanner have also been successful. With
the support of motion sensors, such as accelerometers and electronic compasses, smartphones can
identify the real-time dynamics of UE. The basic idea of motion fingerprint localization is to combine an
accelerometer and compass measurements and match these with the pre-constructed motion fingerprint
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database to determine the UE location [16]. Signal fingerprint-based localization captures signals and
matches them with the geotagged fingerprint database to determine the UE location [17].

The most commonly used signals are Wi-Fi signals and geomagnetic signals. Each Wi-Fi signal
has its unique media access control (MAC), and its limited signal coverage ability (around 100 meters)
enables Wi-Fi signals to be widely used in localization [5]. However, as is shown in Figure 2, Wi-Fi
signals can fluctuate over a wide range because of surrounding signal noises, multiple fadings and
so on, which may confuse nearby locations in Wi-Fi-based positioning systems. Therefore, collecting
more Wi-Fi signals with different MACs can produce a higher positioning accuracy. Wi-Fi-based indoor
localization systems have a localization performance of 5–10 meters. In addition, for signals with low
strength, the Wi-Fi signal scanning process may take several seconds to obtain all the Wi-Fi signals.
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The magnetic field is rather stable over a long period, and it has outstanding spatial discernibility
in a small area [18]. It can collect around 100 data points per second by the sensors equipped in
a smartphone. Researchers have found that MFS in indoor environments varies from 20 to 80 µT.
MFS at a given location will have similar variations to nearby locations. Therefore, discernibility
decreases dramatically when considering a large area. Therefore, it is impossible to directly use MFS
for positioning. This paper discusses whether the CDPC algorithm can be used to pick out the MFS
center point to enhance the positioning accuracy.

In [19], KNN was leveraged to find the best match from the constructed fingerprint database.
However, the experiments showed that the performance was not very satisfactory, because the system
was sensitive to signal noise. In order to enhance the stability of the localization system, Bayesian-based
filtering localization approaches were proposed in [20]. However, the traceability of the localization
system was influenced by the filter. An SVM-based localization system that converts the localization
problem to a classification problem was proposed in [21]. With the development of neural networks
(NNs), researchers have leveraged shallow NN models for localization. However, these models have
shallow structures and lead to a limited learning ability; therefore, it cannot handle a large set of
massive vibrating signals, and the localization performance is not very good [11]. The increase in
computer computing power and the successful application of deep learning give researchers a new way
to improve localization performance. One study [22] investigated the application of convolution neural
networks for localization. Another [11] used a stacked denoising autoencoder and four-layer DNN to
learn reliable features. In order to further increase the localization accuracy, [23] leveraged channel state
information (CSI) and deep learning for localization. SVM and DNN were used for indoor and outdoor
localization [24]. By using convolution neural network, a hybrid wireless fingerprint localization
method was proposed for indoor localization [25]. However, additional expensive hardware is needed
to acquire CSI information, and the workload of data preprocessing is tremendous. Therefore, this
approach is inconvenient and impractical [26].
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Compared to other works, this work has three differences. First, the collected signal measurements
were converted into fingerprint grayscale image for localization. Second, the unsupervised learning
CDPC algorithm is first used to find out the center points of MFS, and these selected MFSs are leveraged
to improve the localization performance. Third, in this work, a two-level hierarchical deep learning
structure is leveraged to extract key features from massive, widely fluctuating Wi-Fi and magnetic
signals. Additionally, MLP-based transfer learning is introduced to fine-tune the trained Resnet coarse
localizer for obtaining the fine localizer. In addition, our localization system requires no orientation
information; therefore, there are no orientation requirements for the phone when localizing. Different
from the aforementioned localization methods, in this paper, our proposed method does not rely
on additional expensive hardware, and the localization task can be realized only by a smartphone.
Therefore, our proposed localization system is universal and cost-effective.

