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Abstract: Feature extraction of an urban area is one of the most important directions of polarimetric
synthetic aperture radar (PolSAR) applications. A high-resolution PolSAR image has the characteristics
of high dimensions and nonlinearity. Therefore, to find intrinsic features for target recognition,
a building area extraction method for PolSAR images based on the Adaptive Neighborhoods selection
Neighborhood Preserving Embedding (ANSNPE) algorithm is proposed. First, 52 features are
extracted by using the Gray level co-occurrence matrix (GLCM) and five polarization decomposition
methods. The feature set is divided into 20 dimensions, 36 dimensions, and 52 dimensions. Next,
the ANSNPE algorithm is applied to the training samples, and the projection matrix is obtained for
the test image to extract the new features. Lastly, the Support Vector machine (SVM) classifier and
post processing are used to extract the building area, and the accuracy is evaluated. Comparative
experiments are conducted using Radarsat-2, and the results show that the ANSNPE algorithm could
effectively extract the building area and that it had a better generalization ability; the projection matrix
is obtained using the training data and could be directly applied to the new sample, and the building
area extraction accuracy is above 80%. The combination of polarization and texture features provide
a wealth of information that is more conducive to the extraction of building areas.

Keywords: PolSAR; machine learning; ANSNPE; SVM

1. Introduction

The aggravated urbanization and expansion of cities reflect the impact of human activities on the
natural environment. Research on urban land use using remote sensing can reflect the relationship
among economic development, human activity, and the natural environment [1]. The Synthetic
Aperture Radar (SAR) feature of all-weather detection compensates for the shortcomings of optical
remote sensing [2]. The SAR has become an important means of remote sensing information extraction
and plays an indispensable role in the field of earth observation. Traditional SAR image information is
extracted by using the difference in the backscatter intensity of the target [3], but it is difficult to solve
the problem of the same spectrum of foreign matter. With improvements in SAR image resolution,
detailed information of the image is obvious, and texture features of the building area are more
abundant and applied to the information extraction of a high-resolution SAR image. Zhao, GAO, and
Kuang [4] used the variation function to calculate the texture features of SAR images and applied the
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unsupervised fuzzy mean classification method to extract the building area. Texture feature images
and filter images obtained by wavelet transform, according to Zhu et al. [5], are used as an input layer
of the BP (Back Propagation) neural network, and the texture classification of high-resolution SAR
images is completed. However, in the field of radar remote sensing, a new synthetic aperture radar
(SAR) satellite constellation has been successfully launched in recent years. As SAR data have shown
explosive growth, the SAR big data era has been flourishing. High-resolution polarimetric synthetic
aperture radar (referred to as PolSAR) images can obtain ground scene information from multiple
dimensions, on the one hand to provide rich information for identification of features and on the
other hand to increase the complexity of information extraction. In the context of big data, rapid and
accurate automatic extraction technology is the future development trend and is of great significance
in promoting the application of PolSAR.

Feature extraction is the most critical and central part of information extraction on SAR images.
Studying the feature extraction method for high-resolution PolSAR images, reducing the space
dimension and removing redundant information are highly important for the fast and accurate
automatic extraction of building areas. Traditional feature extraction methods based on the global
linear structure hypothesis premise feature of a PolSAR image set are proposed. Although they
can achieve the purpose of reducing dimension, the intrinsic structure of high-dimensional data
description SAR new feature extraction cannot be accurate and may affect the accuracy of information
extraction. The target feature of SAR images mainly comprises radar wavelength, incident angle,
polarization, observation direction, ground surface roughness, and other factors [6]. These factors are
not independent of each other, and the relationship among the SAR images is nonlinear. Therefore,
the feature extraction algorithm for nonlinear data structure is more suitable for high-resolution
SAR images.

