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Abstract: We present a hybrid approach for modeling complex interior structural elements from the
unstructured point cloud without additional information. The proposed approach focuses on an
integrated modeling strategy that can reconstruct structural elements and keep the balance of model
completeness and quality. First, a data-driven approach detects the complete structure points of
indoor scenarios including the curved wall structures and detailed structures. After applying the
down-sampling process to point cloud dataset, ceiling and floor points are detected by RANSAC.
The ceiling boundary points are selected as seed points of the growing algorithm to acquire points
related to the wall segments. Detailed structures points are detected using the Grid-Slices analysis
approach. Second, a model-driven refinement is conducted to the structure points that aims to
decrease the impact of point cloud accuracy on the quality of the model. RANSAC algorithm is
implemented to detect more accurate layout, and the hole in structure points is repaired in this
refinement step. Lastly, the Screened Poisson surface reconstruction approach is conducted to generate
the model based on the structure points after refinement. Our approach was validated on the backpack
laser dataset, handheld laser dataset, and synthetic dataset, and experimental results demonstrate
that our approach can preserve the curved wall structures and detailed structures in the model with
high accuracy.

Keywords: indoor scene reconstruction; detailed structures; curved walls

1. Introduction

Three-dimensional (3D) indoor models with high quality are widely used in many applications,
such as construction planning and monitoring [1], indoor location and navigation [2], and virtual
reality [3]. Up-to-date drawings of a 3D model of indoor scenarios are potentially required in the
whole closed-loop lifecycle of a building. The lifecycle includes design and planning, progress
monitor, construction quality control, facilities management, refurbishment, and deconstruction [4].
According to Volk et al. [5], most as-built buildings are not maintained, refurbished, or deconstructed
with BIM yet, and there are still many problems with uncertainties of building conditions and deficient
documentation prevalent in existing buildings. Despite different sources are used for data acquisition
of interior structures, the point cloud dataset is the main source to reconstruct the interior model.
Acquiring point cloud for the indoor scenario cloud be conducted by using different platforms. We focus
on the 3D laser scanner in this paper, and those laser scanners can be categorized as terrestrial laser
scanner (TLS) and mobile laser scanner (MLS) base on the movement of platform. Point clouds
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generated from terrestrial laser scanner have the benefits of the high accuracy but time-consuming [1].
It requires multiple setting to acquire the point cloud for the whole indoor scene. On the contrary,
the mobile laser scanner overcomes the disadvantage of fixed scanning station, but with low accuracy
compared with TLS [6]. The backpack laser scanner is manufactured to acquire data at a different level
or even in small spaces of indoor scenes. In terms of the price of equipment, the laser scanners are
more expensive than RGB-D camera [7], which is not laser-based scanner. The indoor environment is
characterized by the complexity of the layout and existence of various furniture or objects, and the
current practice still demands the manual or interactive process, which is time-consuming and requires
professional skills. Therefore, the key challenge is to automatically reconstruct interior models with
complex structures.

Reconstruction of 3D interior models from the acquired point cloud depends mainly on the
detection and modeling of structural elements. The procedures of reconstruction could be classified
into two categories: plane-based reconstruction and line-based reconstruction approaches. Plane-based
reconstruction approaches classify the whole scene to the main primitives and represent the structural
elements by the planar surface. When the orthogonal wall surface project to the horizontal plane,
it becomes a straight line or curved line and using that line to reconstruct the 3D model. This is
the basic strategy of the line-based reconstruction method. The generated 3D models from those
approaches can be categorized as the surface model [8,9] and the volume model [4,10], and the main
difference between those two models is the description of wall structures. The BIM model is the
semantically rich representation of buildings, which, including not only geometry, but also semantics
and topology [9], and the Industry Foundation Classes (IFC) format is one of the common indoor
modeling standards. Semi-automatic software such as Trimble RealWorks [11], CloudCompare [12],
and 3D reshaper [13] were developed to generate the meshes or geometric primitives from the point
cloud [14]. However, to generate the BIM model from the reconstructed 3D model, the conversion
processing is essential. Murali et al. [15] used the interior design software Planner5D [16] to correct
small errors from automatic modeling and add furniture to the BIM model. In the work from
Previtali et al. [17], the commercial software Rhinoceros [18] was implemented to transfer the surface
model to volumetric model in IFC format. The obj format developed by Wavefront Technologies was
chosen by Macher et al. [14] as the transition format towards IFC format. All the structural elements
were saved in a file in obj format, and the opensource 3D CAD software FreeCAD [19] was used to
transfer the obj file to IFC format.

