
 International Journal of

Geo-Information

Article

A Vector Line Simplification Algorithm Based on the
Douglas–Peucker Algorithm, Monotonic Chains
and Dichotomy

Bo Liu 1, Xuechao Liu 1, Dajun Li 1,*, Yu Shi 1, Gabriela Fernandez 2 and Yandong Wang 3,*
1 Faculty of Geomatics, East China University of Technology, 418# Guanglan Road, Nanchang 330013, China;

liubo@ecut.edu.cn (B.L.); liuxuechao1991@163.com (X.L.); yushi19930807@outlook.com (Y.S.)
2 Department of Geography, Center for Human Dynamics in the Mobile Age (HDMA),

San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4493, USA; gfernandez2@sdsu.edu
3 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,

Wuhan University, 129# Luoyu Road, Wuhan 430079, China
* Correspondence: djli@ecut.edu.cn (D.L.); ydwang@whu.edu.cn (Y.W.)

Received: 11 March 2020; Accepted: 16 April 2020; Published: 17 April 2020
����������
�������

Abstract: When using the traditional Douglas–Peucker (D–P) algorithm to simplify linear objects, it is
easy to generate results containing self-intersecting errors, thus affecting the application of the D–P
algorithm. To solve the problem of self-intersection, a new vector line simplification algorithm based
on the D–P algorithm, monotonic chains and dichotomy, is proposed in this paper. First, the traditional
D–P algorithm is used to simplify the original lines, and then the simplified lines are divided into
several monotonic chains. Second, the dichotomy is used to search the intersection positions of
monotonic chains effectively, and intersecting monotonic chains are processed, thus solving the
self-intersection problems. Two groups of experimental data are selected based on large data sets.
Results demonstrate that the proposed experimental method has advantages in algorithmic efficiency
and accuracy when compared to the D–P algorithm and the Star-shaped algorithm.

Keywords: Line Simplification; Douglas-Peucker Algorithm; Monotonic Chain; Dichotomy

1. Introduction

With the development of remote-sensing technology, sensor technology, and Web 2.0, the large
amounts of obtained spatial vector data produce great challenges in data storage, processing,
and transmission. To enhance the processing capability for massive spatial vector data, new vector
data simplification algorithms with high efficiency and robustness are urgently needed.

There are many classical methods used to simplify vector data, including the Douglas–Peucker
algorithm (D–P algorithm) [1], Ramer algorithm [2], and other algorithms [3–9]. The D–P algorithm [1]
and Ramer algorithm [2] use a given distance tolerance to determine which vertices on a line are to be
eliminated or retained. Lang [3] used a perpendicular distance tolerance to filter data, but the method
was too time consuming [1]. Based on a sequential set of five procedures, McMaster [4] presented
a conceptual model to process linear digital data. This employed method used the perpendicular
distance tolerance proposed by Lang [4] to simplify the lines and used smoothing techniques to
produce the most aesthetically acceptable results. Based on selecting local minima and maxima,
an algorithm for compressing digital contour data has been developed by Li [5]. The new algorithm
was more efficient than the D–P algorithm, but the result remained the same as the D–P algorithm.
Visvalingam and Whyatt [6] used the “effective area” to simplify the line features and discussed the
influence of rounding errors on a version of the Ramer–Douglas–Peucker algorithm [1,2] for line
simplification. To show how to make robust, precise, and reproducible geographic information systems

ISPRS Int. J. Geo-Inf. 2020, 9, 251; doi:10.3390/ijgi9040251 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi9040251
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/9/4/251?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2020, 9, 251 2 of 14

(GIS) algorithms, Ratschek et al. [7] proposed a robust version of the R-D–P algorithm. Based on
recognizing line shapes and filtering them against cartographic rules, Wang and Muller [8] proposed a
Bend Simplify algorithm. The bend simplify algorithm attempts to simulate manual line simplification
by using cartographic rules, and it is typically used to simplify naturally occurring features such as
lakes and stream channels [10]. Based on the Li–Openshaw algorithm [11], the D–P algorithm, and
the orthogonal simplification method, Samsonov and Yakimova [12] proposed a methodology and
generalization model for the geometric simplification of heterogeneous line datasets.

The line simplification results processed by the above algorithms consisted of a set of original
polyline vertices with no “Steiner” points. Other researchers have applied the “Steiner points” [13]
to simplify the linear features [14,15]. The concept of Steiner points originates from the discipline
of computational geometry and is referred to as a point or a set of points that are introduced when
solving a geometric optimization problem to improve upon solutions based only on the original set of
points [13,16]. On the basis of the traditional D–P algorithm [1], Cromley [14] used “Steiner points” to
simplify a line; the experimental results showed that the proposed method is computationally faster
than the traditional D–P algorithm [1]. Based on the method proposed by Li and Openshaw [11],
Raposo [15] presented a scale-specific cartographic line simplification algorithm by using a hexagonal
tessellation instead of a square grid. The hexagonal quantization algorithm draws from sampling and
map-resolution theory as well as the concept of vertex clustering from computer graphics to yield a
method which is simple and effective.

The experimental results addressed in the line simplification algorithms above show that good
results have been achieved for each method and have been successfully applied to the corresponding
fields. This has to be due to all the advantages concerning the D–P algorithm—it is highly effective at
preserving the shape of the line, unique in vector curve compression at the presence of the threshold
values and, above all, precise in a higher position, which is thereby often used to simplify lines [16,17].
However, the D–P algorithm is found to be flawed in that a large area deviation might be caused [18].
In addition, the method only addresses the curves themselves rather than the topological relations of
the curves, thus leading to self-intersection problems [19]. Therefore, many scholars have improved the
D–P algorithm in order to solve these self-intersection problems. A hierarchical representation scheme
for planar curves was proposed by Ho and Kim [20], which used natural approximation and efficient
localization. It was effective in removing self-intersections in all possible approximations for a curve
using the cross-link technique, reducing computation time remarkably. Mantler and Snoeyink [21]
introduced a new algorithm. They defined a notion of safe sets, which are fragments of linear features
that can be simplified without introducing intersections or topology changes. This algorithm can also
help to identify a collection of safe sets using the Voronoi diagram of points, but it is required to
produce a Voronoi diagram, the efficiency of the algorithm is limited. To solve the self-intersection
problems, Avelar and Müller [22] proposed an algorithm to compute the topological relations when
compressing the polyline features. In this algorithm, simple geometric operations are used and
tested step-by-step to check whether the topological relations have changed after compression. If the
topological relations are not changed, the algorithm will terminate; otherwise, the topological relations
will be maintained. Wu and Marquez [23] proposed a star-shaped algorithm (ST algorithm) to simplify
the curves. The original curves are first scanned first and then divided into “Star” areas. Finally,
the D–P algorithm is applied to compress the “Star” areas. The star-shaped algorithm solves the
self-intersection problems, but it has the worst case O(nm) time complexity, where n is the number
of input vertices and m depends on the number of star-shaped regions, the time consumption and
efficiency of this method is relatively high.