In recent years, manifold learning has been widely used in facial recognition, text classification
and other fields, as a method of nonlinear dimensionality reduction in machine learning and pattern
recognition [7,8]. Manifold learning assumes that data are sampled on a potential manifold. The aim is
to find the low-dimensional manifold structure embedded in high-dimensional space. An efficient
low-dimensional manifold representation is proposed to reduce the dimensionality. Manifold learning
can deal with high-dimensional spatial data and effectively represent the inherent geometric structure
of data; therefore, applying manifold learning to polarimetric SAR images can improve the accuracy
of target recognition. The classic manifold learning method using isometric mapping (ISOMAP) [9],
Locally Linear Embedding local linear embedding (LLE) [10], Laplacian Eigen maps (LE) [11], and
local tangent space alignment (LTSA) [12] is proposed. Locally Preserving Projections (LPP) [13] and
Neighborhoods Preserving Embedding (NPE) [14] are proposed for the problem of the out-of-sample
learning of classic manifold learning. Manifold learning has many applications in remote sensing
imaging, which is divided into three parts according to the type of image. In the hyperspectral image,
the application is image classification [15–18]. In the Optical image, manifold learning is used to
improve the performance of semantic segmentation [19]. The application of manifold learning in the
SAR images includes image fusion, image retrieval, target recognition, and image classification [20–30].
Zhang et al. fused the optical and radar image employing ISOMAP, LLE, and PCA to classify the
urban land cover [20]. Hu et al. proposed a manifold alignment fusion algorithm of hyperspectral and
polarimetric SAR based on LPP [29]. Chen proposed a new relevance feedback of selecting a sample
and manifold learning for content-based image retrieval [23]. Manifold learning is applied to the
MSTAR database to recognize the chip target. In [25], LE is applied to the extracting feature for image
classification. In [30] and Li Ting [31] the application of the LPP algorithm in SAR image building
area extraction was studied. The research results show that the LPP algorithm and the tensor LPP
algorithm can effectively extract urban building areas. NPE is a linearization method of LLE proposed
by He et al. [14]. NPE has some similarities with the LPP algorithm; one purpose is to retain the
local structure of data manifold and another is to optimize the objective function. The NPE algorithm
is widely used in fault detection and the fault diagnosis of chemical process or machine condition,
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facial recognition and facial clustering, image indexing, and image classification [32–46]. Bao et al.
presented the supervised NPE for feature extraction, using a class label to define the new distance
to find the k nearest neighbors [43]. Watanabe K proposed that a variance in the NPE algorithm
concerns the definition of the optimization problem [19]. Because of the uneven distribution of data,
the neighborhood of the sample point is changed, and the NPE algorithm with fixed k value will
have limitations.

To solve the above problems, an adaptive neighborhood selection method is introduced into
the NPE algorithm, and a building extraction method of SAR, Adaptive Neighborhoods selection
Neighborhood Preserving Embedding (ANSNPE) is proposed. The ANSNPE algorithm is applied
to polarimetric SAR feature extraction, the SVM algorithm is used to classify the extracted features,
and different extraction algorithms are compared [27,47]. Section 2 introduces PolSAR image features.
Section 3 gives the ANSNPE algorithm and the framework of the extraction. Section 4 shows the
experiments and results, and Section 5 gives the conclusion and future work.

2. PolSAR Image Features

PolSAR data describes the polarization characteristics of the ground target [48]. The rich
characteristics of PolSAR can be used to extract a building. In this paper, features of the PolSAR image
are divided into three categories: one is the features based on backscattering characteristics of the
original image, the other is the texture features based on the statistical method, and the last one is
features based on polarimetric target decomposition.

2.1. Backscattering Characteristics

In radar images, the echo intensity of objects reflects the gray change of objects. The backscattering
coefficient of the SAR image is important information for radar echo. Therefore, the four band
backscattering coefficients are extracted as the gray information of SAR images, shown in Table 1.

Table 1. Backscattering features.

Feature Formula

Co-polarized HH backscattering coefficient
〈
SHHS∗HH

〉
Co-polarized HV backscattering coefficient

〈
SHVS∗HV

〉
Co-polarized VH backscattering coefficient

〈
SVHS∗VH

〉
Co-polarized VV backscattering coefficient

〈
SVVS∗VV

〉
2.2. Texture Features

With an improvement in the resolution of SAR images, the spatial information and texture
information of SAR images are more abundant. Texture information is important image information
and is widely used in remote sensing applications. In this paper, the texture feature is extracted
using the classic gray level co-occurrence matrix statistical method. The principle is to calculate the
probability of a pair of pixels satisfying the distance of D in a certain direction in a certain window and
then to generate the co-occurrence matrix. To describe texture features more intuitively using GLCM,
Harakic et al. [49] carried out two statistical analyses on the basis of the co-occurrence matrix, and the
typical texture parameters are shown in Table 2.
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Table 2. Texture feature parameter formula based on the Gray level co-occurrence matrix (GLCM).