Line-based reconstruction approaches represent the main planar surfaces by line segments.
Wang et al. [20] proposed an approach that is based on the decomposition-and-reconstruction strategy
to process unorganized point clouds and the corresponding trajectory of the trolley, which can identify
each room, and reconstruct the 3D building model. The average errors of the reconstructed model
are 0.394 cm to 3.528 cm. Although this approach can detect holes and classify them as the opened
doors, the trajectory of point cloud data still essential for the input dataset. The same dilemma can be
found in the approach proposed by Mura et al. [8]. This approach started with the segmentation of
planar patches, and normal deviation and least-median-of-squares algorithm were used to detect the
vertical planar patches as potential wall patches. A lightweight visibility test based on the position of
the scanner and infinite shadow volume was utilized to recover the unoccluded extent of the candidate
wall patch. Then, the candidate wall patches were projected to xy-plane and the representative lines
obtained from mean-shift clustering were constructed to a 2D cell complex and reconstructed the final
model. For the quality of reconstructed models, the error is under 1mm for synthetic datasets and
approximate 3 cm to 7 cm for real-world datasets. To deal with the challenge of occlusions caused by
furniture, Previtali et al. [17] proposed the integrated approach of graph-cut and ray-tracing. The planar
primitives were detected by a hybrid technique combining the RANSAC algorithm and connected
component analysis. The floorplan was generated from the ceiling point cloud after projection and
decomposed to 2D cells. A graph-cut algorithm was implemented to solve this labeling problem of 2D
cells. Windows and doors could be detected by using the ray-tracing algorithm and differentiate by
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their position. The precision of reconstructed models is about 3 cm to 4 cm. Shi et al. [21] proposed a
framework for the automatic reconstruction of the indoor building model from backpack laser scanner
(BLS), which only requires the point cloud for processing. Based on the new hybrid segmentation
approach and the enriched wall-surface object detection, this approach succeeded to generate the
3D semantic indoor model with doors and windows. The average error of reconstructed model
is 0.5 cm to 2.5 cm. However, curved wall structures may cause the problem of wall extraction.
Therefore, Yang et al. [9] focused on the implementation of the indoor reconstruction of multi-room
with curved walls, and their study proposed a novel straight line and curved line tracking method
to detect the boundary line of the wall. The quality of the models is evaluated by the distance from
the position of wall corners to the points of the corners, and the average of the distance is about
5 cm. Nonetheless, the situation of specific structures made by decorating was still ignored in this
study. In the approach developed by Xie et al. [22], several different heights of horizontal slices were
acquired to detect the layout of the structure. The average fitting error of reconstructed models is
3.35 cm in real-world dataset, and 0.407 cm to 3.21 cm in synthetic data with different Gaussian noise.
However, the same limitation of detecting the curved wall structure still existed in this approach.

