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Abstract: Flood susceptibility mapping is essential for characterizing flood risk zones and for planning
mitigation approaches. Using a multi-criteria decision support system, this study investigated a
flood susceptible region in Bihar, India. It used a combination of the analytical hierarchy process
(AHP) and geographic information system (GIS)/remote sensing (RS) with a cloud computing
API on the Google Earth Engine (GEE) platform. Five main flood-causing criteria were broadly
selected, namely hydrologic, morphometric, permeability, land cover dynamics, and anthropogenic
interference, which further had 21 sub-criteria. The relative importance of each criterion prioritized
as per their contribution toward flood susceptibility and weightage was given by an AHP pair-wise
comparison matrix (PCM). The most and least prominent flood-causing criteria were hydrologic
(0.497) and anthropogenic interference (0.037), respectively. An area of ~3000 sq km (40.36%) was
concentrated in high to very high flood susceptibility zones that were in the vicinity of rivers, whereas
an area of ~1000 sq km (12%) had very low flood susceptibility. The GIS-AHP technique provided
useful insights for flood zone mapping when a higher number of parameters were used in GEE.
The majorities of detected flood susceptible areas were flooded during the 2019 floods and were
mostly located within 500 m of the rivers’ paths.

Keywords: flood susceptibility; geographic information system (GIS); analytical hierarchy process
(AHP); Google Earth Engine (GEE); multi-criteria decision support system

1. Introduction

Flood is among the most severe natural disasters; it causes significant and irreversible damage
to property and communication infrastructure, which leads to considerable loss of life, both human
and livestock, along with loss of agricultural produce and farm lands. Some of the deadliest
floods occurred in China (1935, 1931, 1887), Guatemala (1949), Bangladesh (1974), Venezuela (1999),
Iran (1954), India (2013), Japan (1953), and Peru (1941), and many more, where loss of human life
occurred in the range of several thousands. These natural disasters can be monitored properly
using modern technology and information systems. There are some benefits associated with floods,
such as transportation of fertile soil to farmlands and distribution of fishes to small water bodies;
however, they have a devastating impact on the surrounding regions. Various diseases, such as cholera,
typhoid fever, leptospirosis, hepatitis A, malaria, and dengue, spread because of the polluted water
from these floods. Flood mapping can support in decision-making for such events by facilitating risk
management, near real-time forecasting, and land use and land cover management (LU/LC). Floods are
multi-dimensional dynamic phenomena; thus, geographic information system (GIS)/remote sensing (RS)
data have been largely delineated to explore the extent of flooded areas. Near real-time flood monitoring
is essential to mitigate floods and thus control their impact [1]. Sofia et al. [2] found that cumulative
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flood hazard delineation along with environmental degradation and climate change parameters
associated with LU/LC changes can ensure better monitoring capability. The pixel-based flood analysis
requires huge time and processing capabilities to achieve near real-time assessment. Flood vulnerability
combines inundation extent with social data, which is used to determine flood-prone communities that
have the greatest propensity for loss of property and life. Currently, flood exposure and vulnerability are
mapped using hydrodynamic inundation models along with high-resolution population distribution
data in developed countries with high population density [3]. Flood susceptibility mapping uses
analysis techniques, such as multi-criteria decision analysis [4], logistic regression [5], frequency ratio
approach [6], weight of evidences equations [7], k-nearest neighbor logic [8], analytic network process
framework [9], Bayesian network fusion technique [10], and genetic algorithm-based rule-set production
followed by the quick and unbiased efficient statistical tree (QUEST) technique for urban flood mapping
in Oulu, Finland [11]. The adaptive neuro fuzzy interface system used for landslide susceptibility
in Qazvin Province, Iran [12], hydraulic modeling used for estimating unsaturated soil hydraulic
conductivity [13], and soil water assessment tool (SWAT) in the ArcGIS software environment [14] are
some models utilized for flood susceptibility estimation. Deep learning methods, such as artificial
neural networks (ANNs), fuzzy logic, support vector machines, random forest classification, regression
trees (RTs), and classification and RT (CART) algorithms [15–17], have significant potential for
effective flood mapping and monitoring. ANN has been extensively used for flood susceptibility
mapping [18,19]; however, it has drawbacks, such as over-fitting and under-fitting, slow learning,
the curse of dimensionality, and slow convergence to a local optimum; in addition, its performance for
processing complex hydrological phenomena has been inadequate [20,21].