Feature Formula

Mean
K∑

i=1

K∑
j=1

iPd,θ(i, j)

Variance
K∑

i=1

K∑
j=1

(i− µ)Pd,θ(i, j)

Homogeneity
K∑

i=1

K∑
j=1

Pd,θ(i, j)
1+(i+ j)2

Entropy −

K∑
i=1

K∑
j=1

log
(
Pd,θ(i, j)

)
Pd,θ(i, j)

Dissimilarity
K∑

i=1

K∑
j=1

∣∣∣i− j
∣∣∣Pd,θ(i, j)

Contrast
K∑

i=1

K∑
j=1

(i− j)2Pd,θ(i, j)

Correlation
∑K

i=1
∑K

j=1(i−µ1)( j−µ2)Pd,θ(i, j)
σ1σ2

Angular Second Moment
K∑

i=1

K∑
j=1

(
Pd,θ(i, j)

)2

i, j means the row and column of the pixel, d means spatial distance, θ means angle, K means the size of window,
σ means the variance, and P means probability density.

2.3. Polarization Characteristics

Polarization information is unique information of synthetic aperture radar. The polarization
target decomposition technique helps to reveal the scattering information of ground targets by using
the scattering matrix, and polarization characteristics can be obtained using the polarization target
decomposition theory.

Polarization decomposition is mainly divided into four categories [50]: the first is the two
components decomposition method based on Kennaugh’s matrix K (as in Huynen, Holm and Barnes,
Yang); the second is the method of decomposing the covariance matrix C3 or coherent matrix T3 based
on the scattering model (as in Freeman and Durden, Yamaguchi, Dong); the third is the feature vector or
feature values analysis based on the covariance matrix C3 or the coherent matrix T3 (as in Cloude, Holm,
vanZyl); and the fourth is the decomposition method based on the coherent scattering matrix S (as in
Krogager, Puali, etc.). In this paper, five polarization decomposition algorithms are presented, as shown
in Table 3. The decomposition of the Freeman–Durden based on the physical model of radar scattering
echo is decomposed into three basic characteristics. Yamaguchi decomposition indicates the power of
three kinds of scattering mechanisms: body scattering, surface scattering, and secondary scattering.
Cloude decomposition provides entropy, average scattering angle and anisotropy features. The Pauli
obtains a target generation factor based on T3 matrix decomposition. The Krogager decomposes
the scattering matrix S into the sum of three specific physical meanings of the coherent components
corresponding to the scattering of the ball, dihedral, and helix.

Table 3. Polarization Characteristics.

Polarizing Target Decomposition Method Feature

Freeman & Durden Ps,Pd,Pv
Yamaguchi Ps,Pd,Pv

Cloude H,α,A
Pauli |a|2, |b|2, |c|2

Krogager Ks,kd,kh
Span |SHH|2 + 2|SHV|2 + |SVV|2
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3. ANSNPE Algorithm and Extraction Framework

3.1. ANSNPE Algorithm

The Neighborhoods Preserving Embedding (NPE) algorithm is a linear approximation of the
LLE algorithm aimed at preserving the local manifold structure of data. The premise is that in a
local domain, a point can be represented linearly by the points around it. The objective is for the
weight coefficients of the linear representation of the adjacent sample points in the original data space
to remain consistent in the projected space [14]. Assuming that a training sample is represented
by a high-dimensional feature set X = [x1, . . . , xn] ∈ Rm×n, m is the characteristic number, which is
the space dimension, and n is the sample number. The intrinsic characteristic of the sample is the
low-dimensional manifold structure embedded in the m dimensional space. The low-dimensional
feature of the output is represented as Y = [y1, . . . , yn] ∈ Rd×n(d < m). The major steps are as follows:

• Finding the k nearest neighbors of the sample Xi, the affine reconstruction of Xi is performed by
these neighborhood points. To minimize the reconstruction error, the optimized objective function
is designed as the following Equation (1);

argmin‖εi‖
2 = argmin

∑
i

‖Xi −
∑

i

Wi jX j‖
2
∑

j

Wi j=1, j=1,2,...,n (1)

• Calculating the weight matrix W according to the optimized objective function;
• Solving the characteristic equation; the characteristic vectors corresponding to the d smallest

eigenvalues of the equation is the projection matrix of A(A ∈ Rd×m);
• New features of the training image are obtained by the feature mapping of training samples by

the projection matrix.

