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Abstract: With the growing popularity of location-based social media applications, point-of-interest
(POI) recommendation has become important in recent years. Several techniques, especially the
collaborative filtering (CF), Markov chain (MC), and recurrent neural network (RNN) based methods,
have been recently proposed for the POI recommendation service. However, CF-based methods and
MC-based methods are ineffective to represent complicated interaction relations in the historical
check-in sequences. Although recurrent neural networks (RNNs) and its variants have been
successfully employed in POI recommendation, they depend on a hidden state of the entire past
that cannot fully utilize parallel computation within a check-in sequence. To address these above
limitations, we propose a spatiotemporal dilated convolutional generative network (ST-DCGN) for
POI recommendation in this study. Firstly, inspired by the Google DeepMind’ WaveNet model, we
introduce a simple but very effective dilated convolutional generative network as a solution to POI
recommendation, which can efficiently model the user’s complicated short- and long-range check-in
sequence by using a stack of dilated causal convolution layers and residual block structure. Then,
we propose to acquire user’s spatial preference by modeling continuous geographical distances,
and to capture user’s temporal preference by considering two types of time periodic patterns (i.e.,
hours in a day and days in a week). Moreover, we conducted an extensive performance evaluation
using two large-scale real-world datasets, namely Foursquare and Instagram. Experimental results
show that the proposed ST-DCGN model is well-suited for POI recommendation problems and can
effectively learn dependencies in and between the check-in sequences. The proposed model attains
state-of-the-art accuracy with less training time in the POI recommendation task.

Keywords: point-of-interest recommendation; dilated causal convolution; residual block; spatial
preference; temporal preference

1. Introduction

During the past few years, with the rapid growth of mobile devices and location-based social
networks (LBSNs) services, these services have attracted many users to share their locations and
experiences with massive amounts of check-in data accumulated. The huge volume of check-in data
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and contextual information brought opportunities for researching human mobility behavior in a large
scale [1,2]. Point-of-interest (POI) recommendation plays an important role in LBSNs because it can
predict users’ preferences to provide users valuable suggestions and assist them to make adequate
decisions in their daily routines and trip planning [3,4]. Figure 1 illustrates an example of POI
recommendation, given all users’ check-in sequences data; the task is to predict the POI of a user, who
will visit at a specific time point, by mining user’s location preferences and movement patterns. This
task is meaningful and important, as it not only helps users discover interesting locations to increase
their engagement with location-based services, but also creates the opportunities for LBSN service
providers to increase their revenue through personalized advertising [5]. Therefore, the research on
POI recommendation has attracted widespread attention from the academic and industrial fields [6–9].
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Unlike items such as news, videos, and music in traditional context-free recommender systems, the
user’s history check-in data implies the interactions between a user and POIs in a physical world [10].
Thus, geospatial information, such as geographical distance, would have a significant effect on user’s
daily activities and check-in behaviors. For example, people prefer to go to nearby malls or gyms
because such a decision is more time-efficient than attending similar places in a further distance. As
per Tobler’s First Law of Geography [11] that “Everything is related to everything else, but near things
are more related than distant things”, adjacent POIs are more geographically relevant than distant
POIs. In the literature, spatial influence has been mostly modeled by utilizing the distance between
two POIs; moreover, many existing studies have shown that there is a strong relationship between
user’s check-in activities and geographical distances [12,13]. Besides, temporal context and sequential
relations are also crucial factors that affect human real-life check-in activities [7,14–16] due to the time
sensitivity of the POI recommendation. For example, people would repeatedly go to the gym after
work on weekdays, and they could also prefer to visit cinemas at night on weekends. This also reflects
the periodic characteristics of users’ check-in behaviors, e.g., different hours in a day or different days
in a week. In addition, sequential relations of the check-in also need to be considered. For instance,
most people may want to find a hotel instead of a gym after arriving at the airport. Therefore, how
to effectively capture user’s short- and long-range dependencies from a given check-in sequence is
also an interesting problem to be investigation. However, how to accurately predict user’s movement
behavior preference according to complex spatiotemporal contextual features and sequential patterns
is still a challenging issue.

The POI recommendation methods have been applied in the numerous studies, most of which
are based on collaborative filtering (CF) [17] and Markov chains (MC) [18]. However, traditional
user-based CF methods, item-based CF methods, and matrix factorization (MF)-based CF methods find
it difficult to handle long-range sequences and incorporate various features effectively because they
only learn linear or low-order interactions between features. Moreover, MC-based methods assume
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strong independence among different components and only utilize the last POI when modeling check-in
sequences. Recently, deep learning-based methods, especially RNNs-based methods, have been applied
in POI recommendation and were assumed to be effective [10,13,19]. RNNs-based methods outperform
other POI recommendation methods since they can learn long-range dependencies effectively. Moreover,
some studies consider integrating spatiotemporal contextual information into RNN structure to
enhance the performance of POI recommendation [20,21]. While RNNs and its variants have shown an
impressive capability in modeling check-in sequences, these RNN-based methods depend on a hidden
state of the entire past that cannot effectively utilize parallel computation within a check-in sequence
and fully learn high-level interactions between features [22]. Consequently, these issues inevitably
affect RNNs to further improve their performance when applying to POI recommendation.