3. Proposed Solution

In this paper, we considered a typical localization environment with a smartphone receiving
RSSI and MFS measurements from surrounding Wi-Fi APs and magnetic fields. As is shown in
Figure 3, the purpose of localization is to find the location of the smartphone from the collected
signal measurements. The localization system consists of six functional modules: data collection, data
selection, data pre-processing, fingerprint image construction, DNN training and DNN localization.
Multiple sensors equipped in the smartphones make it possible to read Wi-Fi and MFS signals. The
purpose of the data selection is to use the CDPC algorithm to find the center point of MFS, and
by combining the selected MFS with Wi-Fi RSSI, the localization accuracy can be improved. The
signal measurements were converted into images to form fingerprint image dataset. Additionally,
the localization information contains the fingerprint image and its location. The purpose of data
pre-processing is to find signals with high strength and make it adaptable to form fingerprint images.
After the construction of fingerprint image database, the proposed DNN was used to train with it.
Then, the DNN parameter database stores the proposed localization model for the online localization.
In the online phase, by using the trained DNN model, the constructed fingerprint image is used to
match against the fingerprint image dataset to estimate location. Additionally, the DNN used in this
paper includes Resnet and MLP-based transfer learning. In the following sections, we will detail the
implementation steps and corresponding algorithms of the proposed localization system.
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and fingerprint image learning. DNN contains Resnet and multiple perception layer (MLP)-based
transfer learning.

3.1. The Proposed Data Selection Algorithm

For the magnetic field measurements, the unsupervised learning CDPC algorithm is used to select
several center points to better reflect the distribution of MFS in each RP. Combining the selected MFS
and Wi-Fi RSSI can improve the accuracy of the localization system.

Clustering by fast search and finding density peaks are representative of a density clustering
algorithm. The basic idea of the DPC algorithm is based on two assumptions: (1) the cluster center is
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surrounded by some points with a lower density; and (2) these centers have a relatively larger distance
from the points of higher density [27].

The two assumptions give the criteria of the cluster centers and give the test criteria for potential
cluster centers. Two important parameters, the density ρ, and relative distance δ, can be calculated.

A clustering dataset is X = {x1, x2, . . . , xn}, where xi, 1 ≤ i ≤ n is a vector with m attributes. xi
can be expressed as xi = {xi1, xi2, . . . , xim}, and the Euclidean distance d(i, j) for the xi and xj can be
represented as follows:

d(i, j) = ‖xi− xj‖ (1)

After calculating the Euclidean distance, the DCP algorithm can be conducted by the
following procedure.

Define the local density ρi of data point i

ρi =
∑

i

χ(di j − dc) (2)

χ(x) =
{

1 x < 0
0 x ≥ 0

(3)

dc = d
⌈
Nd× p

⌉
(4)

where dc is the cut-off distance and is usually used as a manually entered parameter, based on experience.

Suppose there are N data points, and the distance between each point is Nd =

(
N
2

)
. These

distances are sorted in ascending order.
⌈
Nd× p

⌉
is the position of dc in this order, where p is the

manual input percentage parameter and d.e is the celling function.
The idea of ρi =

∑
i
χ(di j − dc) is to discover the number of points in the data space that are less

than dc from data point i.
Traditional relative distance δ: for each node i, a node with a higher density than j can be found.

Calculate the distance between nodes i and j, and define the smallest di j as δi. If node i has the largest
density, then δi is the maximum distance from that point to other points.

δi =

{
max(di j), i f ρi ≥ ρ j
min(di j), other

(5)

In this paper, we propose a comparable distance to improve on DPC’s second hypothesis. The
DPC algorithm does not quantitatively compare δi. Therefore, choosing a new variable to replace δi
reflects the relative size in the algorithm. Based on the above conditions, an amount ζi which similar to
δi is defined as follows:

ζi =

 δi, if j ∈ s,ρi ≤ ρ j

min
{
d(i, j)

∣∣∣ρi ≥ ρ j, j ∈ s
}
, other

(6)

where ζi represents the distance from point i to the low-density area, which is a very suitable amount
to compare with δi.

It is known by the hypothesis that the point with larger density and larger relative distance is
the cluster center point. Hence, calculations are after each point of local density ρ and comparative
distance ζi. Figure 4 indicates the decision graph for our experiments. γi = δi × ζi is calculated to find
several maxima values. These maxima values are utilized as the center points and reflect the overall
magnetic measurement distribution.
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3.2. Data Pre-Processing

The purpose of data pre-processing is to find signals with high strength and make them adaptable
to an RGB image. In order to eliminate the adverse effect of weak Wi-Fi signals on localization, we
selected the eight strongest Wi-Fi signals at each RP. In our proposed localization system, the fingerprint
database was constructed based on the image. Therefore, the purpose of data pre-processing was to
adapt the signal measurements to an image. Generally, an ordinary RGB image contains three channel
matrixes, and the values in the matrix are between 0 and 255. Wi-Fi RSSI measurements are between
−30 and −120 dBm. Thus, the Wi-Fi measurements are based on η=|RSSI

∣∣∣.
3.3. Fingerprint Image Construction

Different from other works that use raw signal data to construct fingerprint database [13,16], this
paper proposes a novel method to construct fingerprint image dataset. Considering the impact of
different data lengths and AP sets on localization accuracy, the fingerprint image construction module,
in each grid, normalizes all the fingerprint images into the same size and AP set. This module is used
both in training and matching phases. The difference is that, in the training phase, the fingerprint
images are labeled, and it needs to predict the label in the matching phase.