In the NPE algorithm, any sample point is represented by the linear reconstruction of its k neighbor
point, and the other points in the k nearest neighbor point can be reconstructed linearly by the k-1 points.
If the value of k is selected reasonably [51], the linear reconstruction error will be very close. However,
if the value of k is not reasonable, the linear reconstruction error will be larger. In practical applications,
the distribution density of data is generally different, and the number of corresponding neighbor points
should also be changed [52]. In the NPE algorithm, it is easy to have a large reconstruction error when
the fixed value of k is set for every point. Therefore, an adaptive neighborhood selection neighborhood
preserving embedding (ANSNPE) algorithm is proposed by introducing the adaptive neighborhood
selection method. The algorithm is shown in Figure 1, and the major steps are as follows:

• The initial neighbor parameter k, the minimum neighbor point parameter kmin, the maximum
neighbor point parameter kmax, and the small event selection probability p are set. Finding the
initial k nearest neighbors of samples Xi (Xi = [xij], j = 1, . . . , k);

• Selecting the k nearest to the neighbors adaptively. The mean Euclidean distance Di and the mean
manifold distance Dm of the sample point Xi are calculated to obtain the parameter ki of sample Xi
by Di and Dm (e.g., Equations (2)–(4)). If ki < k, it means that the Di is larger and the neighbor data
of Xi is sparse; then, it is necessary to eliminate the larger (1 − p) (k − ki) [53] Euclidean distance in
the data set. If ki > k, it means that the Di is smaller and that the data are more dense. At the same
time, it retains Xi as the neighborhood data, and the rest (1 − p)(k − ki) of the Euclidean distance
smaller points are selected to join the neighborhood Xi;

• Obtain the final neighbor of Xi and calculate the weight matrix W according to the optimized
objective function;

• Solving the characteristic equation; the characteristic vectors corresponding to the d smallest
eigenvalues of the equation is the projection matrix of A(A ∈ Rd×m); and
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• New features of the training image are obtained using the feature mapping of training samples by
the projection matrix.

Di =

∑k
j=1 Xi −Xi j

k
, i = 1, 2, . . . , n (2)

Dm =

∑n
i=1 Di

n
(3)

ki = k×
Dm

Di
(4)
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Figure 1. The flowchart of the Adaptive Neighborhoods selection Neighborhood Preserving Embedding
(ANSNPE) algorithm.

3.2. Extraction Framework

The three categories of features and their combination can be written as three feature sets, which
are F1 = {fi}i=1, . . . ,20, F2 = {fi}i=1, . . . ,36, F3 = {fi}i=1, . . . ,52, and the procedure is shown in Figure 2.
ANSNPE is applied to the three feature sets to extract new features. Then, new features are as an
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Figure 2. The Extraction Framework.

4. Experiments and Results

In this section, there are four experiments. One is that we discuss the selection of parameter d
by using various d to obtain the extraction accuracy. In the second experiment of building extraction,
the proposed method is compared with the original dimension-reduced method NPE, with linear
dimensionality reduction principal component analysis (PCA), and with no dimensionality reduction.
For the three data sets, the four approaches are applied. The overall accuracy (OA) are used to evaluate
the performance of the different methods. In the third experiment, we discuss the applicability analysis
of ANSNPE, which is the influence of selecting training samples. In the last experiment, we choose
GF3 data as experiment data to demonstrate the applicability of the proposed method to different
data sources.

4.1. Data

RADARSAT-2 and GF3 images of Suzhou are obtained from a subset of C-band, PolSAR data,
which was acquired in 2017. Detailed information of RADARSAT and GF3 is listed in Table 4. Figure 3a
shows the amplitude image of RADARSAT-2, Figure 3b shows the corresponding Google Earth image.
The size of the image is 800 × 800.

Table 4. The Parameters of RADARSAT-2 and GF3.

Parameters RADARSAT-2 GF3

Resolution 6.17 m 8.00 m
Direction Ascending Descending

Imaging Mode Fine Quad-Pol QPSI
Incidence Angle 4.01–4.05 29.68–31.42

Time 2017.07.17 2017.01.29
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4.2. Discussion of the Parameter d

The estimation of intrinsic dimensionality is a problem. There is no approach to confirm it
(Tu et al., 2010). In this paper, parameter d is determined through experiments. Figure 3 shows the
extraction accuracy under various choices of d. In Figure 4, blue refers to the detection rate (DR),
red refers to the overall accuracy (OA), and orange refers to the false alarm rate (FAR). The range of d
is from 2 to 20 for F1 and F2 and from 2 to 20 for F3. As shown in Figure 3, for the F1 dataset, OA
has the best performance when d is in the value of 2 to 7. FAR keeps stable since d is 4. Moreover, the
processing time is longer when the d is higher. Consequently, the parameter d for F1 is set as 4. For the
F2 dataset, d in the value of 4 has the best performance. For the F3 dataset, d in the value of 8 has the
best performance. Therefore, d is respectively set as 4, 4, and 8 in the experiments for F1, F2, and F3.
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4.3. Experiments of Building Extraction