To address the identified issues in existing studies, inspired by the WaveNet model [23], we
propose a spatiotemporal dilated convolutional generative network, or ST-DCGN for short, as a
solution to POI recommendation. The framework of the proposed method is depicted in Figure 2.
This model not only considers modeling complex long-range sequential relations to acquire the user’s
sequential preference, but also modeling continuous geographic movement and temporal periodic
patterns to acquire the user’s personalized spatiotemporal preference. From our experiments, we
observe that our model outperforms state-of-the-art algorithms on two publicly available datasets,
namely Foursquare [24] and Instagram [25]. In conclusion, our contributions are summarized as
follows:

• We proposed a novel POI recommendation framework based on WaveNet model, where the
conditional generative model and dilated causal convolutions are used to enable much larger
receptive fields and model complex long-range check-in sequence. The framework not only
achieves higher recommendation performance, but also appears to have a lower level of model
complexity compared to the identified state-of-the-art POI recommendation methods.

• Considering the importance of spatiotemporal contextual information, we acquire the user’s
personalized spatial preference by modeling continuous geographical distances, and capture
the user’s personalized temporal preference by modeling specific continuous time IDs, which
integrated patterns in two time scales (e.g., hours in a day and days in a week).

• We conducted experiments to study the spatiotemporal characteristics of users’ check-in behavior
on two real-world datasets, and we compared ST-DCGN with seven baseline approaches of
POI recommendation, and extensive experiments showed that ST-DCGN was effective and
outperforms state-of-the-art methods significantly.
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The rest of this paper is organized as follows: The existing related studies are briefly reviewed in
Section 2. The details of our ST-DCGN method are delivered in Section 3. Experiments and results of
the proposed method are illustrated in Section 4. Finally, conclusions and future work are drawn in
Section 5.

2. Related Work

In this section, we review related work from two stream of methods, conventional and deep
learning-based POI recommendation methods.

2.1. Conventional POI Recommendation Methods

POI recommendation has been widely investigated in the field of LBSNs. Most previous solutions
learned user preference for POIs using CF-based methods. User-based CF and item-based CF techniques
are widely exploited for POI recommendation [6,7]. For example, Ye et al. [6] firstly proposed user-based
and item-based approaches for POI recommendation by using CF techniques, which assumed that
similar users had similar tastes for locations and users were interested in similar POIs. Furthermore,
other researchers employed the model-based CF technique such as MF for POI recommendation in
LBSNs [5,8,17,26], which searched for potential location preferences of users by factorizing a user-POI
matrix into two low rank matrices, each of which represented the latent factors of users or POIs.

Differing from traditional recommender systems, POI recommender systems need to consider
geographical influence, temporal influence, sequential influence, or other characteristics (e.g., social
relationship, reviews, categories, etc.) [8,21]. The geographical influence has been proven to be a
significant factor in POI recommendation [13], where many existing studies mainly focus on integrating
the geographical information due to the well-known strong correlation between users’ activities and
geographical distance. Existing methods of modeling geographical influence mainly use several types
of spatial distribution functions, such as power law function, multi-center Gaussian distribution,
or kernel density estimation model [17,26–28]. For example, Cheng et al. [17] explained that users
always visited nearby POIs around several centers (i.e., the most popular POIs), thus they capture the
geographical influence via modeling the probability of a user’s check-in on a location as a multi-center
Gaussian model (MGM). In addition, Zhang et al. [28] capture the personalized geographical influence
by using a kernel density estimation approach. Lian et al. [26] proposed a GeoMF model to incorporate
geographical information into MF, and used a two-dimensional kernel density estimation to characterize
geographical influence over distance. The results of these works demonstrated the effectiveness of
incorporating spatial context in POI recommendations.

Temporal influence has been proved effective for modeling users’ check-in behavior by recent
studies [5,7,14]. For example, Yuan et al. [7] argued that users’ visiting preferences for some locations
exhibited time periodicity. Thus, they split time into hourly based slots and proposed time-aware
point-of-interest recommendation method. Gao et al. [14] proposed four temporal aggregation strategies
to integrate a user’s check-in preferences of different temporal states. Furthermore, some studies focus
on the application of content information such as social information and other characteristics in LBSNs
for POI recommendation as well. For example, Li et al. [29] presented a unified POI recommendation
approach, which exploited geographical, social, and categorical associations between users and POIs.
Yang et al. [30] considered both check-ins and comments of venues in location recommendation, and
proposed a fusion framework to get a unified preference model from both check-ins and tips. However,
most approaches fail to model complicated relations in the check-in sequence data.

In addition to traditional CF methods, sequential methods have been considered for POI
recommendation and they mostly rely on Markov chains. Mathew et al. [31] proposed a hybrid approach
based on hidden Markov models, which clusters location histories according to their characteristics,
and later trains an HMM for each cluster. Cheng et al. [18] proposed a matrix factorization model,
namely FPMC-LR, to include both personalized Markov chain and localized regions solving the POI
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recommendation task. However, the underlying strong Markov assumption of these methods has
difficulty in constructing more effective relationship among different components.