The plane-based approach adopts the detection of main planar primitives, and PCA
(principal component analysis) and RANSAC (random sample consensus) are frequently used
algorithms in the detection of structural elements. Murali et al. [15] described the processing
steps of the modeling approach to three sub-tasks: plane detection, Manhattan world fitting, and plane
labeling. Plane detection was adopted using the RANSAC model fitting for modeling 3D plane surfaces.
Manhattan world assumption assumes that most man-made construction follows the Cartesian reference
system. It means that the building structures can be substituted by the planar surfaces parallel to one of
the three principal planes of this reference coordinate system [9]. The generated models were evaluated
by the absolute distances from the model to the ground truth, and the approach obtain a mean error of
less than 10 cm on average. Indoor volume sweep reconstruction proposed by Budroni and Böhm [23]
also assigned the point clouds to each plane surface of the structural element and the normal direction of
the plane was adopted to recognize each part. The obvious limitation of this approach is the structures
need to follow the Manhattan world assumption. Furthermore, clean interior space is required to
apply that method, which is almost impossible for modeling as-built and into service for a long-time
building. To overcome those drawbacks, Macher et al. [14] presented a semi-automatic approach based
on segmentation to extract point clouds of structural elements. The maximum likelihood estimation
sample consensus (MLESAC) was implemented to segment point clouds into several planes. In quality
assessment of geometric of the reconstruction, the precision of the reconstructed walls is 1 cm on
average, and all the mean of deviations of floor is under 2 cm. Sanchez and Zakhor [24] utilized PCA
and classification strategies to divide the point cloud into ceiling points, wall points, floor points,
and remaining points. After that, RANSAC was utilized to find the best fitted planar primitive to
represent each part of the structural element. A 3D plane intersecting reconstruction approach was
proposed by Ochmann et al. [25]. Planes were acquired by RANSAC shape detection, and the mutual
visibility-based clustering approach was conducted to remove outliers and segment the room. All the
clustered planes were intersected to generate the 3D cell and reconstruct the final model. Tran et al. [26]
integrated the strategy of the 3D cell with grammar rules to merge or split the cell and reconstruct
the topologic relation of each cell. The input point cloud was clustered by normal direction, and the
multi-scale surface exaction was implemented to obtain the horizontal and vertical surface. After the
arrangement of those surfaces decomposes into 3D cell, the indoor shape grammar contains geometric
transformation rules, semantic conversion rules and topologic relation rules determine the final 3D
model. The quantitative evaluation of the reconstructed models shows that the approach was to obtain
the median absolute distance under 0.5 cm in synthetic dataset and around 2.5 cm in real-world dataset.
Nikoohemat et al. [10] proposed an approach for segmenting the point cloud by using a planar surface
growing algorithm and reconstruct the volumetric walls by detecting the parallel surface of a wall.
For curved wall structures, the approach decomposed the curved wall to several smaller rectangular.
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The correctness and the completeness of the reconstructed model are 0.88 to 0.98 and 0.96 to 1.0,
respectively. Obviously, the plane-based approached failed to detect and model detailed structures.

Despite the fact that this approach succeeded to reconstruct interior models, the following two
drawbacks could be found: (1) based on Manhattan-world assumption or using the plane and straight
line would be problematic when representing the curved wall structures. (2) Detailed structures are
ignored in most proposed methods, as shown in Figure 1.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 4 of 16 

 

Despite the fact that this approach succeeded to reconstruct interior models, the following two 
drawbacks could be found: (1) based on Manhattan-world assumption or using the plane and straight 
line would be problematic when representing the curved wall structures. (2) Detailed structures are 
ignored in most proposed methods, as shown in Figure 1. 

 
 

(a) (b) 
Figure 1. Example of the approach that ignores detailed structures: (a) photo of real indoor scenario, 
(b) the reconstructed model based on the approach of Shi et al. [21], and visualization by the 
opensource software MeshLab [27]. 

In contrast to existing approaches, structural elements detection and reconstruction (SEDR) is 
an approach that automatically reconstructs the full structures of the ceiling, walls, and floor from 
point clouds without any prior knowledge like trajectory or position of the scanner, and the structure 
is not required to conform to the Manhattan-world assumption. Detailed structures and curved walls 
both can be represented in the reconstructed model. The method utilizes the combination of data-
driven and model-driven algorithms to preserve complete structures. The capacity of our approach 
is validated both on BLS (backpack laser scanner) datasets, HLS (handheld laser scanner) dataset and 
synthetic datasets. Compared to the existing approaches, the contribution of this paper can be 
summarized as follows: 

• A hybrid approach of data-driven and model-driven approach for reconstructing indoor 
structure elements is presented. The proposed approach detects and models curved wall 
structures in the 3D domain. 

• A fusion of grid and slice strategy to detect detailed structures of the indoor scenario. 
• An eight-connected domain algorithm that can keep the main structures not affected in outlier 

removal. 

The remaining contents of this paper are organized as follows: the principles of SEDR and 
implementation steps are presented in Section 2. Section 3 demonstrates the experimental results of 
the proposed approach on different datasets and discussion. The main conclusions and future work 
are provided in Section 4. 

2. Methodology 

For curved wall structures and detailed structures, the existing algorithms cannot 
simultaneously handle each interior structure. Therefore, we choose the data-driven strategy that still 
using the point cloud to represent those structures. After detecting all point clouds of the ceiling, 
floor and wall, the model-driven post-processing of refinement is implemented to decrease the 
influence of point cloud quality on the final model. In this section, we briefly introduce the strategy 
and algorithm used in the approach in Section 2.1. The details about pre-process, structural elements 
detection, refinement and reconstruction are discussed in Sections 2.2 to 2.4. 