Different from the traditional way of processing sequence data, we converted the collected data
into fingerprint images for feature extraction. The collected sensor data contained a series of MFS,
RSSI and multiple APs. Generally, an ordinary image is a three-channel matrix that has red, green, and
blue channels, respectively. Therefore, for constructing the fingerprint image, we need to rearrange the
collected data.

In the proposed localization system, the constructed fingerprint image should be standardized
into the same size. The fingerprint image F is composed of a magnetic part Fmag and a Wi-Fi RSSI part
Frssi. The fingerprint image can be constructed as follows:

Fmag = [MFS1, MFS2, . . . , MFSn] (7)

Frssi =


η11, η12, . . . , η1n
η21, η22, . . . , η2n

. . . . . . . . . . . .
η81, η82, . . . , η8n

 (8)

F =

[
Fmag

Frssi

]
(9)

where n is the number of center points selected by the CDPC algorithm, and it is equal to the number
of RSSI measurements collected in each RP. k is the number of APs detected in the localization areas.
Therefore, the MFS Fmag is stored as a 1 × n vector. The Wi-Fi RSSI fingerprint image is stored as a
k × n matrix. In this paper, F is used to form the red, green, and blue channel matrixes; therefore,
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the fingerprint image can be constructed. Then, the same method is used to form the fingerprint
image dataset.

3.4. The Proposed DNN Introduction

In this paper, the proposed DNN contains a Resnet-based coarse localizer and a transfer
learning-based fine localizer. DNN used in our localization system can automatically learn signal
features and can distinguish the difference between fingerprint features in different classification points.
However, the collected dataset is rather small, which lessens the localization accuracy. Therefore,
inspired by the idea of transfer learning, a two-level hierarchical training strategy is adopted. First,
Resnet is used to train with the fingerprint image database, and we reserved the localization model.
Then, MLP is added after the Resnet, and we used the new model for transfer learning.

3.4.1. Deep Residual Network Introduction

DNN algorithm is proposed to predict the user equipment (UE) locations. Because we converted
the locations into labels, the predicted results were the IDs of these labels. In addition, the proposed
localization consists of a Resnet-based coarse localizer and a transfer learning-based fine localizer.

With the development of deep learning, researchers have found as the number of layers of
the neural network increases, the learning ability of the network will increase. However, owing
to the overfitting problem, the generalization ability will be decreased as the network goes deeper.
This problem has troubled researchers for a long time. With further research, [28] proposed the
deep residual model, and it successfully improved the learning ability of the network. As is shown
in Figure 5, the residual model is constructed by adding a skip connection. The learning for the
target map H(x) is transformed into H(x) = F(x) + x, and learning F(x) is easier than H(x). By
cumulating multiple residual modules, the degradation problem of DNN can be effectively alleviated
and performance improved.
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Figure 5. The structure of Resnet.

Figure 6 shows the proposed Resnet model, and it consists of one basic block 2, four basic blocks
2, three basic blocks 3, an average pooling layer, and one MLP layer. Each basic block is a residual
module, and when overfitting occurs, the DNN skips some residual blocks and continues training. In
this paper, SELU was used as the activation function. Additionally, cross-entropy loss is used as the
loss function of the So f tmax classifier. The detailed calculation process of different layers can be seen
in [29].
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Figure 6. The structure of our proposed Resnet-based coarse localizer. The deep residual structure
makes it possible to learn reliable features from a large set of fluctuating signals.