2.2. Deep Learning-Based POI Recommendation Methods

Deep learning, developed in computer science, has been widely applied in many research fields,
such as computer vision [32,33], natural language processing [34,35], and speech recognition [36,37].
Also, many deep learning techniques have recently been applied to POI recommendation systems,
which may change the architectures of traditional recommendation and brings new opportunities to
improve the recommended accuracy [38]. For example, a few previous works utilized Word2vec [39]
to model human mobility behavior [40,41].

Recently, RNNs-based methods have gained remarkable attention and become more powerful in
modeling user’s sequential history and transition. For example, Liu et al. [19] firstly brought RNN
to next location prediction, where they employed a temporal and spatial recurrent neural network
(ST-RNN) to model local temporal and spatial contexts in each layer with time-specific transition
matrices for different time intervals and distance-specific transition matrices for different geographical
distances. Kong et al. [42] built a hierarchical spatial–temporal long–short term memory (HST-LSTM)
model, which naturally combined spatial-temporal influence into LSTM to mitigate the problem
of data sparsity. Zhao et al. [20] proposed a ST-LSTM network for the next POI recommendation,
which modeled spatiotemporal intervals between check-ins under LSTM architecture to learn user’s
visiting behavior. Cui et al. [13] proposed a Distance2Pre network for the next POI prediction,
and it can mine spatial preference to model the correlation of the user distance. Moreover, some
researchers have integrated attention models into RNNs and achieved better performance. For example,
Huang et al. [10] developed an attention-based spatiotemporal LSTM (ATST-LSTM) network for the
next POI recommendation, which considered the relevant historical check-in records in a check-in
sequence selectively using the spatiotemporal contextual information. Feng et al. [43] proposed an
attentional mobility model, namely DeepMove, which predicted human mobility from lengthy and
sparse trajectories. However, the above RNNs-based methods depend on a hidden state of the entire
past that cannot effectively utilize parallel computing within a check-in sequence. This also results in a
speed limit on the model’s training and evaluation process [22].

By contrast, the structure using convolutional neural network (CNN) does not depend on the
calculation of each time step in the sequence history, but little work exists for POI recommendation by
using CNN structure. Wang et al. [44] proposed a novel CNN-based visual content enhanced POI
recommendation (VPOI), which incorporated visual contents into a probabilistic model for learning
user and POI latent features, but they only used CNN framework when extracting features from
images. Furthermore, Tang et al. [45] proposed a convolutional sequence embedding recommendation
model by modeling recent actions as an “image” among time, latent dimensions, and learning
sequential patterns using convolutional filters. It abandoned RNN structures and demonstrated that
this CNN-based recommender can achieve superior performance to the popular RNN model in the
Top-N sequential recommendation task. Yuan et al. [22] proposed a simple, efficient, and highly
effective convolutional generative network for next-item recommendation, which was capable of
learning high-level representation from both short- and long-range item dependencies. However,
the above two sequence recommendation methods do not consider the spatiotemporal contextual
information, and they are not specialized solutions to POI recommendations. Unlike existing studies,
our work considers geographical influence and temporal influence in a personalized way into a
spatiotemporal dilated convolutional generative network to capture user’s sequential preference and
spatiotemporal preference.

3. Proposed Method

In this section, we firstly addressed the identified problem of POI recommendation and then
described our approach to obtain personalized spatiotemporal preference and components of ST-DCGN,
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which included personalized spatiotemporal preference processing, a simple generative model under
spatiotemporal conditions, an embedding layer, dilated causal convolution layers, and a final layer.

3.1. Problem Formulation

Let U = {u1, u2, · · · , um} and X = {x1, x2, · · · , xn} be the sets of m users and n POIs, respectively.
Each POI has a unique identifier and geographical coordinates, which include geographical latitude
and longitude. For user u, a check-in sequence that represents that user’s history check-ins are arranged
in chronological order, denoted by Xu =

{
xu

1 , xu
2 , · · · , xu

T

}
. Given each user’s check-in sequence Xu, the

goal of POI recommendation is to predict the most likely POI xT+1 that the user u will visit at next time
point T + 1.

3.2. Personalized Spatiotemporal Preference

In this part, we model check-in sequences and capture personalized spatiotemporal preference
by considering geographical influences and temporal periodic patterns. Recent studies show
that continuous geographic movement and temporal periodic patterns are important for POI
recommendations [10,13,16,19].

3.2.1. Personalized Spatial Preference

Previous works show that power law distribution and multi-center Gaussian distribution can
represent the geographical information by using the users’ overall historical check-in record [7,17].
Although they reflect geographical differences of user’s check-in behavior, they ignore the user’s
personalized differences in check-in behavior. In order to better model the user’s personalized check-in
behavior, we use geographical distances of continuous user’s check-in to model the personalized
spatial preference. More specifically, we calculate the distances between two successive POIs that all
users’ check-in and map these distances to discrete bins, for example, as shown in Figure 3, where
∆s1 is mapped to the interval ∆d to 2∆d, and ∆s3 is mapped to the interval 2∆d to 3∆d, so every other
distance value can be similarly mapped to a specific interval. In our scheme, we need to define one
value ∆d to represent the interval of discrete bins, as for the effects of parameter settings, we will
discuss them in the experiments.
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We transform each user’s check-in sequence Xu =
{
xu