In this section, RADARSAT-2 image is used to evaluate the proposed algorithm. A total of 6400
training samples are selected from subset of RADARSAT-2 to extract features and obtain the project
matrix. For comparative experiments, the other extracted methods use the same training samples.
For the ANSNPE algorithm, the parameter k is set as 15, where kmin is 1, kmax is 30, and p is 0.3.
Figures 5–7 shows the final building area extracted results of all methods. The extraction results are
compared with the true values obtained from the visual interpretation of optical images. Table 5 gives
the initial detection rate (IDR), the initial overall accuracy (IOA), the final detection rate (DR) and
overall accuracy (OA) of the extracted results.

The DR and OA of F1+ANSNPE+SVM are 95.23% and 78.09%, and those of F1+SVM are 100%
and 46.59%. The DR and OA of F2+ANSNPE+SVM are 88.78% and 81.88%, and those of F2+SVM
are 99.07% and 77.75%. The DR and OA of F3+ANSNPE+SVM are 96.42% and 80.89%, and those of
F3+SVM are 99.17% and 77.76%. The best results are in bold in Table 5. It shows that the precision of
the building area extraction by the ANSNPE algorithm is higher than that of the building area directly
extracted by original features.
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Table 5. Extraction accuracy of the three feature sets.

Feature Set Evaluation ANSNPE+SVM(%) NPE+SVM(%) PCA+SVM(%) SVM(%)

F1

IDR 74.97 3.27 75.58 95.32
IOA 74.03 54.71 36.45 68.35
DR 95.23 0 99.55 100
OA 78.09 53.47 46.34 46.59

F2

IDR 87.79 80.32 70.43 95.55
IOA 81.94 69.92 75.38 76.77
DR 88.78 89.43 73.23 99.07
OA 81.88 73.69 75.28 77.75

F3

IDR 94.56 70.39 55.38 95.84
IOA 81.42 50.04 29.74 76.77
DR 96.42 76.56 92.02 99.17
OA 80.89 50.94 43.64 77.76

For the F1 dataset, the performance of building area extraction by the ANSNPE algorithm is
much better than one of other algorithms. The building area is not extracted by the NPE algorithm.
The other two algorithms extracted about 40 percent of building area, which is water area. It illustrates
that the three algorithms fail to find and preserve the intrinsic pattern structure of the SAR image.
In the experiment in the F2 dataset, the result of ANSNPE is better. More building area, especially the
low building area, is not be extracted by the NPE and PCA algorithm. For the F3 dataset, the same
phenomenon appears. The OA of SVM, which has no feature extraction, is higher than NPE and PCA,
however, it is lower than the proposed ANSNPE algorithm.
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4.4. Applicability Analysis

Because of the generalization of the ANSNPE algorithm, the selection of training samples may be
affected by the results of test samples by generating features that cannot distinguish the building area.
Therefore, depending on the type of ground objects, five training samples with different combinations
of building areas, vegetation, and water are selected for study in Figure 6. The project matrix is applied
to the test image, and the results are shown in Figure 7 and Table 6. The best results are in bold.
The average accuracy of F1+ANSNPE+SVM is 71.42%, and the standard deviation is 12.41; the average
accuracy of F2+ANSNPE+SVM is 78.82%, and the standard deviation is 5.11; and the average accuracy
of F3+ANSNPE+SVM is 78.05%, and the standard deviation is 2.67.

Table 6. Extraction accuracy of three feature sets.