Most of the above improved D–P algorithms solved the self-intersection problems to simplify the
linear objects; however, the algorithms used have the disadvantages of low efficiency and complex
steps. To solve the self-intersection problems when using the D–P algorithm to simplify the linear
objects and improve the efficiency of the algorithm, a new vector line simplification algorithm that
combines the D–P algorithm, monotonic chains and dichotomy is proposed in this paper. There are

ISPRS Int. J. Geo-Inf. 2020, 9, 251 3 of 14

four main stages: first, the D–P algorithm is used to process the original lines; second, the monotonic
chain method is used to divide the simplified lines into monotonic chains if the simplified lines
have self-intersection problems; third, the dichotomy is used to quickly and accurately locate the
self-intersection position of the simplified lines, process the self-intersection problems, and obtain the
final result; finally, the experimental results are presented in this part, and the results of the experiments
show that our proposed method demonstrates a more effective and higher performance.

The remainder of this paper is organized as follows. The basic theories, methods and steps of the
new algorithm are introduced in Section 2. Experimental results and analysis are reported in Section 3.
Conclusions are drawn in Section 4.

2. Methodology

In this section, we will first introduce the basic theories of the D–P algorithm, monotonic chains
and the dichotomy method; then, the basic steps of the improved algorithm are introduced in further
detail. A flow chart of the proposed research method is shown in Figure 1.

ISPRS Int. J. Geo-Inf. 2020, 9, 251 3 of 15

complex steps. To solve the self-intersection problems when using the D–P algorithm to simplify the
linear objects and improve the efficiency of the algorithm, a new vector line simplification algorithm
that combines the D–P algorithm, monotonic chains and dichotomy is proposed in this paper. There
are four main stages: first, the D–P algorithm is used to process the original lines; second, the
monotonic chain method is used to divide the simplified lines into monotonic chains if the simplified
lines have self-intersection problems; third, the dichotomy is used to quickly and accurately locate
the self-intersection position of the simplified lines, process the self-intersection problems, and obtain
the final result; finally, the experimental results are presented in this part, and the results of the
experiments show that our proposed method demonstrates a more effective and higher performance.

The remainder of this paper is organized as follows. The basic theories, methods and steps of
the new algorithm are introduced in Section 2. Experimental results and analysis are reported in
Section 3. Conclusions are drawn in Section 4.

2. Methodology

In this section, we will first introduce the basic theories of the D–P algorithm, monotonic chains
and the dichotomy method; then, the basic steps of the improved algorithm are introduced in further
detail. A flow chart of the proposed research method is shown in Figure 1.

YES

Start

Simplify the original curves by Douglas–
Peucker algorithm

Self-intersection
topological relation check

NO

Divide the simplified curves into several
monotonic chains by the monotonic chains

technology

Ending

Use the dichotomy and Minimum-area
Enclosing Rectangle to locate the self-

intersection position

Process the self-intersection errors, and
obtain the final result

Figure 1. The flowchart of the proposed method.

2.1. Basic Theory of the Douglas–Peucker (D–P) Algorithm

The D–P algorithm is a classic algorithm used for curve compression. The algorithm is used to
simplify polylines by deleting non-feature vertices and retaining the feature vertices. The basic theory
and computational steps of the D–P algorithm are as follows [1,24]:

Figure 1. The flowchart of the proposed method.

2.1. Basic Theory of the Douglas–Peucker (D–P) Algorithm

The D–P algorithm is a classic algorithm used for curve compression. The algorithm is used to
simplify polylines by deleting non-feature vertices and retaining the feature vertices. The basic theory
and computational steps of the D–P algorithm are as follows [1,24]:

Step 1: For a curve L, which is composed of N coordinate vertices, the coordinate vertices set
V is written as V = {v1, v2, . . . , vi, . . . , vN}, (i = 1, 2, . . . , N). First, connect the first vertex v1 and the

ISPRS Int. J. Geo-Inf. 2020, 9, 251 4 of 14

last vertex vN, to obtain a new straight line Lv1vN . Second, calculate the shortest distances between
the remaining vertices {v2, . . . , vN−1} and the new straight line Lv1vN and obtain the shortest distance
sets D = {D2, . . .Dk, . . . , DN−1} (Dk is the shortest distance between vertex vk and the new straight
line Lv1vN);

Step 2: Select the maximum distance (Dmax) with shortest distance D, Dmax = Dk (Dk is the
shortest distance between vertex vk and the new straight line Lv1vN). Given a distance ε as the distance
threshold, if Dmax < ε, then the remaining vertices {v2, . . . , vN−1} from vertices set V = {v1, v2, . . . , vN}

are deleted, the given curve L is compressed into a straight line Lv1vN and the D–P algorithm is finished.
If Dmax ≥ ε, then the vertices set V = {v1, v2, . . . , vN} is divided into two subsets Vt and Vs, that is,
V = Vt + Vs (Vt = {v1, v2, . . . , vk}, Vs =

{
vk, vk+1, . . . , vN

}
);

Step 3: For the subsets Vt and Vs, repeat step 1 and 2, respectively. If all of the calculated shortest
distances are less than the giving distance threshold (ε), then end the D–P algorithm.

2.2. Monotonic Chains and Dichotomy

The theory of the monotonic chain is mainly derived from computational geometry [12,25]. For the
curve L, the monotonic chain is defined as follows:

Monotonic chain: For a curve L, which is composed of M coordinate vertices, the coordinate
vertices set V is expressed as V = {v1, v2, . . . , vi, . . . , vM}, (i = 1, 2, . . . , M); xi is the X-axis coordinate
of vertex vi, and yi is the Y-axis coordinate of vertex vi. In the direction of the X-axis, for the
coordinate vertices set X = {x1, x2, . . . , xi, . . . , xM}, (i = 1, 2, . . . , M), if xi ≤ xi+1 (i = 1, 2, . . . , M) or
xi > xi+1 (i = 1, 2, . . . , M), the curve L will be called a monotonic increasing (or decreasing)
chain of the X-axis. Similarly, in the direction of the Y-axis, for the coordinate vertices set
Y =

{
y1, y2, . . . , yi, . . . , yM

}
, (i = 1, 2, . . . , M) (i = 1, 2, . . . , M), if yi ≤ yi+1 (i = 1, 2, . . . , M) or yi > yi+1

(i = 1, 2, . . . , M), the curve L will be called a monotonic increasing (or decreasing) chain of the Y-axis.
Dichotomy: Dichotomy is one of the most commonly used search algorithms for ordinal

sequences and has a high search efficiency [12,13]. Given the target element t and the ordered sequence
K = {k1, k2, . . . , ki, . . . , kU}, (i = 1, 2, . . . , U), (t ∈ K), to search for the target element t from K, the basic
theory of dichotomy is as follows:

Step 1: For the target element t, compare t with the intermediate element k U
2

from the sequence K.