1 , xu
2 , · · · , xu

T

}
into a fixed-length sequence

Eu
X =

{
xu

1 , xu
2 , · · · , xu

k

}
, where k represents the maximum length that we consider. If the sequence length

was greater than k, we would only consider the most recent k check-in records. If the sequence length
was less than k, we would add padding items to the left until the length became k. Therefore, we can
further obtain fixed-length continuous geographic distance sequences Eu

S =
{
ru

1 , ru
2 , · · · , ru

k

}
, and the

continuous geographic distance matrix for all m users is provided as follows.
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ES =


r1

1 r1
2 · · · r1

k
r2

1 r2
2 · · · r2

k
· · · · · · · · · · · ·

rm
1 rm

2 · · · rm
k

 (1)

3.2.2. Personalized Temporal Preference

Previous works have shown that users’ check-in behavior exhibits periodic characteristics [7,16].
For example, users tend to check in around the gym from 18:00 to 20:00 on Tuesday and Thursday
evenings, but prefer to go to the market for shopping on Saturday from 15:00 to 17:00. Therefore, we
can divide the time periodic pattern into two scales: Different hours in a day and different days in a
week. To capture two periodic patterns of users’ check-in behaviors, we introduce a two-slice time
indexing scheme [16]. As shown in Figure 3, we firstly obtain the timestamp sequence

{
Tu

1 , Tu
2 , · · · , Tu

k

}
corresponding to the user’s check-in sequence

{
xu

1 , xu
2 , · · · , xu

k

}
, and then divide each timestamp Tu

i into
the specific time interval of a week and a day. To be specific, a timestamp is divided into two slices in
terms of day of week, and hour slot. Furthermore, we split a week into seven days (i.e., Sunday to
Saturday) and a day into 24 h (i.e., 1 to 24). Then, we use 3 bits to denote the day in one week and 5 bits
to define the hour in one day. Finally, we convert the binary code into a unique decimal digit as the
time ID. In this time indexing scheme, we can obtain T=7×24 = 168 time slices. Figure 4 demonstrates
the procedure of encoding an exemplary time stamp, “2016-08-29 23:29:12”. Therefore, we can further
obtain fixed-length continuous time ID sequences Eu
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3.3. A Generative Model under Spatiotemporal Conditions

In this section, we introduce a novel generative model that is operated directly on the user’s
check-in sequence. The solution proposed here is inspired by the idea of WaveNet [23], a generative
model for raw audio based on the PixelCNN [46] architecture. WaveNet provides a generic and flexible
framework for tackling many applications that rely on audio generation (e.g., text-to-speech, music,
speech enhancement, voice conversion, source separation). Similarly, we consider a user’s history
check-in sequence Eu

X =
{
xu

1 , xu
2 , · · · , xu

k

}
, given a model with parameter θ. We aim to output the next

value x̂u
k+1 conditional on the check-in sequence history. Let p

(
Eu

X

∣∣∣θ) be the joint probability of check-in
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sequence
{
xu

1 , xu
2 , · · · , xu

k

}
; moreover, we can factorize p

(
Eu

X

∣∣∣θ) as a product of conditional probabilities
by chain rule as follows:

p(Eu
X|θ ) =

k∏
i=1

p(xu
i+1

∣∣∣xu
1 , · · · , xu

i ,θ) (3)

where the POI sample xu
k+1 is therefore conditioned on the samples of all the previous POIs{

xu
1 , xu

2 , · · · , xu
k

}
.

As mentioned, we considered the spatial and temporal contextual information in the POI
recommendation. Therefore, we also consider continuous geographic distance sequences Eu

S ={
ru

1 , ru
2 , · · · , ru

k

}
and continuous time ID sequences Eu

T =
{
tu
1 , tu

2 , · · · , tu
k

}
as conditional inputs, when

predicting the user’s check-in sequence Eu
X =

{
xu

1 , xu
2 , · · · , xu

k

}
. Further, we can model the conditional

distribution p
(
Eu

X

∣∣∣θ) of the check-in sequence given these inputs. Equation (3) now becomes

p(Eu
X|θ ) =

k∏
i=1

p(xu
i+1

∣∣∣xu
1 , · · · , xu

i , ru
1 , ru

2 , · · · , ru
i , tu

1 , tu
2 , · · · , tu

i ,θ) (4)

where the conditional probability distribution is modelled by using stacked layers of dilated
convolutions, which we will describe later.

3.4. Embedding Look-Up Layer

Given a user’s continuous check-in sequence, the model retrieves each of the first k POIs
Eu

X =
{
xu

1 , xu
2 , · · · , xu

k

}
via a look-up table, and stacks these POI embeddings together. Similarly, we

deal with the user’s continuous geographic distance sequences Eu
S =

{
ru

1 , ru
2 , · · · , ru

k

}
and time ID

sequence Eu
T =

{
tu
1 , tu

2 , · · · , tu
k

}
simultaneously. Assuming the embedding dimension is 2d, where d

can be set as the number of inner channels in the convolutional network, we create three embedding
matrices E′uX ∈ Rk×2d, E′uS ∈ Rk×2d, and E′uT ∈ Rk×2d for POIs, geographic distances, and time IDs,
respectively. Inspired by previous work [22], our proposed method will learn the embedding layer
through one-dimensional convolution filters. To be specific, the 2D matrix (i.e., E′uX , E′uS and E′uT ) is
reshaped from k× 2d to a 1× k× 2d three-dimensional tensor. Figure 5 illustrates the reshaping process.
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3.5. Dilated Causal Convolutions Layer