Feature Set Train 1
(%)

Train 2
(%)

Train 3
(%)

Train 4
(%)

Train 5
(%)

Average
(%)

Standard
Deviation

F1

IDR 70.8 74.97 76.68 71.17 93.27 77.38 8.25
IOA 72.62 74.03 74.2 73.33 68.06 72.45 2.26
DR 91.52 95.23 96.78 92.51 99.99 95.21 3.04
OA 77.27 78.09 77.63 77.51 46.61 71.42 12.41

F2

IDR 46.83 87.79 92.31 87.22 88.92 80.61 16.98
IOA 67.62 81.94 80.99 80.45 81.73 78.55 5.49
DR 51.39 88.78 92.96 93.68 90.59 83.48 16.13
OA 68.65 81.88 80.51 81.35 81.72 78.82 5.11

F3

IDR 75.35 94.56 99.43 92.72 90.76 90.56 8.13
IOA 71.69 81.42 76.52 78.01 80.46 77.62 3.44
DR 82.66 96.42 99.57 96.16 93.49 93.66 5.83
OA 73.69 80.89 76.53 78.66 80.47 78.05 2.67

There are some differences observed among the OA of F1+ANSNPE+SVM, F2+ANSNPE+SVM,
and F3+ANSNPE+SVM. The OA of F1 is lower, and the reason for this result is that some water is
falsely detected as the building area. F2 and F3 had a close OA, but the DR of F3 is more than 95% and
is 8% more than that of F2. Some building areas are not detected in F2. Undetected building areas
are mainly concentrated where buildings are relatively low, and the texture features are not obvious.
In the three experiments, the error is mainly caused by the road construction area because the effect of
the top displacement of high buildings makes the brightness extend to the road, and then the classifier
mistakenly identifies the road as a building area.

In the applicability analysis, different training samples are applied to the test image, and the
accuracy of building area extraction is different. The average OA of F1 is lower and fluctuated greatly;
only the feature set composed of polarization features is used to extract the building area to obtain low
accuracy, and the information it provided is not enough. In the F2 experiments, when the training
sample is train 1, the OA is lowest. As a result, the building in train 1 is low, and the texture feature is
not obvious. The extracted projection matrix is applied to the high-dimensional feature set composed
of texture features, which cannot be used to extract good features for the building area. However, the
average OA of F3 is not much different from that of F2, and the fluctuated value is lower.

4.5. GF3 Data

The proposed method is applied on the GF3 data. Figure 8 shows the backscattering image of
GF3. Figure 9 and Table 7 give extracted results. In Figure 8, F3 has a better performance than F1 and
F2. As can be seen from Table 7, the highest OA obtained by the proposed method with F3 and F1 is
88.32%. The highest DR is 74.14%, which is respectively about 4% and 8% higher than F1 and F2.
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Table 7. Extraction Accuracy of GF3 data.

Evaluation F1 (%) F2 (%) F3 (%)

IDR 68.95 66.56 75.29
IOA 87.53 87.5 88.18
DR 69.36 65.93 74.14
OA 88.32 87.24 88.32

As shown in Figure 8, the top displacement of the building happens in the horizontal and vertical
polarization images, which influences the results of F1. The non-building area is extracted as the
building area. However, there are not false extracted building areas in the results of F2 at the same place.
In addition, F3 can extract the building area, which is missed with F1 and F2. For GF3, all features,
including the polarization feature and texture feature, are better chosen to extract building area.

5. Conclusions

PolSAR images have characteristics of high dimensions and nonlinearity. Embedding
high-dimensional SAR data in high-dimensional space and describing the intrinsic geometric structure
of SAR data can improve the accuracy of SAR information extraction. Therefore, it is of important
theoretical and practical value to study the method of building area extraction from high-resolution
PolSAR images. This paper analyzed the principle of the NPE algorithm and proposes a building
area extraction method using high-resolution PolSAR images based on the ANSNPE algorithm. First,
we used the gray engineering matrix and various polarization decomposition methods to make up
the high-dimensional collection, consisting of 20, 36, and 52, respectively. Next, a low-dimensional
projection matrix is obtained using the ANSNPE algorithm, and the high-dimensional features are
reduced. Lastly, the SVM classification method is used to extract the building area and the detection
rate, and the overall accuracy is calculated. Through a contrast test, it was found that the accuracy
of building area extraction based on the ANSNPE algorithm is over 80%, which is higher than that
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obtained when using the original high-dimensional feature extraction. Through the applicability
analysis, it is found that different training samples affect the accuracy of building area extraction and
that polarization decomposition features provide rich information, complementary to texture features,
and can extract the features that are beneficial to the extraction of building areas. Experiments on GF3
data verify that the proposed method is also applicable and that it is better to choose all features when
building an area extraction with GF3. However, there are some non-extracted building areas. The next
step will be to study how to reduce the accuracy of error extraction, considering the application of
the better ANSNPE algorithm on the bigger area. Moreover, our aim is also to extract buildings more
accurately and more rapidly.
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