If t , k U
2

, then K will be divided into two parts: K1 and K2, K = K1 ∪ K2, K1 =
{
k1, k2, . . . , ki, . . . , k U

2

}
(i = 1, 2, . . . , U), K2 =

{
k U

2
, k U

2 +1, . . . , k j, . . . , kU

} (
j = U

2 , U
2 + 1, . . . , U

)
.

Step 2: For the target element t, if t ≥ k U
2

, then execute step 1 in the K2 until the target element t is
found from the ordered K2; if t < k U

2
, then execute step 1 in the K1 until the target element t is found

from the ordered K1.
In vector spatial data structure, it is well known that a simple curve is composed of a number of line

segments. For a curve L, there are N coordinate vertices: P =
{
p1, p2, . . . , pi, . . . , pN

}
, (i = 1, 2, . . . , N),

and the curve L is composed of some line segments, such as: L = L′1,2 + L′2,3 + . . .+ L′i, j + . . .+ L′N−1,N
(N is the number of the coordinate vertices). Figure 2, shows that curve L is composed of 26 coordinate
vertices (0, 1, 2, . . . , 25). In the Gauss-Krueger plane rectangular coordinate system, the horizontal axis
was the Y-axis, and the vertical axis was the X-axis. Along the Y-axis, L could be divided into two
monotonic chains L′i (i = 0, 1, 2, . . . , 13) and L′ ji (j = 13, 14, . . . , 25). For L′i, along the Y-axis, vertex p0

is the smallest, and the vertex p13 is the biggest, and L′i is a monotonic increasing chain; For L′ j, along
the Y-axis, vertex p13 is the biggest, and the vertex p25 is the smallest, and L′ j is a monotonic decreasing
chain. When using the D–P algorithm to process the curve L, it should be noted that if the final result
has self-intersection problems, it has been caused by the corresponding monotonic chains L′i and L′ j.

ISPRS Int. J. Geo-Inf. 2020, 9, 251 5 of 14

ISPRS Int. J. Geo-Inf. 2020, 9, 251 5 of 15

Step 2: For the target element , if
2
Ut k≥ , then execute step 1 in the 2K until the target

element is found from the ordered 2K ; if
2
Ut k< , then execute step 1 in the 1K until the target

element is found from the ordered 1K .
In vector spatial data structure, it is well known that a simple curve is composed of a number of

line segments. For a curve L , there are N coordinate vertices:

{ } ()1 2, ,..., ,..., , 1,2,..,i NP p p p p i N= = ，and the curve is composed of some line segments,

such as: '
,1

'
,

'
3,2

'
2,1 NNji LLLLL −+++++= (N is the number of the coordinate vertices). Figure

2, shows that curve is composed of 26 coordinate vertices (). In the Gauss-Krueger
plane rectangular coordinate system, the horizontal axis was the Y-axis, and the vertical axis was the
X-axis. Along the Y-axis, L could be divided into two monotonic chains iL′ (0,1, 2,...,13i =) and

(). For iL′ , along the Y -axis, vertex 0p is the smallest, and the vertex

13p is the biggest, and iL′ is a monotonic increasing chain; For jL′ , along the Y -axis, vertex 13p

is the biggest, and the vertex 25p is the smallest, and jL′ is a monotonic decreasing chain. When

using the D–P algorithm to process the curve , it should be noted that if the final result has self-
intersection problems, it has been caused by the corresponding monotonic chains iL′ and jL′ .

0

1
2 3

25

24

23
22

21

20
19

18

17
16

15 14

13

12

11

10

4

5
6 7

8

9
X

Y

Figure 2. A schematic chart of the monotonic chain.

2.3. The New Vector Line Simplification Algorithm based on the D–P Algorithm, Monotonic Chains and
Dichotomy

This paper used the monotonic chains and dichotomy to solve the self-intersection problem in
spatial line simplification when processed by the D–P algorithm. In our proposed method, we firstly
use the D–P algorithm to simplify the original polyline M , and obtain the simplified polyline T ;
Secondly, we check the self-intersection problems of T . If T does not have self-intersection
problems, then we end this proposed method, otherwise, we use monotonic chain technology to
quickly divide the T into several sequential monotonic chains; Thirdly, the dichotomy, MER
(minimum-area enclosing rectangle, which refers to the rectangle with the smallest area that encloses
the polyline) and geometric calculation method are used to process the sequential monotonic chains,
in order to quickly locate the positions of the self-intersection problems of the sequential monotonic
chains and solve the self-intersection problems, to obtain the final results.

This strategy of the proposed method does not only take the curve characteristics of a polyline
into account, but also improves the time consumption of the proposed method. The main steps of the
proposed method are described below.

t

t

t

L

L 0,1, 2 , ..., 25

' jL 13,14,15,..., 25j =

L

Figure 2. A schematic chart of the monotonic chain.

2.3. The New Vector Line Simplification Algorithm based on the D–P Algorithm, Monotonic Chains
and Dichotomy

This paper used the monotonic chains and dichotomy to solve the self-intersection problem in
spatial line simplification when processed by the D–P algorithm. In our proposed method, we firstly use
the D–P algorithm to simplify the original polyline M, and obtain the simplified polyline T; Secondly,
we check the self-intersection problems of T. If T does not have self-intersection problems, then we
end this proposed method, otherwise, we use monotonic chain technology to quickly divide the T into
several sequential monotonic chains; Thirdly, the dichotomy, MER (minimum-area enclosing rectangle,
which refers to the rectangle with the smallest area that encloses the polyline) and geometric calculation
method are used to process the sequential monotonic chains, in order to quickly locate the positions
of the self-intersection problems of the sequential monotonic chains and solve the self-intersection
problems, to obtain the final results.

This strategy of the proposed method does not only take the curve characteristics of a polyline
into account, but also improves the time consumption of the proposed method. The main steps of the
proposed method are described below.

Step 1: Use the D–P algorithm to process one curve M (There aren’t self-intersection errors of M)
and obtain a new curve T.

Step 2: Check the self-intersection problems of the T; if there are self-intersection errors,
then perform step 3; otherwise, T is the final result of line simplification.