There are several obvious drawbacks of traditional convolution operation process for processing
sequence prediction problems, e.g., (1) some sequential information will be lost during the pooling
process; (2) a simple standard causal convolution is only able to increase the receptive field with
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size linear in the depth of the network. This makes it challenging to handle long-range dependence
of check-in history sequence, as shown in Figure 6. Therefore, inspired by early work on speech
modeling [23], our solution here is to construct the proposed generative model by using dilated causal
convolution algorithm enabling an exponentially large receptive field. Figure 7 depicts a dilated causal
convolution with filter size g = 3 and dilation factors l = 1, 2, 4, 8. We can see that a dilated convolution
is a convolution where the filter is applied over an area larger than its length by skipping input values
with a certain step. It is equivalent to a convolution with a larger filter derived from the original filter
by dilating it with zeros, but is significantly more efficient since it utilizes fewer parameters. Thus, the
dilated convolutional operation can better handle long-term users’ check-in sequences without using
more network layers.
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In addition, at training time, the conditional probabilities for all timesteps can be calculated
in parallel because all timesteps of check-in sequences are known. Note that unlike RNN-based
models that depend on a hidden state of the entire check-in history, it cannot fully utilize a parallel
mechanism. As a result, the computing advantage of CNN models are more preferred by POI
recommendation systems.

More formally, given a one-dimensional sequence input X ∈ Rk and a filter f :
{
0, 1, · · · , g− 1

}
→ R ,

the one-dimensional dilated convolution F on element s of the sequence is defined as

F(s) = (X ∗l f )(s) =
g−1∑
i=0

f (i)·Xs−l·i (5)

where f is the filter function, g is the filter size, l is the dilation factor, and s − l·i accounts for the
direction of the past. Clearly, dilated causal convolution algorithm can better capture long-term
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check-in sequence dependencies without using more network layers and larger filters. In practice, to
further increase the receptive fields and model capacity, we just need to repeat the dilated convolution
structure in Figure 7 by stacking (e.g., 1, 2, 4, 8, 1, 2, 4, 8).

As discussed in [22], in order to learn higher-level feature representations from long-range
sequence dependencies, an intuitive method is to increase the number of layers in our network.
However, in practice, it also easily results in the degradation problem, which makes the training
process much harder. To solve this problem, we introduce residual connections [33,47] in our method.
As shown in Figures 7 and 8b, a residual block contains two branches. One branch is to convert the
input layer E to F through a series of network layers, including the dilated causal convolution with
the layer-normalization [48], activation (e.g., ReLU [49]), and 1 × 1 convolutional in a specific order.
The other branch is a direct projection of the input E. The residual mapping F(E) can be computed as
follows:

E1 = W1(ReLU(φ(E))) + b1 (6)

E2 = W2(ReLU(φ(E1))) + b2 (7)

F(E) = W3(ReLU(φ(E2))) + b3 (8)

where φ denotes the layer-normalization. W1, W2, W3, b1, b2, and b3 are a set of weights and biases
for the residual block. Specifically, W2 denotes the dilated causal convolution weight function with
filter size g = 3 and dilation factors l = 1, 2, 4, 8. W1 and W3 denote standard 1 × 1 convolution
weight function.
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The desired mapping is now recast into F(E) + E by element-wise addition. This effectively allows
layers to learn modifications to the identity mapping rather than the entire transformation, which has
been proven beneficial in deeper networks by previous literature [22,33,47]. In our framework, we
capture the geographical influences and temporal periodic patterns by modeling specific spatiotemporal
information. Therefore, we need to integrate continuous geographic distance sequence and specific
time ID sequence into our network. As shown in Figure 8a, the check-in sequence input E′uX and
specific spatiotemporal conditions (i.e., E′uS and E′uT ) are fused through the dilated causal convolutional
and summed with the parametrized skip connections in the first layer. The result of the first layer is
the input in the subsequent dilated convolution layer with a residual connection from the input to
the output of the convolution (see Figure 8b). Instead of the standard residual connection, we use
parametrized skip connection in the first layer, dynamically adjusting the weight parameters to ensure
our model correctly extracting the necessary relations between the forecast and both the check-in
sequence input and specific spatiotemporal conditions. The conditioning on the continuous geographic
distance sequence E′uS and specific time ID sequence E′uT are done by computing the activation function
of the convolution in the first layer as:
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E = ReLU(wx ∗l E′uX + bx) + ReLU(wr ∗l E′uS + br) + ReLU(wt ∗l E′uT + bt) (9)

where wx, wr, and wt are learnable convolution filter, ∗l denotes a convolution operator, and E denotes
the result of multivariate sequence fusion.