2.1. Overview 

Figure 1. Example of the approach that ignores detailed structures: (a) photo of real indoor scenario,
(b) the reconstructed model based on the approach of Shi et al. [21], and visualization by the opensource
software MeshLab [27].

In contrast to existing approaches, structural elements detection and reconstruction (SEDR) is an
approach that automatically reconstructs the full structures of the ceiling, walls, and floor from point
clouds without any prior knowledge like trajectory or position of the scanner, and the structure is not
required to conform to the Manhattan-world assumption. Detailed structures and curved walls both
can be represented in the reconstructed model. The method utilizes the combination of data-driven and
model-driven algorithms to preserve complete structures. The capacity of our approach is validated
both on BLS (backpack laser scanner) datasets, HLS (handheld laser scanner) dataset and synthetic
datasets. Compared to the existing approaches, the contribution of this paper can be summarized as
follows:

• A hybrid approach of data-driven and model-driven approach for reconstructing indoor structure
elements is presented. The proposed approach detects and models curved wall structures in the
3D domain.

• A fusion of grid and slice strategy to detect detailed structures of the indoor scenario.
• An eight-connected domain algorithm that can keep the main structures not affected in

outlier removal.

The remaining contents of this paper are organized as follows: the principles of SEDR and
implementation steps are presented in Section 2. Section 3 demonstrates the experimental results of
the proposed approach on different datasets and discussion. The main conclusions and future work
are provided in Section 4.

2. Methodology

For curved wall structures and detailed structures, the existing algorithms cannot simultaneously
handle each interior structure. Therefore, we choose the data-driven strategy that still using the point
cloud to represent those structures. After detecting all point clouds of the ceiling, floor and wall,
the model-driven post-processing of refinement is implemented to decrease the influence of point cloud
quality on the final model. In this section, we briefly introduce the strategy and algorithm used in the
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approach in Section 2.1. The details about pre-process, structural elements detection, refinement and
reconstruction are discussed in Sections 2.2–2.4.

2.1. Overview

SEDR is designed to process the unstructured point cloud without any additional information.
As shown in Figure 2, the approach starts with voxel-based down-sampling, which can significantly
improve the efficiency of the algorithm. RANSAC is applied for the detection of 3D planimetric surfaces,
and the difference of height is conducted for distinguishing the floor and ceiling surfaces. A grid-based
outlier removal algorithm is applied to remove the outliers from the ceiling and floor. Grid-slices
analysis strategy is implemented to determine whether there are specific structures in structural
elements or not. In the detection of wall segments, same as the line-based reconstruction approaches,
the boundary points of the ceiling are traced by using the normal direction angle. Compared to existing
approaches that use those boundary points for fitting the straight or curved line to represent the wall,
the boundary points in our approach are conducted as the control points to detect wall points within
a predefined distance threshold. After detecting all points that represent the structural elements,
the model-driven refinement is implemented. At last, the reconstruction approach converts the point
clouds to the watertight indoor model. The code of SEDR was written by C++ in Microsoft Visual
Studio Community 2015. The voxel-based down-sampling algorithm and RANSAC algorithm was
implemented by the opensource Point Cloud Library (PCL) [28] version 1.8.0. under BSD license.
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2.2. Pre-Process

The only input of the approach is point cloud dataset, and 3D laser scanner is a more accurate and
more reliable equipment in acquiring point cloud in the indoor scenario. On the one hand, terrestrial
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laser scanner requires careful planning of the scanner locations in data collection to acquire the
complete point cloud in indoor space where contains occlusions of walls or other clutter [1]. The point
cloud datasets scanned from several locations need the registration process to the same coordinate
system. On the other hand, mobile laser scanner is able to quickly acquire the point cloud in large
areas. Alignment of point cloud of each frame generated from the mobile scanner needs simultaneous
localization and mapping (SLAM) for localization [29]. However, point cloud data obtained from 3D
laser scanner usually have redundancy. To improve the efficiency of the algorithm, the voxel-based
down-sampling algorithm is implemented to reduce the amount of point cloud. The boundary box of
the unstructured point cloud dataset is divided into sub voxels. When a sub voxel contains more than
one point, the algorithm will calculate the arithmetic average of all points’ coordinates in this voxel.
Those points in the voxel are replaced by the new point of calculated coordinate. The size of the voxel
is determined by point cloud data resolution and the computationally efficiency of the subsequent
process. In our experiments, a voxel size of 5 cm is used.