Step 3: For T, after step 2 of processing, if there are self-intersection errors, according to the
sequence of the coordinate vertices, use the monotonic chain technology (as described in Section 2.2) to
divide T into several sequential monotonic chains T1

′, T2
′, . . . , Ti

′, . . . , T j
′, . . . , Tn

′ (i, j ∈ [1, n]).
Step 4: For monotonic chains Ti

′ and T j
′, which include and coordinate vertices, respectively,

if n ≥ m, then use the dichotomy to quickly divide Ti
′ into two monotonic chains: L′1,t and L′t,n (t = n

2 ,
when n was even; or t = n

2 + 1, when n was odd, n is an integer, and n > 1), L′1,t and L′t,n are also two
monotonic chains. Similarly, if n < m, then divide T j

′ into two monotonic chains S′1,t and S′t,m (t = m
2 ,

when m was even; or t = m
2 + 1, when m was odd, m is an integer, and m > 1), S′1,t and S′t,m are also

two monotonic chains.
Step 5: If n ≥ m, calculate the MER of L′1,t, L′t,n and T′ j, respectively, as RL1,t , RLt,n and RT j .

Similarly, if n < m, calculate the MER of S′1,t, S′t,m and T′i, respectively, as RS1,t , RSt,n and RTi .
Step 6: For RL1,t , RLt,n and RT j , if RL1,t ∩ RT j = RLt,n ∩ RT j = φ, then there is a non-intersection

between Ti
′ and T j

′; If RL1,t ∩RT j , φ, and RLt,n ∩RT j = φ, then there may be an intersection problem
between the monotonic chain L′1,t and T j

′, and there is a non-intersection between L′t,n and T j
′;

If RL1,t ∩ RT j = φ, and RLt,n ∩ RT j , φ, there may be an intersection problem between the monotonic
chain L′t,n and T j

′, and there is a non-intersection between L′1,t and T j
′; If RL1,t ∩RT j , φ, and RLt,n ∩RT j

, φ, then there may be an intersection problem between the monotonic chain L′1,t and T j
′, and there

may be an intersection problem between the monotonic chain L′t,n and T j
′. Using the same method,

we can calculate whether there are intersection problems between RS1,t , RSt,n , and RTi .

ISPRS Int. J. Geo-Inf. 2020, 9, 251 6 of 14

Step 7: Process all of the sequential monotonic chains T1
′, T2

′, . . . , Ti
′, . . . , T j

′, . . . , Tn
′ (i, j ∈ [1, n])

using step 4, step 5, and step 6, until all the intersection problems of the monotonic chains are found.
Step 8: After processing by step 1 to step 7, all the intersection problems of the monotonic chains

are found. In this step, we take an example to show how the proposed method deals with these
intersection problems.

For one curve T, which is processed by the D–P algorithm as shown in Figure 3a, T includes 25
coordinate vertices. Using step 2 and step 3, we can obtain three monotonic chains T1

′, T2
′ and T3

′

(as shown in Figure 3b); T1
′ contains six coordinate vertices (P1, . . . , P6), and P1 and P6 are the end

vertices of T1
′; T2

′ contains nine coordinate vertices (P6, . . . , P14), and P6 and P14 are the end vertices
of T2

′; T3
′ contains 12 coordinate vertices (P14, . . . , P25), and P14 and P25 are the end vertices of T3

′.
After using step 4, step 5, step 6 and step 7, there is one intersection problem between T1

′ and T3
′,

and there is another intersection problem between T2
′ and T3

′.

ISPRS Int. J. Geo-Inf. 2020, 9, 251 7 of 15

vertices of 3T ′ . After using step 4, step 5, step 6 and step 7, there is one intersection problem between

1T ′ and 3T ′ , and there is another intersection problem between 2T ′ and 3T ′ .
Using Figure 3(c) as an example, after processing by step 6, assuming that there is one

intersection problem between 1T ′ and 3T ′ , to obtain the intersection line segment 5 6K ， and

17 18K ， by the geometric calculation method[12,25] and obtain the coordinate vertices 5P , 6P , and

17P , 18P . If there are coordinate vertices ()1, ,... ,..., , [,]p p i qv v v v i p q+ ∈ (,p q are two integers)

between 17P and 18P that belong to the original curve M , then calculate the shortest distance

between the vertices ()1, ,... ,..., , [,]p p i qv v v v i p q+ ∈ and the line segment 17 18K ， and find the

maximum value (maxD) of the shortest distance and the corresponding coordinated point iP .

Connect 17 iP P , and 18iPP and obtain two new monotonic chains 17iT ′ and 18iT ′ . Calculate

whether there are intersection problems between the two new monotonic chains 17iT ′ , 18iT ′ and the

monotonic chain 1T ′ . If there are no intersection problems, then conclude this algorithm; the

monotonic chain 3T ′ will be divided into two new monotonic chains 17iT ′ and 18iT ′ . If there are
other intersection errors, then re-execute step 8 and step 9 until there is no intersection error between

1T ′ and 3T ′ .

Similarly, if there are coordinate vertices between 5P and 6P that belong to the original curve

M , re-execute steps 8 and 9 until there is no intersection error between 1T ′ and 3T ′ .
Execute steps 4 to 8 until there are no intersection errors between all the monotonic chains, and

then obtain the final result T ′ . Figure 3(d) shows the final result, ik and jk are two coordinate

vertices from the original curve M .

X

Y

3T ′

X

Y

14

1
2

3
4

5
6

78
9

10
11

12
13

15
16 17

18

19
20

21 22 23

24

25T

1T ′

2T ′

(a) (b)

14

15
16 17

18

19
20

21 22 23

24

25

1
2

3 4
5

6
789

10
111213

kj

ki

X

YY

T ′

X

(c) (d)

Figure 3. (a) The curve T which processed by D–P algorithm; (b) three monotonic chains T1
′, T2

′ and
T3
′ processed by the monotonic chain technology; (c) minimum-area enclosing rectangle (MER) of T1

′

and T3
′; (d) the final result T′.

Using Figure 3c as an example, after processing by step 6, assuming that there is one
intersection problem between T1

′ and T3
′, to obtain the intersection line segment K5,6 and K17,18

by the geometric calculation method [12,25] and obtain the coordinate vertices P5, P6, and P17, P18.
If there are coordinate vertices

(
vp, vp+1, . . . vi, . . . , vq, i ∈ [p, q]

)
(p, q are two integers) between P17 and

P18 that belong to the original curve M, then calculate the shortest distance between the vertices(
vp, vp+1, . . . vi, . . . , vq, i ∈ [p, q]

)
and the line segment K17,18 and find the maximum value (Dmax) of the

shortest distance and the corresponding coordinated point Pi.
Connect P17Pi, and PiP18 and obtain two new monotonic chains T17i

′ and Ti18
′. Calculate whether

there are intersection problems between the two new monotonic chains T17i
′, Ti18

′ and the monotonic
chain T1

′. If there are no intersection problems, then conclude this algorithm; the monotonic chain T3
′

will be divided into two new monotonic chains T17i
′ and Ti18

′. If there are other intersection errors,
then re-execute step 8 and step 9 until there is no intersection error between T1

′ and T3
′.