3.6. Final Layer and Network Training

We have already mentioned the matrix in the last layer of the dilated causal convolution architecture
has the same dimensional size of the input embedding E (i.e., E ∈ Rk×2d), but the result we need should
be a probability distribution that includes all POIs in the output sequence, where the probability
distribution is the desired one that generates top-k POI recommendation list. In such a view, we
use a fully connected layer with weight matrix Wg

∈ R2d×n. As mentioned, we aim to maximize the
conditional likelihood (equation 4). Clearly, maximizing log p

(
Eu

X

∣∣∣θ) is mathematically equivalent to

minimizing the sum of the binary cross-entropy loss for each item in
{
xu

1 , xu
2 , · · · , xu

k

}
. Furthermore, we

use negative sampling strategy (e.g., sampled softmax [50]) to avoid the calculation of the full softmax
distributions for network training.

4. Experimental Results and Analysis

In this section, extensive experiments are conducted to compare our proposed ST-DCGN model
with several state-of-the-art POI recommendation approaches. Firstly, two publicly accessible datasets
are described and analyzed in detail. Then, baseline methods and evaluation metrics are introduced.
Finally, experimental results are fully demonstrated, which include the recommendation performance
and influence of hyper-parameters. In summary, our work attempts to answer the following
research questions:

RQ1: Can our proposed method perform better than state-of-the-art baselines in accuracy for POI
recommendation tasks?

RQ2: Does ST-DCGN outperform other deep neural networks (i.e., GRU, Distance2Pre, ST-RNN)
in efficiency for POI recommendation tasks?

RQ3: How do the parameters affect our model performance, such as the embedding size, spatial
windows widths, and sequence length?

4.1. Datasets Description and Analysis

Our experiments were conducted on the two publicly accessible LBSNs check-in datasets. The
first one is the Foursquare check-ins, which were collected in Tokyo City from April 2012 to February
2013 [24]. The second one is the Instagram check-ins, which were collected in New York City from June
2011 to November 2016 [25]. Both the two datasets provide sufficient richness of user check-ins. Each
check-in contains user ID, POI ID, and timestamp. For both two datasets, we removed POIs checked
in by less than five users and users who have checked in fewer than five POIs to reduce noise and
alleviate data sparsity problems. Furthermore, we also removed check-in data without time stamps
in the original Instagram dataset and extracted data from October 2015 to September 2016 as our
experimental dataset. After pre-processing, statistics of the two datasets are shown in Table 1. Similar
to some previous work [12,18], we further analyzed the geographic influence and temporal periodic
patterns of the two datasets.

Figure 9 presents all users’ check-in distribution in the two datasets, and we can find that the
check-in distributions in the two datasets were significantly different. More specifically, for both
datasets, the check-in distribution of users was concentrated in some hot areas, but Foursquare check-in
distribution was more scattered than Instagram, which may be due to the different distribution of hot
spots. This phenomenon further revealed the spatial patterns across different cities. Moreover, we
further investigated the geographical influence on users’ successive check-in behavior. In order to
more intuitively explain the impact of geographical distance in users’ check-in behaviors, we calculated
the cumulative distribution function (CDF) of geographical distance between any two check-ins and
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two consecutive check-ins of the same user in the Foursquare and Instagram datasets, respectively, as
shown in Figure 10a,b. The results in Figure 10a indicate that users’ check-in behaviors have highly
geographic relevance since both the CDF curves for the two datasets increase fast when the distance is
small. Specifically, this phenomenon is more apparent in Figure 10b because it considers the user’s
two consecutive check-ins. The above analysis suggests that it is necessary to consider the distance
effect of continuous check-in behaviors in the POI recommendation algorithm. Thus, we attempted
to utilize continuous geographical distance to capture user’s personalized spatial preferences and
movement patterns.

Table 1. Basic statistics of Foursquare and Instagram dataset.

Statistics Foursquare Instagram

#Users 2293 16,889
#POIs 6870 3961

#Check-ins 385,914 278,735
Avg. #check-ins per user 168.3 16.5

Avg. #visited POIs per user 56.2 70.4
sparsity 97.550% 99.583%

Time span April 2012–February 2013 October 2015–September 2016
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We further explored two temporal periodic patterns of users’ check-in behaviors. More specifically,
for the two datasets, we compared users’ check-in probabilities at different time in a day and different
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days in a week by calculating the check-in frequencies in the corresponding time slots, respectively, as
shown in Figure 11. Based on the results in Figure 11, we found that the two datasets exhibited different
temporal patterns, and different living habits in different regions. More specifically, for the Foursquare
dataset, Figure 11a shows that check-ins on weekdays were mainly concentrated between 8:00–9:00
and 19:00–20:00, while the weekends were mainly concentrated on 17:00–18:00, which also reflects
the periodic characteristics of users’ check-in behavior. For the Instagram dataset, the difference in
check-in time pattern was relatively small on weekdays and weekends but there were still differences
in the check-in patterns at different time periods. In summary, there are significant time periodic
characteristics of user’s check-in behavior. Therefore, we attempted to use specific time ID coding to
capture the users’ personalized temporal preferences and periodic patterns.
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4.2. Baseline Approaches

To evaluate the effectiveness of our proposed method, we compared ST-DCGN with the following
representative baseline approaches for POI recommendation.

• Bayesian Personalized Ranking (BPR): This work presents the generic optimization criterion
BPR-OPT derived from the maximum posterior estimator for optimal personalized ranking [51].
BPR is a classic baseline method for general POI recommendation.