2.3. Structural Elements Detection

The structural elements are the main description of the interior layout. Compared to existing
approaches that represent the structural elements by planes or lines, our proposed approach detects
the point clouds of all the structural elements. Details of the proposed algorithm will be discussed in
the following subsections.

2.3.1. Ceiling and Floor Detection

The horizontal planar surface is the most common shape of the floor and ceiling, so RANSAC is
applied to detect the 3D planimetric surfaces. The tolerance is an important parameter of the RANSAC
algorithm, and it’s normally determined by the accuracy of the lidar scanner. The tolerance in our
proposed approach is selected to cover the lidar scanner accuracy. Horizontal surfaces are excluded and
alignment of the scene to gravitational direction assists to differentiate between floor and ceiling based
on their reference level. In Figure 3b, the ceiling part points acquired from the RANSAC algorithm
contain some outliers (red points), which do not belong to the ceiling part but are in the same plane
detected by RANSAC. Those outliers in red rectangles are acquired from the scanning system for the
object out of the existing opening of door or window. The opensource software CloudCompare [12]
is adopted to visualize the point cloud. A simple and effective grid-based outlier removal algorithm
is implemented. The algorithm starts with the regular grid process. All ceiling points detected by
RANSAC are divided into the 2D grid based on the X and Y coordinates, and the size of the grid is
determined by the resolution of the point cloud dataset. In our experiment, we set the same parameter
as the voxel size in down-sampling process. If the number of points in the grid is greater than zero,
we assign 1 to the grid’s value. After checking all grids, a binary grid map is generated and provided to
the filter. The filter is implemented by the eight-connected domain algorithm. As shown in Figure 3b,
the seed grid in the center of red arrows whose value is 1 is randomly selected to start the connection
of eight directions, and each detected grid is classified into one region. This process is repeated until
all the grids are checked. After that, the binary grid map becomes to grid region map in Figure 3c.
Based on the difference of grid number in outlier regions and ceiling regions, the adaptive threshold
is calculated by the maximum difference of sorted grid number of each region. The grid number of
ceiling regions is bigger than the threshold, and the ceiling segment is detected from the ceiling part
points based on the grid of ceiling regions. The outliers in grid of outlier regions are removed as
shown in Figure 3d. Meanwhile, the layout of the ceiling structures is well preserved. Initial room
segmentation is also accomplished in this step.
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outlier, (b) binary map of ceiling part points (“1” for the grid’s value, the red arrow for the process of
eight-connected domain algorithm), (c) region map of ceiling part points (“C” for the ceiling grid, “O” for
the grid of outliers), (d) detected ceiling segment after outlier removal (red points are the outliers).

In modern architecture, the decoration of building structure is very common, so those specific
structures should be not ignored. Inspired by Xie et al. [22], we choose several slices of different heights
to get the real room layout. According to Yang et al. [9] and Previtali et al. [17], the ceiling is generally
less influenced by clutter and occlusions caused by its location and there is a clean space of the wall
between the ceiling and the top area of the door. The room layout is well preserved in this part of the
wall structure. However, they neglected the fact that the offset space proposed by their literature is
not correct in the room with specific structures. Thus, we introduce our grid-slices analysis approach.
If there have specific structures, the ceiling part of the point cloud cannot describe the complete room
layout, and our approach relies on the difference between the ceiling part and the wall slices part point
cloud. The heights of different slices are designed by the modified bisection method. As the blue
dotted line is shown in Figure 4a, half and quarter of room height from the ceiling are firstly checked.
In consideration of the furniture in rooms, the slices below the half-height from the ceiling are ignored.
The points of slices are assigned to each grid by their coordinates, and the binary grid map is updated
by the newly added slice grid. If the grid of slice (the orange grid in Figure 4b) is over the coverage
of the ceiling grid (the blue grid in Figure 4b) and the quantity of region of grid value equal to zero
increases, it means that zero value grids (the white grid in Figure 4b) belong to this region are possibly
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located in the structural detail area. The threshold of the minimum of the grid in the zero-value region
is utilized to remove the misclassification of the initial specific structural grid. In our experiments,
a region with 20 grids is the minimum region that can be classified into specific structures. If structural
details could not be detected by using 1/4 and 1/2 height slices (as shown in Figure 4a with blue dotted
line), detailed slices 1/8 and 3/8 could solve this issue (as shown in Figure 4a with green dotted line).
Our designed algorithm stops iterations after the third trial, and structural details are added if exist.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 8 of 16 
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Figure 5. Analysis of the detected floor surface: (a) initial detected floor segment (the points in red 
rectangle are outliers; the holes in blue ellipses are the occlusions of floor), (b) final floor segment. 