Similarly, if there are coordinate vertices between P5 and P6 that belong to the original curve M,
re-execute steps 8 and 9 until there is no intersection error between T1

′ and T3
′.

ISPRS Int. J. Geo-Inf. 2020, 9, 251 7 of 14

Execute steps 4 to 8 until there are no intersection errors between all the monotonic chains, and
then obtain the final result T′. Figure 3d shows the final result, ki and k j are two coordinate vertices
from the original curve M.

Step 9: After processed by step 1 to step 8, all of the intersection problems have been processed,
then end the proposed method, and obtain the final results.

3. Experiments and Analysis

We select two groups of experimental data to verify the validity of the proposed algorithm.
The first group of data is the road line of Jiangxi Province in China. Its total length is approximately
1.56 × 105 km, and the data volume is approximately 92,000 bytes, including approximately 5.13 × 106

vertices. The second group of data is the land use line of Dingnan County in Jiangxi Province in China.
Its total length is approximately 1.41 × 104 km, and the data volume is approximately 26,000 bytes,
including approximately 1.24 × 106 vertices.

3.1. Assessment

In this study, we adopted a number of different methods to simplify the two groups of data
and compare the performance of the proposed method. This is due to the ST algorithm [23],
which is also based on the D–P algorithm, which could solve the self-intersection problems, in this
paper, we compared the performance of the proposed method with the ST algorithm and the D–P
algorithm.The scale of the experimental data is 1:10,000, and the results in target proportions of the
original vertices are 60% and 70%, respectively. As a result, the two groups of the data are displayed as
large volumes. Thus it is difficult to show case further details, in the same experimental environment.
Moreover, we chose six self-intersection problems from the two groups of data instead. The simplified
results of the six self-intersection problems are shown in Figure 4.

ISPRS Int. J. Geo-Inf. 2020, 9, 251 8 of 15

Figure 3. (a) The curve T which processed by D–P algorithm; (b) three monotonic chains 1T ′ , 2T ′

and 3T ′ processed by the monotonic chain technology; (c) minimum-area enclosing rectangle (MER)

of 1T ′ and 3T ′ ; (d) the final result T ′ .

Step 9: After processed by step 1 to step 8, all of the intersection problems have been processed,
then end the proposed method, and obtain the final results.

3. Experiments and Analysis

We select two groups of experimental data to verify the validity of the proposed algorithm. The
first group of data is the road line of Jiangxi Province in China. Its total length is approximately
1.56*105 km, and the data volume is approximately 92,000 bytes, including approximately 5.13*106
vertices. The second group of data is the land use line of Dingnan County in Jiangxi Province in China.
Its total length is approximately 1.41*104 km, and the data volume is approximately 26,000 bytes,
including approximately 1.24*106 vertices.

3.1. Assessment

In this study, we adopted a number of different methods to simplify the two groups of data and
compare the performance of the proposed method. This is due to the ST algorithm [23], which is also
based on the D–P algorithm, which could solve the self-intersection problems, in this paper, we
compared the performance of the proposed method with the ST algorithm and the D–P algorithm.The
scale of the experimental data is 1:10,000, and the results in target proportions of the original vertices
are 60

(a)

Figure 4. Cont.

ISPRS Int. J. Geo-Inf. 2020, 9, 251 8 of 14

ISPRS Int. J. Geo-Inf. 2020, 9, 251 9 of 15

(b)

Figure 4. The six simplified results of the three applied methods from the two groups of data. (a) The
three self-intersection problems identified from the first group of data; (b) the three self-intersection
problems identified from the second group of data. Notes: DP algorithm is the Douglas–Peucker
algorithm proposed by Douglas and Peucker[1]; ST algorithm is the star-shaped algorithm proposed
by Wu and Marquez [23].

As is shown in Figure 4, the simplified results brought up from each group of data, the D–P
algorithm produced self-intersection problems, but the proposed method could process self-
intersection problems as well as the ST algorithm. To compare the performance of the different
methods, four metrics are selected, including time consumption, mean vector displacement [3,26],
Hausdorff distance (HD) [27], and standardized measure of displacement (SMD) [28].

Time consumption indicates how much time the algorithm takes.
Mean vector displacement is computed as the average displacement of the vector between the

original vertices and the simplified version of the same vertices.
The Hausdorff distance (HD) between the two geometric objects is the largest minimum distance

between points on one object to the other [27].
Standardized measure of displacement (SMD) is defined by Joao [28], and the calculation

formula is demonstrated as follows:

(%) (1) 100SMD W O W= − − ×（ ）/ (1)

Figure 4. The six simplified results of the three applied methods from the two groups of data. (a) The
three self-intersection problems identified from the first group of data; (b) the three self-intersection
problems identified from the second group of data. Notes: DP algorithm is the Douglas–Peucker
algorithm proposed by Douglas and Peucker [1]; ST algorithm is the star-shaped algorithm proposed
by Wu and Marquez [23].

As is shown in Figure 4, the simplified results brought up from each group of data, the D–P
algorithm produced self-intersection problems, but the proposed method could process self-intersection
problems as well as the ST algorithm. To compare the performance of the different methods, four metrics
are selected, including time consumption, mean vector displacement [3,26], Hausdorff distance
(HD) [27], and standardized measure of displacement (SMD) [28].

Time consumption indicates how much time the algorithm takes.
Mean vector displacement is computed as the average displacement of the vector between the

original vertices and the simplified version of the same vertices.
The Hausdorff distance (HD) between the two geometric objects is the largest minimum distance

between points on one object to the other [27].
Standardized measure of displacement (SMD) is defined by Joao [28], and the calculation formula

is demonstrated as follows:
SMD(%) = (1− (W −O)/W) × 100 (1)

W is the distance from the coordinate vertices which has the maximum displacement between the
original polyline and the simplified polyline to the straight line. This is obtained by connecting the
first and last nodes of the polyline, and O is the actual displacement of the coordinate vertices between
the original polyline and the simplified polyline.

ISPRS Int. J. Geo-Inf. 2020, 9, 251 9 of 14

3.2. Results

The simplification assessment metrics of the data processed data by method are shown as follows:
the resulting statistics are computed using the two groups of experimental datasets.

(1) Time consumption: the time consumption results of the three line simplification methods are
shown in Figure 5, and the time consumption is measured in milliseconds (ms).

ISPRS Int. J. Geo-Inf. 2020, 9, 251 10 of 15

W is the distance from the coordinate vertices which has the maximum displacement between
the original polyline and the simplified polyline to the straight line. This is obtained by connecting
the first and last nodes of the polyline, and O is the actual displacement of the coordinate vertices
between the original polyline and the simplified polyline.

3.2. Results

The simplification assessment metrics of the data processed data by method are shown as
follows: the resulting statistics are computed using the two groups of experimental datasets.