Tellman et al. [22] proposed a new approach for flood modeling by leveraging satellite images
with a cloud computing-enabled Google Earth Engine (GEE) system to map flood hazards in real
time in two ways: First, by generating a globally consistent flood inundation layer, and second,
by dynamically modeling flood susceptible areas. A cloud computing GEE-based flood prevention
and emergency response system (FPERS) has been successfully developed and implemented for three
frontal applications of before, after, and during floods occurring during typhoons or torrential rain
events in China from 2013 to 2016 [23].

The most preferred technique, the analytical hierarchy process (AHP), has been used to create
a special decision-making framework for flood susceptibility mapping [24]. In AHP, various flood
vulnerability parameters are ranked based on their impact using PCMs [25]. The selected methodological
framework formulates the cumulative nature of each criterion, which is effective for generating flood
data subject to the spatial scale, at local, regional, and national levels. With several rivers flowing
through, Bihar is a flood-prone region; it constitutes 16.5% of the total flood area and is home to 22.1%
of the flood-affected population of India [26].

1.1. Flood Mapping Parameters

Basic parameters, such as precipitation rate, river density, drainage network, soil erodibility,
and rainfall erosivity, and topographical variations, such as elevation, slope, and ruggedness index,
were measured and evaluated for identifying flood-causing factors at river banks [14,24].

A higher precipitation rate considerably increases the probability of floods in a flood-prone
area, along with contribution from other parameters. High river network density in a region implies
accelerated surface runoff and increases the possibility of flooding [27]. The drainage network density
(in km/km2) can be determined and mapped using the “line density” tool of the ArcGIS software.
Flood intensity and frequency are very high around a drainage basin area [28], particularly closer to
rivers. The ruggedness of terrain is associated with rugged, undulated, or heterogenous patterns of a
terrain. A permeable formation favors rainwater absorption in ground, subsequently minimizing flood
hazard. On the other hand, an impermeable formation, such as marly, clay, and gypsum, increase the
runoff rate, amplifying flood risk in the region. Spatial distribution of topographic attributes that
represent soil moisture, ground water depth, and soil wetness are described by the topographic
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wetness index (TWI). High values of TWI correspond to areas favoring water accumulation and high
runoff. High TWI values signify low drainage, representing more saturated land, which may cause
flash flooding [29]. LU/LC dynamics parameters affect hydrological processes components, such as
infiltration, surface runoff, evaporation, and evapotranspiration [30]. In another study, LU/LC dynamics
along with elevation and slope were considered factors that had the most significant effect on flooding
in a region [31]. Forest and vegetation cover favors the infiltration rate and decreases the runoff depth,
thus decreasing potential flood risks. However, barren land, rivers and river banks, impervious roads,
and buildings lead to a higher runoff rate [32], as they are hard and impervious surfaces with minimal
infiltration. Vegetation is a defensive factor against floods, as it cuts the runoff and acts as a barrier;
it is generally estimated by the normalized differential vegetation index (NDVI) [33]. Urban centers
are rapidly encroaching into agricultural areas and grass land that serve as natural retention zones for
flood waters. This brings new challenges to manage flood water in urban areas [34]. According to
Jebur et al. [35], the stream power index (SPI), a flood monitoring parameter, can be defined as the rate
of discharge with the power of the erosion of the flowing water in a specific location, that is, SPI is the
workflow of a river basin. SPI values are inversely related to the frequency of flood occurrence, that is,
a low SPI value indicates more chances of flood inundation [32].

1.2. Scope and Objectives

Conventional flood mapping was carried out using few parameters because of slow image
processing systems and complex ranking of susceptibility levels of the parameters. In some cases,
flood susceptibility mapping parameters were limited to topographic parameters. With the availability
of cloud platforms along with pair-wise comparison matrix (PCM)-based ranking of parameters in
AHP, we attempted to incorporate several parameters for accurate prediction of flood susceptible
zones in Bihar, which is one of the most flood-affected regions in India. Five major flood monitoring
criteria were identified, namely hydrologic, morphometric, permeability, land cover dynamics,
and anthropogenic interference criteria, which include 21 sub-criteria, for intelligent assessment and
flood susceptibility mapping.