2.3.2. Wall Detection 

Unlike other algorithms that are using lines or planes to represent the walls, our approach 
extracts all the wall point clouds to preserve all wall structures. Points related to the wall segment 
are detected by the boundary points of ceiling part points after outlier removal, and the normal 
direction difference is conducted to detect the boundary points. The main idea is to find the angle 
difference in the normal direction. In other words, the angle difference of the normal direction of the 
neighborhood points is larger in the intersection of the ceiling and wall. Based on this theory, the 
boundary points are detected and selected as the seed point of the growing algorithm. The algorithm 
starts with the seed point and a certain distance of neighborhood points. The 2D distance between 
the seed point and neighborhood points is calculated by coordinate X and Y. If the distance is smaller 
than the threshold, the neighborhood points are classified as wall part points, and the threshold is 
estimated from the dataset quality. As shown in Figure 6, for the dataset that contains specific 
structures, the boundary points of the floor and slice height are used to divide the process to below 

Figure 4. Grid-slices analysis approach: (a) several slices of different distances to the ceiling,
(b) region detection in slices (“C” for ceiling grid, “S” for slice grid, “0” for the empty grid).

The existence of various furniture or objects in the indoor scenario is the main cause of the
incompleteness of the floor part point cloud. After detecting the ceiling and the specific structures,
those structures can describe the scope of the room, and the projection recovery method of floor part
is available to process the missing floor part point cloud now. Firstly, all floor part point clouds are
divided into the same 2D grid for comparison. The differences between room scope grids and floor
grids occur in the grids of missing floor point cloud and outliers of the floor part. As shown in Figure 5,
in the grids that do not have any floor part points, all points are detected from the ceiling and projected
to average floor height to recover the part of floor points, and all points in outlier grids are removed.
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Figure 5. Analysis of the detected floor surface: (a) initial detected floor segment (the points in red
rectangle are outliers; the holes in blue ellipses are the occlusions of floor), (b) final floor segment.

2.3.2. Wall Detection

Unlike other algorithms that are using lines or planes to represent the walls, our approach extracts
all the wall point clouds to preserve all wall structures. Points related to the wall segment are detected
by the boundary points of ceiling part points after outlier removal, and the normal direction difference
is conducted to detect the boundary points. The main idea is to find the angle difference in the normal
direction. In other words, the angle difference of the normal direction of the neighborhood points
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is larger in the intersection of the ceiling and wall. Based on this theory, the boundary points are
detected and selected as the seed point of the growing algorithm. The algorithm starts with the seed
point and a certain distance of neighborhood points. The 2D distance between the seed point and
neighborhood points is calculated by coordinate X and Y. If the distance is smaller than the threshold,
the neighborhood points are classified as wall part points, and the threshold is estimated from the
dataset quality. As shown in Figure 6, for the dataset that contains specific structures, the boundary
points of the floor and slice height are used to divide the process to below the slice height part and
above the slice height part. The specific structures are also added to the wall segment.
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2.4. Refinement and Reconstruction

Our approach preserves all the details in the structural elements’ point clouds. To bring the
structural detail to the model, a data-driven reconstruction approach is applied instead of line-based
and plane-based reconstruction. Data-driven reconstruction approaches are widely used in outdoor
scenarios. As the name implies, the approach is driven by the point cloud data. Due to the different
accuracy of the point cloud, model-driven approaches have the advantage in terms of quality and
visual effects of the model. So, we implement the integrated model-driven refinement to the initial
structural elements’ points. The main idea of this method is to recover part of the points by the
corresponding structural feature while keeping the remaining point the same. Ceiling and floor part
points can be optimized by adjusting the location of points to the average height plane. Because of the
bigger parameter in the detection of ceiling and floor, the RANSAC process with the small parameter
is implemented to the ceiling part point cloud and floor part point cloud respectively to detect the
more precise height before refinement. For wall part refinement, the 2D line or circle detected from
boundary points of the ceiling segment by the 2D RANSAC algorithm composes the floorplan of wall
structures. As shown in Figure 7a, if the dataset contains specific structures, the boundary points of the
ceiling and floor segment both project to the 2D plane to detect the lines. The X and Y coordinates
of wall points are adjusted to line or circle and keep the Z coordinate the same to refine the wall
points. For the missing data in the wall points caused by opening doors, windows, and obstacles of
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furniture, grid analysis repair of the Z-axis is implemented to fill the openings. The wall segment and
all structural elements after refinement are shown in Figure 7b,c.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 16 
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After refinement of structural element points, we choose the Screen Poisson algorithm [30]
to generate the final indoor 3D model. This implicit function-based approach using an indicator
function to segment the inside space and outside space of the model and reconstruct the model’s
surface. As shown in Equation (1), The gradient of the indicator function is equal to the inward surface