3.4.2. Transfer Learning Introduction

Transfer learning has lots of merits. As shown in Figure 7, transfer learning has a higher start,
higher slope, and higher asymptote. Therefore, for obtaining the best localization model in this paper,
a Resnet-based coarse localizer model and transfer learning-based fine localizer model were used
to maximize the localization accuracy. These two localizer models need to be trained separately.
Specifically, Resnet is first used to train with the fingerprint image dataset. After completing the
training process, we reserved the trained Resnet model and added MLP after Resnet for transfer
learning. The MLP-based transfer learning model leveraged prior information from the trained Resnet
to maximize localization accuracy.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 16 

 

Training

Pe
rf

or
ma

nc
e

higher start

higher slope higher asymptote

With transfer learning

Without transfer learning

 325 

Figure 7. The merits of transfer learning. 326 

As is shown in Figure 8, in this paper, MLP-based transfer learning is leveraged to fine-tune the 327 
Resnet and further increase the localization accuracy. First, the Resnet is leveraged to train with the 328 
fingerprint image database. After finishing the training process, we obtained a pre-trained model 329 
called the coarse localizer. Then, we reserved the trained Resnet model and added MLP after it. 330 
Finally, this newly constructed model was used to further train with the fingerprint image database. 331 
This transfer learning-based model was used as the final localization model called the fine localizer. 332 

Basic Blocks AvgPool2d Flatten
Fully-

Connected
 Layer

The Pre-Trained Resnet Model

Parameter Reserved

Transfer Learning

MLP
Location 

Estimation
 Fingerprint 

Images Dataset

 333 

Figure 8. The structure of the proposed transfer learning-based fine localizer. It reserves the 334 
parameters of trained Resnet and adds several MLPs for transfer learning. 335 

4. Experimental Results 336 

4.1. Setup of The Experiments 337 

Experiments were conducted in both indoor and outdoor environments, which were divided 338 
into hundreds of grids. A person walked around and held a smartphone equipped with wireless 339 
sensors that could receive MFS and RSSI from the surrounding environment. In each grid, a series of 340 
these signal measurements were collected in four to six locations to deal with signal instability. In 341 
addition, this process was conducted five times, five days apart. Therefore, these measurements can 342 
fully reflect the overall distribution of the signals. In the matching phase, the purpose was to find the 343 
location of UEs given a collection of MFS and RSSI data and compare it with the true location. 344 

The number of training epochs greatly impacts the performance of DNN. Too few training 345 
epochs will make it difficult for the model to fully extract the features of the dataset. Conversely, too 346 
many training epochs will lead to overfitting. In order to solve this problem and maximize the 347 
localization accuracy, the fingerprint dataset was divided into 60% training set, 20% validation set, 348 
and 20% test set. In each training epoch, a new localization accuracy will be generated. The DNN 349 
model stores its best localization accuracy model parameters. Therefore, the DNN model will be 350 

Figure 7. The merits of transfer learning.

As is shown in Figure 8, in this paper, MLP-based transfer learning is leveraged to fine-tune the
Resnet and further increase the localization accuracy. First, the Resnet is leveraged to train with the
fingerprint image database. After finishing the training process, we obtained a pre-trained model
called the coarse localizer. Then, we reserved the trained Resnet model and added MLP after it. Finally,
this newly constructed model was used to further train with the fingerprint image database. This
transfer learning-based model was used as the final localization model called the fine localizer.
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4. Experimental Results

4.1. Setup of the Experiments

Experiments were conducted in both indoor and outdoor environments, which were divided into
hundreds of grids. A person walked around and held a smartphone equipped with wireless sensors
that could receive MFS and RSSI from the surrounding environment. In each grid, a series of these
signal measurements were collected in four to six locations to deal with signal instability. In addition,
this process was conducted five times, five days apart. Therefore, these measurements can fully reflect
the overall distribution of the signals. In the matching phase, the purpose was to find the location of
UEs given a collection of MFS and RSSI data and compare it with the true location.

The number of training epochs greatly impacts the performance of DNN. Too few training epochs
will make it difficult for the model to fully extract the features of the dataset. Conversely, too many
training epochs will lead to overfitting. In order to solve this problem and maximize the localization
accuracy, the fingerprint dataset was divided into 60% training set, 20% validation set, and 20% test set.
In each training epoch, a new localization accuracy will be generated. The DNN model stores its best
localization accuracy model parameters. Therefore, the DNN model will be thoroughly trained, and
we will choose the model with the best localization accuracy as the final model. To further increase the
robustness of the proposed DNN in this paper, multiple data enhancement approaches were adopted.
First, fingerprint images were standardized into 224*224. Second, parts of the fingerprint images were
enlarged by 1.25 of its original size, or another way was to randomly rotate the fingerprint images by
15◦. In addition, momentum was added to the batch normalization to accelerate the training speed.