(1) Time consumption: the time consumption results of the three line simplification methods
are shown in Figure 5, and the time consumption is measured in milliseconds (ms).

(a)

(b)

Figure 5. Time-consumption results. (a) Time consumption of the first group of data; (b) time
consumption of the second group of data.

(2) Mean vector displacement: the mean vector displacement results of the three line
simplification methods are shown in Figure 6. The mean vector displacement is measured in meters
(m).

6,954,155

5,523,375

10,283,326

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

Proposed algorithm D-P algorithm ST algorithm

Ti
m

e
co

ns
um

pt
io

n
(m

s)

Time consumption (ms)

93,256
75,325

310,201

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Proposed algorithm D-P algorithm ST algorithm

Ti
m

e
co

ns
um

pt
io

n
(m

s)

Time consumption (ms)

Figure 5. Time-consumption results. (a) Time consumption of the first group of data; (b) time
consumption of the second group of data.

(2) Mean vector displacement: the mean vector displacement results of the three line simplification
methods are shown in Figure 6. The mean vector displacement is measured in meters (m).

ISPRS Int. J. Geo-Inf. 2020, 9, 251 10 of 14
ISPRS Int. J. Geo-Inf. 2020, 9, 251 11 of 15

Figure 6. The mean vector displacement results (m).

(3) Hausdorff distance (HD): the Hausdorff distance (HD) results of the three line simplification
methods are shown in Figure 7. The HD is measured in meters (m).

Figure 7. The Hausdorff distance results (m).

(4) Standardized measure of displacement (SMD): the standardized measure of displacement
(SMD) results of the three line simplification methods are shown in Figure 8.

6.57

4.63

6.79

4.92

7.83

5.81

0
1
2
3
4
5
6
7
8
9

The first group of data The second group of dataM
ea

n
ve

ct
or

 d
isp

la
ce

m
en

t(m
)

Mean vector displacement (m)

Proposed algorithm D-P algorithm ST algorithm

6.08

4.68

6.25

4.75

6.42

5.23

0

1

2

3

4

5

6

7

The first group of data The second group of data

H
au

sd
or

ff
di

st
an

ce
(m

)

Hausdorff distance (m)

Proposed algorithm D-P algorithm ST algorithm

Figure 6. The mean vector displacement results (m).

(3) Hausdorff distance (HD): the Hausdorff distance (HD) results of the three line simplification
methods are shown in Figure 7. The HD is measured in meters (m).

ISPRS Int. J. Geo-Inf. 2020, 9, 251 11 of 15

Figure 6. The mean vector displacement results (m).

(3) Hausdorff distance (HD): the Hausdorff distance (HD) results of the three line simplification
methods are shown in Figure 7. The HD is measured in meters (m).

Figure 7. The Hausdorff distance results (m).

(4) Standardized measure of displacement (SMD): the standardized measure of displacement
(SMD) results of the three line simplification methods are shown in Figure 8.

6.57

4.63

6.79

4.92

7.83

5.81

0
1
2
3
4
5
6
7
8
9

The first group of data The second group of dataM
ea

n
ve

ct
or

 d
isp

la
ce

m
en

t(m
)

Mean vector displacement (m)

Proposed algorithm D-P algorithm ST algorithm

6.08

4.68

6.25

4.75

6.42

5.23

0

1

2

3

4

5

6

7

The first group of data The second group of data

H
au

sd
or

ff
di

st
an

ce
(m

)

Hausdorff distance (m)

Proposed algorithm D-P algorithm ST algorithm

Figure 7. The Hausdorff distance results (m).

(4) Standardized measure of displacement (SMD): the standardized measure of displacement
(SMD) results of the three line simplification methods are shown in Figure 8.

ISPRS Int. J. Geo-Inf. 2020, 9, 251 11 of 14
ISPRS Int. J. Geo-Inf. 2020, 9, 251 12 of 15

Figure 8. The standardized measure of displacement results (%).

3.3. Analysis

From Figure 5 to Figure 8, we observe the following:
(1) The proposed method can be used effectively for vector line simplification. We used two

groups of data to verify the proposed method. It can be shown from the experimental results that the
proposed method can not only solve the problem of self-intersection caused by the D–P algorithm
but also has a high execution efficiency. Figure 4 shows the six results of simplifying the two groups
of data using the three methods. In the six self-intersection problems as shown in the Figure 4, the
polylines of six regions demonstrate complex curves with a number of hierarchical bends. As shown
in Figure 4, the D–P algorithm produces self-intersection problems, but the proposed method and ST
algorithm avoid these problems. This is due to the ST algorithm also being based on the D–P
algorithm. As a result, the three methods identified the same experimental results in some cases.

(2) The D–P algorithm was found to have the ()O nm worse case time and ()logO n n
expected time, where n was the number of input vertices and m was the number of simplified
polyline segments [23]; The ST algorithm was composed of mainly three steps; the worst case

()O nm time complexity, where n was the number of input vertices and m depended on the

number of star-shaped regions [23]. The proposed method in this paper involved two key steps: first,
we first used the D–P algorithm to simplify the original curves and checked the self-intersection
problems; then, we used the monotonic chain and dichotomy methods to address the self-intersection
values. In the first step, our algorithm had the same execution time as the D–P algorithm. In the
second step, our algorithm was carried out in ()logO m m time, while m was the number of self-

intersection segments of simplified polylines.
The time consumption results of the three methods for processing the two groups of data are

shown in Figure 5. For the first group of data, the time consumption results of the D–P algorithm, the
proposed method and ST algorithm are 5,523,375 ms, 6,954,155 ms, and 10,283,326 ms, respectively.
For the second group of data, the time consumption results of the D–P algorithm, the proposed
method and ST algorithm are 75,325 ms, 93,256 ms, and 310,201 ms, respectively. It can be seen from
the experimental results of each group of data that the time consumption of the proposed method is
slightly higher than the D–P algorithm with the proposed method and, after the procession of the D–
P algorithm, we use monotonic chains and dichotomy to modify the self-intersection problems. It is
obvious that the time consumption of the proposed method is much lower than the ST algorithm.
This is because the monotonic chains and dichotomy have high search efficiency and can quickly find
and solve the self-intersection problems that are processed by the D–P algorithm.

2.76

1.79

2.84

1.83

3.81

2.81

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

The first group of data The second group of data

St
an

da
rd

iz
ed

 m
ea

su
re

 o
f

di
sp

la
ce

m
en

t(%
)

Standardized measure of displacement (%)

Proposed algorithm D-P algorithm ST algorithm

Figure 8. The standardized measure of displacement results (%).