normal at points near the surface. ∇χ is the gradient of the indicator function, and the vector field is
→

V.

Therefore, for the vector filed
→

V : R3
→ R3 , minimizing the energy function shown in Equation (2)

by solving for scalar function
→

V : R3
→ R . To find the best indicator function whose gradient best

approximates the inward surface normal vector filed, the divergence operator is utilized on both
sides of Equation (1). In Equation (3), ∇ · ∇χ can transfer to ∆χ, and ∆χ is the Laplacian of indicator

function, which equals to the divergence of the vector filed
→

V. Now, the Equation (2) becomes to
Poisson equation, and the best fitting indicator function can be obtained by solving this equation.
Moreover, to overcome the drift of indicator function caused by the error of point clouds, the Screened
Poisson Surface Reconstruction approach explicitly incorporates the points as interpolation constraints.
The energy function is shown in Equation (4). Point (p) in set of input points (P) with weights w (p),
and α is a weight that trades off two items in the energy function. Area(P) is the area of the reconstructed
surface. To accurately estimate the indicator function of the near reconstructed surface, discretization
of this problem is necessary. The octree of the point set P is utilized to divide the indicator function
into each function to each node of the octree. In our experiments, the maximum tree depth is set
to 9. After solving the indicator function, the Marching Cubes algorithm is implemented to extract
isosurface to reconstruct the model.
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3. Experiments and Discussion

3.1. Datasets Description and Parameters Settings

We use three kinds of datasets to validate the capability of our approach, and these datasets have
different layouts and are acquired with full of furniture. Table 1 shows the main parameters and values
used in experiments. BLS dataset in Figure 8a was collected in a study room by the backpack mapping
system presented in Fan et al. [6], and the area in the red circle is the same place as specific structures
shown in Figure 1. HLS dataset is implemented to highlight the issues of curved wall structures which
is shown in the red circle of Figure 9a. The synthetic dataset “synth1” in Figure 10a is presented in
Mura et al. [8] to evaluate the accuracy of the reconstruction approach.

Table 1. List of main parameters involved in the proposed approach and values in experiments.

Parameter Descriptions BLS HLS SYN

Voxel size The size of a voxel in down-sampling 0.05 m 0.05 m 0.05 m
Tolerance of plane The distance tolerance of RANSAC in detecting plane 0.07 m 0.1 m 0.1 m

Grid size The size of the grid in outlier removal and grid-slices 0.05 m 0.05 m 0.05 m
Angle and neighbors The angle and neighbor points of boundary estimation 60◦ 200 60◦ 200 90◦ 100

Minimum of grids The minimum number of grids in the structural detail region 20 20 20
Tolerance of boundary The tolerance of RANSAC in wall refinement 0.05 m 0.05 m 0.01 m

Tree depth The maximum tree depth in Screen Poisson Reconstruction 9 9 9ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 16 
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Figure 8. Comparison of the models reconstructed from the backpack laser scanner (BLS) dataset:
(a) raw point cloud dataset (the detailed structure points are in the red circle), (b) raw point cloud dataset
without ceiling, (c) model generated from Shi’s approach (the detailed structure is ignored in the red circle),
(d) model generated from our approach (the detailed structure is reconstructed in the red circle).
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Figure 9. Comparison of the model reconstructed from the handheld laser scanner (HLS) dataset with
curved wall structure: (a) raw point cloud dataset (the curved wall structure points are in the red circle,
and the pillar points and the specific object points are in the blue circle and orange circle respectively),
(b) raw point cloud dataset without ceiling, (c) model generated from Shi’s approach (the curved wall
structure is in the red circle), (d) model generated from our approach (the curved wall structure is in
the red circle, and the pillar and the specific object are in the blue circle and orange circle respectively).