Figure 9a shows the indoor floor plan for localization, and the area of interest was divided into
96 grids with a size of 2 square meters. The total number of collected APs was 87. Therefore, the
proposed DNN structure consisted of 137 input units and 96 output units. Figure 9b shows the outdoor
experiment environment, which was conducted in a community garden. The outdoor localization
area was divided into 54 grids with a size of 3 square meters. The total number of collected APs
was 161. The localization system was implemented on a Dell PC with an RTX2060 graphics card;
this has powerful data processing capabilities compared to smartphone platforms. The proposed
positioning models, data pre-processing, and data enhancement methods were implemented in Matlab
and Pytorch.



ISPRS Int. J. Geo-Inf. 2020, 9, 267 11 of 15

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 16 

 

thoroughly trained, and we will choose the model with the best localization accuracy as the final 351 
model. To further increase the robustness of the proposed DNN in this paper, multiple data 352 
enhancement approaches were adopted. First, fingerprint images were standardized into 224*224. 353 
Second, parts of the fingerprint images were enlarged by 1.25 of its original size, or another way was 354 
to randomly rotate the fingerprint images by 15°. In addition, momentum was added to the batch 355 
normalization to accelerate the training speed. 356 

Figure 9a shows the indoor floor plan for localization, and the area of interest was divided into 357 
96 grids with a size of 2 square meters. The total number of collected APs was 87. Therefore, the 358 
proposed DNN structure consisted of 137 input units and 96 output units. Figure 9b shows the 359 
outdoor experiment environment, which was conducted in a community garden. The outdoor 360 
localization area was divided into 54 grids with a size of 3 square meters. The total number of 361 
collected APs was 161. The localization system was implemented on a Dell PC with an RTX2060 362 
graphics card; this has powerful data processing capabilities compared to smartphone platforms. The 363 
proposed positioning models, data pre-processing, and data enhancement methods were 364 
implemented in Matlab and Pytorch. 365 

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

2平方
米

1.5平
方米

2平方
米

2平方
米

2平方
米

1.5平
方米

2平方
米

2平方
米

2平方
米

1.5平
方米

2平方
米

2平方
米

2平方
米

1.5平
方米

2平方
米

2平方
米

2平方
米

1.5平
方米

2平方
米

2平方
米

2平方
米

1.5平
方米

 

(a) 

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方

米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

3平方
米

Lawn

 Fountain

 

 

(b) 

Figure 9. Floor plan of the test site. These two localization areas are divided into dozens of grids. (a,b) 366 
Indoor and outdoor test sites, respectively. 367 
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Figure 9. Floor plan of the test site. These two localization areas are divided into dozens of grids.
(a,b) Indoor and outdoor test sites, respectively.

4.2. Influence of MFS and Learning Rate

LR is a critical hyperparameter in deep learning. During the training process, appropriate LR will
help increase the fitting ability and improve the training speed of DNN. Conversely, improper LR will
cause the network converge to a local minimum and greatly reduce the learning ability. However, as
shown in Figure 10, a suitable LR is difficult to pike up. In addition, a fixed LR may cause the network
to oscillate back and forth between the smallest point [29]. In order to solve this problem, the LR needs
to dynamically adjust to improve the convergence of the network. Therefore, in this designed DNN
model, the initial LR was set as 0.001, and, after every 35 epochs, we dynamically adjusted the LR to
half of its original size.
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Figure 9. Floor plan of the test site. These two localization areas are divided into dozens of grids. (a,b) 366 
Indoor and outdoor test sites, respectively. 367 

4.2. Influence of MFS and Learning Rate 368 

LR is a critical hyperparameter in deep learning. During the training process, appropriate LR 369 
will help increase the fitting ability and improve the training speed of DNN. Conversely, improper 370 
LR will cause the network converge to a local minimum and greatly reduce the learning ability. 371 
However, as shown in Figure 10, a suitable LR is difficult to pike up. In addition, a fixed LR may 372 
cause the network to oscillate back and forth between the smallest point [29]. In order to solve this 373 
problem, the LR needs to dynamically adjust to improve the convergence of the network. Therefore, 374 
in this designed DNN model, the initial LR was set as 0.001, and, after every 35 epochs, we 375 
dynamically adjusted the LR to half of its original size. 376 

epoch

loss

very high learning rate

high learning rate

low learning rate

appropriate learning rate

 377 Figure 10. Impact of the learning rate (LR) on DNN training.

As shown in Figure 11, we tested the localization performance of our proposed localizer with
respect to LR and MFS. Figure 11 shows that localization accuracy achieved the highest when the LR
take was 1 × 10−3. This is an appropriate LR for the DNN to converge to the global minimum. It can
also be observed that the MFS effectively helped enhance the localization performance both for the
coarse localizer and fine localizer. This is probably because the selected MFS enriched the localization
features. The fine localizer with inappropriate LR performed worse than the coarse localizer; this may
because the network was already at a local minimum at the beginning of training, and it was difficult
to effectively converge. With appropriate LR, the transfer learning-based fine localizer can effectively
utilize prior information of the pre-trained coarse localizer to achieve a better localization performance.
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4.3. Influence of Different Numbers of Neurons and Hidden Layers