• GRU: RNN is effective for POI recommendation task, and we applied an extension of RNN called
GRU for capturing the long-term dependency [52].

• FPMC-LR: A state-of-the-art Markov chain method for POI recommendation. This method is
designed based on first-order Markov chain and uses neighbors as negative samples [18].

• PRME-G: A state-of-the-art metric embedding method for POI recommendation, and the spatial
distance is considered as the weight [12].

• Caser: A state-of-the-art standard 2D CNN-based method for personalized top-N sequential
recommendation [45], and we applied Caser in POI recommendation.

• Distance2Pre: A state-of-the-art GRU-based model for POI prediction, which acquires the spatial
preference by modeling distances between successive POIs [13].

• ST-RNN: A state-of-the-art RNN-based model for POI recommendation [19], which incorporates
both local temporal and spatial transition context.
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4.3. Evaluation Metrics and Experiment Setup

To our best knowledge, Recall@k, F1-score@k, and NDCG@k (denoted by R@k, F1@k, and NDCG@k,
respectively) are three popular top-k metrics used for evaluating POI recommendation results, such
as [2,8,13,19]. In this study, the three metrics are formulated as follows:

R@k =
1
N

N∑
u=1

∣∣∣Ru(k)∩ Tu
∣∣∣

|Tu|
(10)

F1@k =
1
N

N∑
u=1

2 ·
(∣∣∣Ru(k)∩ Tu

∣∣∣/k
)
·

(∣∣∣Ru(k)∩ Tu
∣∣∣/|Tu|

)(∣∣∣Ru(k)∩ Tu
∣∣∣/k

)
+

(∣∣∣Ru(k)∩ Tu
∣∣∣/|Tu|

) (11)

NDCG@k =
1
N

∑N

u=1

1
Yu

k∑
n=1

2reln − 1
log2(k + 1)

(12)

where k indicates the number of POIs recommended to the user. We report R@k, F1@k, and NDCG@k
with k = 5, 10, and 20 in our experiments. Ru(k) indicates the Top-k list recommended to the user. Tu

represents the number of POIs the user visited. reln indicates the relevance of the nth POI to the user.
Yu represents the maximum DCG value of user u.

Additionally, all experiments were implemented through Python 3.5 and TensorFlow on one
graphic processing unit (GPU), NVIDIA GeForce RTX 2080Ti. For the Foursquare dataset, the learning
rate and batch size were set as 0.001 and 30, respectively. For the Instagram dataset, the learning rate
and batch size weere set as 0.001 and 40, respectively. Inspired by previous studies [13,21,22], we
evaluated the POI recommendation results by using the leave-one-out evaluation. More specifically,
we used the last (i.e., next) POI of each check-in sequence as the test data and the remaining POI as the
training data. Furtheermore, all baseline methods were reimplemented in the two datasets mentioned,
and the relevant parameters were set according to the optimal configuration in the original paper.

4.4. Recommendation Performance

The performances of our proposed model ST-DCGN and six baselines on the Foursquare and the
Instagram datasets evaluated by R@k, F1@k and NDCG@k are shown in Figures 12 and 13, respectively
(RQ1). We listed several findings as follows: (1) It is obvious that that our proposed ST-DCGN
outperformed all identified baseline approaches on the Foursquare and Instagram datasets, showing
ST-DCGN is effective for POI recommendation task. (2) Both BPR and GRU dropped behind other
methods as they only model user–POI interactions without considering any contextual information to
model users’ check-in behavior. Furthermore, it is worthy to note that GRU did not always achieve
better performance than BPR, especially on the Foursquare dataset. This result indicates that a good
neural network architecture (i.e., RNN cell) is not enough to obtain excellent accuracy in the POI
recommendation task, so we should consider more spatial and temporal contexts. (3) In comparison to
BPR and GRU, FPMC-LR and PRME-G incorporated geographical and sequential information, and they
took advantage of different ranking-based optimization strategies. Therefore, their performance on the
two datasets were obviously better, indicating that modeling spatial contexts is indeed useful for POI
recommendation. (4) Caser obtained much better performance than GRU, and this result demonstrates
the advantage of using CNN architecture. Although Caser does not integrate any spatiotemporal
context information, it still outperforms FPMC-LR, since FPMC-LR only modeled the first-order Markov
chain while Caser captured high-order relations. (5) Distance2Pre had obviously better performance
than FPMC-LR and PRME-G due to its capability in modeling user’s sequential preference and spatial
preference using RNN architecture. ST-RNN achieved further improvement by incorporating temporal
contextual information. These great improvements indicate that neural network with spatiotemporal
contextual information can obtain very promising performance in the POI recommendation task. (6)
We firstly observed that ST-DCGN greatly outperformed Distance2Pre and ST-RNN on both datasets.
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Compared with ST-RNN, the ST-DCGN improved R@5, R@10, R@20, NDCG@5, NDCG@10, and
NDCG@20 by 14.62%, 12.13%, 7.95%, 17.92%, 15.50%, and 13.39%, respectively, on the Foursquare
dataset. Also, for the Instagram dataset, the performance improvements in the evaluation metrics were
11.03%, 22.29%, 26.91%, 7.18%, 14.40%, and 16.12%, respectively.
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In addition to verifying the accuracy of our proposed model, we also evaluated the efficiency
of ST-DCGN in Table 2 (RQ2). It is clear that our proposed ST-DCGN required less training time
than other neural network models (i.e., GRU, Distance2Pre, ST-RNN). The reason is that CNN-based
methods can effectively save training time through the full parallel mechanism of convolutions. For
example, we can adopt parallelism when calculating the product of conditional probabilities. It is
worth noting that although Caser achieved higher efficiency by using CNN structure and parallel
computing compared with RNN-based methods, ST-DCGN achieved further improvements in training
time compared with Caser, confirming the advantage of considering using dilated convolutional
generative network.