3.3. Analysis

From Figure 5 to Figure 8, we observe the following:
(1) The proposed method can be used effectively for vector line simplification. We used two

groups of data to verify the proposed method. It can be shown from the experimental results that the
proposed method can not only solve the problem of self-intersection caused by the D–P algorithm but
also has a high execution efficiency. Figure 4 shows the six results of simplifying the two groups of data
using the three methods. In the six self-intersection problems as shown in the Figure 4, the polylines of
six regions demonstrate complex curves with a number of hierarchical bends. As shown in Figure 4,
the D–P algorithm produces self-intersection problems, but the proposed method and ST algorithm
avoid these problems. This is due to the ST algorithm also being based on the D–P algorithm. As a
result, the three methods identified the same experimental results in some cases.

(2) The D–P algorithm was found to have O(nm) the worse case time and O(n log n) expected time,
where n was the number of input vertices and m was the number of simplified polyline segments [23];
The ST algorithm was composed of mainly three steps; the worst case O(nm) time complexity, where
n was the number of input vertices and m depended on the number of star-shaped regions [23].
The proposed method in this paper involved two key steps: first, we first used the D–P algorithm to
simplify the original curves and checked the self-intersection problems; then, we used the monotonic
chain and dichotomy methods to address the self-intersection values. In the first step, our algorithm
had the same execution time as the D–P algorithm. In the second step, our algorithm was carried out
in O(m log m) time, while m was the number of self-intersection segments of simplified polylines.

The time consumption results of the three methods for processing the two groups of data are
shown in Figure 5. For the first group of data, the time consumption results of the D–P algorithm,
the proposed method and ST algorithm are 5,523,375 ms, 6,954,155 ms, and 10,283,326 ms, respectively.
For the second group of data, the time consumption results of the D–P algorithm, the proposed method
and ST algorithm are 75,325 ms, 93,256 ms, and 310,201 ms, respectively. It can be seen from the
experimental results of each group of data that the time consumption of the proposed method is
slightly higher than the D–P algorithm with the proposed method and, after the procession of the
D–P algorithm, we use monotonic chains and dichotomy to modify the self-intersection problems.
It is obvious that the time consumption of the proposed method is much lower than the ST algorithm.
This is because the monotonic chains and dichotomy have high search efficiency and can quickly find
and solve the self-intersection problems that are processed by the D–P algorithm.

(3) We use mean vector displacement to measure the location accuracy. As shown in Figure 6,
the first group of data, the mean vector displacement results of the D–P algorithm, the proposed

ISPRS Int. J. Geo-Inf. 2020, 9, 251 12 of 14

method and ST algorithm are 6.79 m, 6.57 m, and 7.83 m, respectively, The second group of data showed
that the mean vector displacement results of the D–P algorithm, the proposed method and ST algorithm
are 4.92 m, 4.63 m, and 5.81 m, respectively. For each group of data, the mean vector displacement of
the proposed method is similar to the D–P algorithm but much lower than the ST algorithm.

(4) Figure 7 shows the Hausdorff distance of the three methods for processing the two groups
of data. For the first group of data, the Hausdorff distances of the D–P algorithm, the proposed
method and ST algorithm are 6.25 m, 6.08 m, and 6.85, respectively. The second group of data showed,
the Hausdorff distances of the D–P algorithm, the proposed method and ST algorithm are 4.75 m,
4.68 m, and 5.23 m, respectively. For each group of the data, the Hausdorff distance of the proposed
method is similar to the D–P algorithm and the ST algorithm.

(5) We also used a standardized measure of displacement (SMD) to measure the location accuracy.
As shown in Figure 8, the first group of data, the SMDs of the D–P algorithm, the proposed method,
and ST algorithm are 3.46%, 3.58%, and 4.25%, respectively, The second group of data showed that
the SMDs of the D–P algorithm, the proposed method and ST algorithm are 1.83%, 1.79%, and 2.81%,
respectively. For each group of data, the mean vector displacement of the proposed method is similar
to the D–P algorithm but much lower than the ST algorithm.

4. Conclusions

Vector line simplification is widely used in computer graphics, GIS, and others. The D–P algorithm
is one of the most widely used methods for vector line simplification. When professionals use the
D–P algorithm to address complex curves, we find it is easy to produce self-intersection problems.
To further expand the application of the D–P algorithm, in this paper a new line simplification algorithm
that combines the D–P algorithm, monotonic chains, and dichotomy is proposed. In the end, two
experiments are designed to compare the results of our proposed method with the D–P algorithm and
ST algorithm. From the result analysis, it is clear that the proposed algorithm has several advantages:
(1) compared with the D–P algorithm, the proposed algorithm has the same execution efficiency but
without self-intersection problems; (2) compared with the ST algorithm, the proposed method has
the same ability to solve self-intersection problems but has better execution efficiency. At the same
time, the proposed algorithm also has shortcomings to be further studied: (1) the proposed method
focuses on the removal of self-intersection problems, however, the area preservation problems after the
polyline simplification are not considered; (2) similar to the D–P algorithm, this proposed method does
not consider the bending characteristics of the curves. In conclusion, these two thematic shortcomings
will be the focus of our future research.

Author Contributions: Methodology, Bo Liu, Xuechao Liu, and Dajun Li; Software, Yu Shi; Visualization, Xuechao
Liu and Bo Liu; Writing–original draft, Bo Liu, Xuechao Liu and Dajun Li; Writing–review and editing, Gabriela
Fernandez and Yandong Wang. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (Nos. 41201395, 416014160),
the National Key Research and Development Program of China (No. 2016YFB0501403), the Key Laboratory of
Earth Observation and Geospatial Information Science of NASG (201811), and the China Scholarship Council
Foundation of China (No. 201808360267).

Conflicts of Interest: The authors declare there is no conflicts of interest regarding the publication of this paper.

References

1. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a
digitized line or its caricature. Can. Cartogr. 1973, 10, 112–122. [CrossRef]

2. Ramer, U. An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image
Process. 1972, 1, 244–256. [CrossRef]

3. Lang, T. Rules for robot draughtsmen. Geogr. Mag. 1969, 42, 50–51.
4. McMaster, R.B. The integration of simplification and smoothing algorithms in line generalization. Can.

Cartogr. 1989, 26, 101–121. [CrossRef]

http://dx.doi.org/10.3138/FM57-6770-U75U-7727
http://dx.doi.org/10.1016/S0146-664X(72)80017-0
http://dx.doi.org/10.3138/C213-3627-90X7-LR15

ISPRS Int. J. Geo-Inf. 2020, 9, 251 13 of 14

5. Li, Z.L. An Algorithm for Compressing Digital Contour Data. Cartogr. J. 1988, 25, 143–146. [CrossRef]
6. Visvalingam, M.; Whyatt, J. Line generalisation by repeated elimination of the smallest area. Technical Report,

Discussion Paper 10, Cartographic Information Systems Research Group (CISRG); The University of Hull: Hull,
UK, 1992.