The number of neurons and hidden layers greatly influence the DNN. Therefore, we compared
their impact on localization performance. λ indicated the number of hidden layers. Figure 12 shows
that, as the number of neurons increased, the localization accuracy first increased then decreased. The
downtrend was not obvious. However, this was not the case when experimenting with the number
of hidden layers. The localization accuracy deteriorated when DNN went deeper, because excessive
layers make it difficult for gradients to propagate between each hidden layer. The best localization
performance was obtained with two hidden MLP layers and 200 neurons in each hidden layer.
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4.4. Influence of Different Dropout Rates

To prevent the overfitting problem, a dropout layer was used between each MLP layer. During the
training phase, the dropout layer randomly sets the input neurons to 0. In this way, it could reduce the
number of intermediate features, thereby reducing redundancy, that is, increasing the orthogonality
between each feature. Table 1 shows the impact of different dropout rates on localization performance.
It can be seen that the localization accuracy reached a peak of 97.1% when the dropout rate was 0.6.
However, if the MLP did not possess a dropout layer, the best localization accuracy was 94.7%, which
is lower than the best result. This is because the overfitting problem occurred. Therefore, a dropout
layer was used to solve the overfitting problem.

Table 1. Accuracies for different dropout rates.

Dropout Rate 0 0.4 0.5 0.6 0.7 0.8

Accuracy 94.7 96.4 96.8 97.1 96.7 96.5
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4.5. Influence of Dynamic Learning Rate and Data Enhancement Methods

In order to further increase generalization ability of the DNN model. The LR was dynamically
adjusted and several data enhancement methods were adopted. Table 2 shows the impact of dynamic
LR and data enhancement methods on localization accuracies. It can be seen that these two methods
significantly improve the generalization ability of DNN.

Table 2. Accuracies for different options.

Options Dynamic Learning
Rate

Data Enhancement
Methods

Dynamic Learning Rate and
Data Enhancement Methods

Accuracy 89.7 93.6 97.1

4.6. Comparison with Other Algorithms

In order to evaluate the proposed algorithm with other algorithms, different experiments were
conducted. Figure 13 indicates the localization performance of the proposed algorithm with other
existing learning algorithms. The raw collected Wi-Fi data and selected MFS were used to construct a
fingerprint, and were used as the inputs of GRNN, KNN, WKNN, SVM and MLP. It worth mentioning
that the fingerprint image dataset was constructed by the raw collected signal measurements. Then,
these learning algorithms were leveraged for comparative experiments. When using multiclass SVM
for positioning, the Gaussian kernel is used as the kernel function, with the kernel scale set to sqrt(P)/4,
where P is the number of predictors. For the GRNN, we set its smoothing factor to 1. For SVM, 80%
of the dataset was used for training and the remaining 20% for prediction. The MLP contains three
hidden layers. The CNN algorithm contains one convolution layer, one batch normalization layer,
one ReLU activation function and two feed forward layers. The experiment results showed that the
proposed localizer was superior to other localization approaches. This is because the other models had
a shallow structure, leading to limited learning ability. The proposed localizer had a deep structure,
and it could perform well to extract reliable features from a large set of fluctuating signal samples.
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5. Conclusions

In this study, we have proposed a two-level hierarchical training approach comprising a deep
learning framework for indoor and outdoor localization with Wi-Fi and magnetic fingerprinting.
By leveraging unsupervised learning, the CDPC algorithm can pick up center points of MFS to
construct the fingerprint image database with Wi-Fi measurements. Then, Resnet is used to train
with a fingerprint image database and get a coarse localizer. In order to increase the localization
performance, the MLP-based transfer learning fine localizer is used to refine the localization results
based on prior knowledge of the trained coarse localizer. We have evaluated our proposed localization
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system in indoor and outdoor areas. Various experimental results have demonstrated the superiority
of our localization system. In the future, we would like to cooperate with local enterprises to develop
applications that can be used in our daily life.
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