Table 2. Overall training time (hours).

GRU Caser Distance2Pre ST-RNN ST-DCGN

Foursquare 1.595 1.227 2.309 2.958 1.157
Instagram 2.116 1.892 4.236 5.156 1.793

In summary, ST-DCGN improved over the best baseline approaches on the two datasets with
respect to the three metrics. On one hand, our model took advantage of 1D dilated causal convolutions
network and residual learning to increase the receptive fields and enable training of much deeper
networks, which greatly enhances the modeling of user’s long-term dependency and short-term interest.
Moreover, such a CNN-based network structure can fully utilize parallel computation to improve
training efficiency. On the other hand, ST-DCGN took advantage of the personalized spatiotemporal
information, and it can effectively acquire the user’s spatial preference and temporal preference.
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4.5. Sensitive Analysis of Parameters

In this part, we explored the effects of several key hyper-parameters on the performance of
ST-DCGN. Here, we focused on analyzing the impacts of embedding size, spatial window widths, and
sequence length (RQ3). Experiments were conducted on both the Foursquare and Instagram dataset.

Figure 14 presents the effects of embedding size on the performance. We analyzed the performance
of the proposed ST-DCGN model on both datasets with different embedding sizes (i.e., 20, 40, 60, 80,
100, and 120) and use R@5 and R@10 as the measure metrics. It is apparent from this figure that the
performance of ST-DCGN gradually increased with the embedding sizes, because high dimension
representation can learn more latent features and capture more complex interactions. We notice that
the performance of our model became robust when the embedding size reached 60 and 80 on the
Foursquare and Instagram datasets, respectively. However, a larger embedding size may result in
model performance degradation due to overfitting. Therefore, we chose the embedding size 2d = 60
for the Foursquare dataset and 2d = 80 for the Instagram dataset.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 16 of 20 
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Table 3 shows the impact of different spatial windows widths. We analyzed the performance of
the proposed ST-DCGN model on both datasets with different spatial window widths (i.e., 0.1 km,
0.3 km, 0.5 km, and 0.7 km) regarding R@5 and F1@5. It is obviously seen from Table 3 that ST-DCGN
achieved the best performance on the Foursquare dataset when the spatial window width ∆d was
set to 0.5 km while the best performance was achieved on the Instagram dataset when ∆d was set to
0.3 km. An explanation is that the distances distributions of consecutive check-ins are different on two
datasets. For example, for the Foursquare and Instagram dataset, 85% and 93% consecutive check-ins
were less than 10 km, respectively, as shown in Figure 10b. Therefore, we can see that a larger ∆d value
may be more suitable when dataset covers more longer distances.

Table 3. Performance of ST-DCGN with varying window width by R@5 and F1@5.

0.1 km 0.3 km 0.5 km 0.7 km

Foursquare R@5 0.3920 0.4248 0.4277 0.4121
F1@5 0.1276 0.1367 0.1426 0.1251

Instagram R@5 0.3752 0.3810 0.3793 0.3681
F1@5 0.1189 0.1270 0.1207 0.1186

Figure 15 presents the performance of the proposed ST-DCGN with different sequence length while
keeping other optimal hyperparameters unchanged. We can observe that the best POI recommendation
performance is achieved, respectively, when maximum sequence length k = 80 and k = 30 on the
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Foursquare and Instagram datasets. This result further suggests that our method can learn both
short-term and long-term sequence dependencies well.
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5. Conclusions and Future Work

In this work, we presented a spatiotemporal dilated convolutional generative network (i.e.,
ST-DCGN) for POI recommendation based on a deep neural network known as the WaveNet
architecture [23]. The proposed method introduces a conditional generative model and dilated causal
convolutions network to model users’ check-in sequences, which are very effective to model the
short- and long-range dependencies. Compared with the RNNs based methods, such a network
structure can fully utilize parallel computation within a check-in sequence and greatly reduce the
training and evaluation time of the model. In addition, we acquired the user’s personalized spatial
preference and personalized temporal preference by using the continuous geographical distance and
encoded specific time ID in each time step. Extensive experiments were conducted to evaluate the
performance of ST-DCGN and other comparative methods. The experimental results showed that
our proposed ST-DCGN model can achieve better performance than state-of-the-art methods for
POI recommendation.

In the future, we will incorporate more check-in features to improve performance of POI
recommendation, like users’ activities, comment text, and picture information. On the other hand, we
will explore more advanced neural networks, like graph convolutional neural network. Moreover,
recent studies show that some conventional methods based on matrix factorization could generalize
better [53,54]. Therefore, these methods are also worth exploring in the future.
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