3.2. Reconstruction Quality

The point cloud and the reconstructed model are visualized by CloudCompare [12]
and Meshlab, [27] respectively. The outliers generated from out of the door and the noise from
glass reflection of windows exist in the BLS dataset, and our approach shows the robustness of those
outliers and noisy. The comparison to the approach proposed in Shi et al. [21] is shown in Figure 8c,d.
Detailed structures are well preserved in the model, and the other structural elements also have good
quality because of the refinement of structural elements point clouds. The integrated modeling strategy
is proven to keep the balance of model completeness and quality. As shown in Figure 9a,b, due to the
existing high level of clutter, the occlusions of wall and floor are serious in the HLS dataset. The curved
wall structure (in red circle) is decomposed to several planar primitives in the model generated from
the approach of Shi et al. [21] in Figure 9c. Compared with our model in Figure 9d, the curved wall
structure (in red circle) is well represented and smooth. Moreover, the pillar (in blue circle) also can be
obtained by our approach of ceiling boundary point detection. It shows that our algorithm has the
capacity in processing no-planar structure. However, As shown in the orange circle in Figure 9a,d,
a special object was misclassified to pillar. Multi-room datasets like the synthetic dataset shown in
Figure 10a,b contains three rooms and a corridor. In the models shown in Figure 10b,c, our approach is
also available in the multi-room dataset. The outliers are removed automatically, and the dataset is
segmented into four parts to process respectively. The obstacle caused by furniture and the opening of
windows and doors is well repaired.

In addition to the visual validation of our approach, we also applied quantitative analysis to
synthetic data to evaluate the accuracy of the reconstructed model from our approach. This synthetic
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model was generated manually in 3D modeling software, and the point cloud dataset is the simulation
of virtually scanned by TLS in several positions. Gaussian noise with σ = 0.1 cm is added to the
simulation of point cloud for making the simulation more realistic. The projected perpendicular
distance from the point cloud to the reconstructed model is calculated and shown in Figure 11. Figure 11
is also generated from CloudCompare [12] software. The average distance is approximately 0.06 cm
for the synthetic dataset. Due to the limitation of the Screen Poisson reconstruction algorithm, the wall
intersection parts in red circle of Figure 11a cannot achieve the same high accuracy as the main part of
the wall, but it still acceptable around 2 to 3 cm. Compared with the evaluation from Shi et al. [21]
in Figure 11b, the accuracy is significantly improved. The maximum of error is 12.5 to 15 cm, and the
error of the wall structure shown in blue circle of Figure 11b is around 5 to 7.5 cm.
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Figure 11. Comparison of the accuracy of the model generated from the synthetic dataset (a histogram
of errors is shown at the right side): (a) accuracy of our model (the accuracy of the wall intersection
part in the red circle is around 2 to 3 cm), (b) accuracy of Shi’s model (the accuracy of the wall part in
the blue circle is around 5 to 7.5 cm).
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4. Conclusions

Structural elements detection and reconstruction is a hybrid approach for modeling complex
interior structures, and the proposed approach comprises the integrated modeling strategy,
eight-dimension outlier removal algorithm, and grid-slices analysis approach to overcome the problem
in detecting the detailed structures and curved wall structures of the indoor scenario. In the experiments,
the outliers could be detected and removed by using the eight-dimension outlier removal algorithm.
Moreover, the detailed structure around the ceiling was detected by the grid-slices analysis approach.
The curved wall structure was well preserved in the models. From the visual validation, the SEDR
approach shows the ability to detect all structural elements and keep the balance of model completeness
and quality. In terms of accuracy, the average distance from point cloud to the reconstructed model is
0.06 cm and the maximum distance is approximately 3 cm in the SYN dataset. The indoor 3D models
generated from the SEDR approach have plenty further uses in practice. The detailed structures
that can be reconstructed by the approach could be used in change detection of indoor structures for
facility management and structural healthy monitoring, which can be implement by comparing the
difference of two models generated from the point cloud at two different times. The 3D models also
support redesign by directly edit on the triangle mesh. In the future, we intend to enrich our approach
with modeling of non-vertical wall segments and arbitrary ceiling shapes will be considered as well.
Automatically processing the dataset of multi-floor is also a problem that needs to be considered in
future work, and enriching the reconstructed models with openings like doors and windows will be
considered as well.
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