7. Ratschek, H.; Rokne, J.; Leriger, M. Robustness in GIS algorithm implementation with application to line
simplification. Int. J. Geogr. Inf. Sci. 2001, 15, 707–720. [CrossRef]

8. Wang, Z.S.; Muller, J.-C. Line Generalization Based on Analysis of Shape Characteristics. Cartogr. Geogr. Inf.
Syst. 1998, 25, 3–15. [CrossRef]

9. Zhao, Z.; Saalfeld, A. Linear-Time Sleeve-Fitting Polyline simplification algorithms. In Proceedings of the
AutoCarto 13, Seattle, WA, USA, 7–10 April 1997; Published by American Congress on Surveying and
Mapping & American Society for Photogrammetry and Remote Sensing, Maryland. pp. 214–223, ISBN
-1-57083-043-6.

10. Gary, R.H.; Wilson, A.D.; Archuleta, C.M.; Thompson, F.E.; Vrabel, J. Production of a National 1:1000000-Scale
Hydrography Dataset for the United States: Feature selection, Simplification, and Refinement; U.S. Geological
Survey Scientific Investigations Report 2009–5202. Revised May 2010; U.S. Geological Survey: Reston, VA,
USA, 2010; 22p. [CrossRef]

11. Li, Z.L.; Openshaw, S. Algorithms for automated line generalization based on a natural principle of objective
generalization. Int. J. Geogr. Inf. Sci. 1992, 6, 373–389. [CrossRef]

12. Samsonov Timofey, E.; Yakimova, O.P. Shape adaptive geometric simplification of heterogeneous line
datasets. Int. J. Geogr. Inf. Sci. 2017, 31, 1485–1520. [CrossRef]

13. de Berg, M.; van Kreveld, M.; Overmars, M.; Overmars, M.; Schwarzkopf, O. Computational Geometry:
Algorithms and Applications, 2nd ed.; Springer: Berlin, Germany, 2000.

14. Cromley, R.G. Principal axis line simplification. Comput. Geosci. 1992, 18, 1003–1011. [CrossRef]
15. Raposo, P. Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation.

Cartogr. Geogr. Inf. Syst. 2013, 40, 427–443. [CrossRef]
16. Kronenfeld, B.J.; Stanislawski, L.V.; Buttenfield, B.P.; Tyler, B. Simplification of polylines by segment collapse:

Minimizing areal displacement while preserving area. Int. J. Cartogr. 2020, 6, 22–46. [CrossRef]
17. Shi, W.Z.; Cheung, C.K. Performance Evaluation of Line Simplification Algorithms for Vector Generalization.

Cartogr. J. 2006, 43, 27–44. [CrossRef]
18. Mi, X.J.; Sheng, G.M.; Zhang, J.; Bai, H.X.; Hou, W. A new algorithm of vector date compression based on the

tolerance of area error in GIS. Sci. Geogr. Sin. 2012, 32, 1236–1240.
19. Saalfeld, A. Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartogr. Geogr.

Inf. Sci. 1999, 26, 7–18. [CrossRef]
20. Ho, P.S.; Kim, M.H. A hierarchical scheme for representing curves without self-intersections. In Proceedings

of the 2001 IEEE Computer Society Conference (CVPR 2001), Kauai, HI, USA, 8–14 December 2001. [CrossRef]
21. Mantler, A.; Snoeyink, J. Safe sets for line simplification. In 10th Annual Fall workshop on Computational

Geometry; Stony Brok University: New York, NY, USA, 2000; Available online: http://citeseerx.ist.psu.edu/

viewdoc/summary?doi.10.1.1.32.402 (accessed on 29 March 2020).
22. Avelar, S.; Müller, M. Generating topologically correct schematic maps. In Proceedings of the 9th International

Symposium on Spatial Data Handling; Technical Report; Swiss Federal Institute of Technolog Zurich: Zurich,
Switzerland, 2000; pp. 4–28. [CrossRef]

23. Wu, S.T.; Marquez, M.R.G. A non-self-intersection Douglas-Peucker algorithm. In Proceedings of the 16th
Brazilian Symosium on Computer Graphics and Image Processing (SIBGRAPI), Sao Carlos, Brazil, 12–15
October 2003. [CrossRef]

24. Ebisch, K. Short note: A correction to the Douglas-Peucker line generalization. Comput. Geosci. 2002, 28,
995–997. [CrossRef]

25. Yan, H.W.; Wang, M.X.; Wang, Z.H. Computational Geometry: Spatial Data Processing Algorithm; Science Press:
Beijing, China, 2012.

26. White, E.R. Assessment of line-generalization algorithms using characteristic points. Cartogr. Geogr. Inf. Sci.
1985, 12, 17–28. [CrossRef]

http://dx.doi.org/10.1179/caj.1988.25.2.143
http://dx.doi.org/10.1080/13658810110053107
http://dx.doi.org/10.1559/152304098782441750
http://dx.doi.org/10.3133/sir20095202
http://dx.doi.org/10.1080/02693799208901921
http://dx.doi.org/10.1080/13658816.2017.1306864
http://dx.doi.org/10.1016/0098-3004(92)90017-L
http://dx.doi.org/10.1080/15230406.2013.803707
http://dx.doi.org/10.1080/23729333.2019.1631535
http://dx.doi.org/10.1179/000870406X93490
http://dx.doi.org/10.1559/152304099782424901
http://dx.doi.org/10.1109/cvpr.2001.991003
http://citeseerx.ist.psu.edu/viewdoc/summary?doi.10.1.1.32.402
http://citeseerx.ist.psu.edu/viewdoc/summary?doi.10.1.1.32.402
http://dx.doi.org/10.3929/ethz-a-006653901
http://dx.doi.org/10.1109/sibgra.2003.1240992
http://dx.doi.org/10.1016/S0098-3004(02)00009-2
http://dx.doi.org/10.1559/152304085783914703

ISPRS Int. J. Geo-Inf. 2020, 9, 251 14 of 14

27. Hangouët, J.F. Computation of the Hausdorff distance between plane vector polylines. In Auto-Carto
XII: Proceedings of the International Symposium on Computer-Assisted Cartography, Charlotte, North Carolina;
American Congress on Surveying and Mapping & American Society for Photogrammetry and Remote
Sensing: Gaithersburg, MD, USA, 1995; Volume 4, pp. 1–10. ISBN-1-57083-019-3.

28. Joao, E.M. Gauses and Consequences of Map Generalization; Taylor and Francis: London, UK, 1998.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Basic Theory of the Douglas–Peucker (D–P) Algorithm
	Monotonic Chains and Dichotomy
	The New Vector Line Simplification Algorithm based on the D–P Algorithm, Monotonic Chains and Dichotomy

	Experiments and Analysis
	Assessment
	Results
	Analysis

	Conclusions
	References