2. Materials and Methods

2.1. Study Area

In Bihar, 76% of the total population faces frequent flood threats that cause great devastation [36,37].
Bihar lies between 24◦20′10”and27◦31′15” N latitude and 83◦19′50” and88◦17′40” E longitude, with a
study area of nearly 7388 sq km. The average elevation is 53m from mean sea level (Figure 1), with a
very low slope of 0.006%. The average temperature in the region is 25–35 ◦C in summer (April–May),
which goes down to 5 ◦C in winter (November–January). Bihar has a monsoon-type tropical climate
with a mean annual rainfall of 1270 mm, most of which(up to 85%) is received in four months from
mid-June to mid-October, mostly due to southwest monsoon. The study area has sandy alluvial soil
that is rich in lime and often contains a high percentage of clay. The area comprises rich alluvial plains
of the Indo-Gangetic basin, which is enriched by sedimentation from rivers, such as Burhi-Gandak,
Gandak, Ghaghra, Kosi Mahananda, and Ganga, flowing through the middle of the state from west to
east. These rivers have high potential to cause recurring floods in the study area.

Since 2015, there have been significant losses of human and animal life because of floods in Bihar
(Table 1). In 2008 and 2019, 2500 and 1900 people died, respectively, along with considerable loss of
domestic animals, crops, and property. The medium range flood that occurred in 2016 damaged nearly
76,000 houses and caused crop losses in 0.36 million ha of farmland [38].
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Open-source spatial data for the study area and secondary information from several sources, such 
as local administration and land development and disaster management departments, were collected 
for flood susceptibility mapping (Table 2). Through an extensive literature review and expert opinions, 
five main criteria were selected and divided into 21 sub-criteria for flood susceptibility mapping. 
  

Figure 1. Study area identification, (a) location of the study area in Bihar, India, (b) flood situation [38].

Table 1. Statistics of loss of lives in floods of Bihar [37].

Year Human Animals Year Human Animals

2019 1885 755 2005 58 4
2018 1476 643 2004 885 3272
2017 1521 792 2003 251 108
2016 1254 5383 2002 489 1450
2013 1201 140 2001 231 565
2008 2534 845 2000 336 2568
2007 1287 126 1999 243 136
2006 36 31

2.2. Source of Data

Open-source spatial data for the study area and secondary information from several sources, such as
local administration and land development and disaster management departments, were collected for
flood susceptibility mapping (Table 2). Through an extensive literature review and expert opinions,
five main criteria were selected and divided into 21 sub-criteria for flood susceptibility mapping.
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Table 2. Description of data sources used for processing flood conditioning criteria.

SL No. Data Type Description Source

1 DEM ASTER DEM (30 m) usgs.gov.in

2 Landforms Global ALOS Landforms (30 m) USGS/Google Earth Engine

3 Precipitation (mm/day) TRMM (0.25◦) https://giovanni.gsfc.nasa.gov/
giovanni/

4 Soil data Soil Region and sub order
associations of India; RF 1:7,000,000 NBSS and LUP, Nagpur

5 Soil moisture SMAP L-band radiometer data,
version 1.0 beta (40 km) https://www.mosdac.gov.in/

Soil erodibility (K) and rainfall
erosivity (R)factor

RUSLE-based Global Soil Erosion
Modelling platform (GloSEM;

version 1.1), 25 km

https://esdac.jrc.ec.europa.eu/
content/globalsoilerosion

6 Landsat 8 Images LANDSAT/LC08/C01/T1_TOA
(30 m) USGS/Google Earth Engine

7 Land cover COPERNICUS/Landcover/100
m/Proba-V/Global

https://developers.google.com/
earth-engine/datasets

8 Population Density The Gridded Population of the
World, Version 4 (GPWv4) (30 arc s)

https://sedac.ciesin.columbia.edu/
data/collection/gpw-v4

9 GMIS Global Man-made Impervious
Surface (Landsat, v1)

https://sedac.ciesin.columbia.edu/
data/set/ulandsat-gmis-v1

10 HBASE Global Human Built-up and
Settlement Extent (Landsat, v1)

https://sedac.ciesin.columbia.edu/
data/set/ulandsat-hbase-v1

11 Road network Road network in Bihar https://www.openstreetmap.org/
export#map=9/25.4172/85.1660

2.3. Flood Susceptibility Evaluation

Various studies were referred for selecting the primary criteria for flood evaluation [10,27].
Twenty-one criteria were determined to be critical to causing floods and were thus focused on
for predicting flood susceptible zones. These primary criteria were classified under five major
groups based on similar properties and coherence, namely (I):hydrological criterion: precipitation,
river network density, and SPI; (II): morphometric criterion: elevation, slope, profile curvature,
landforms, ruggedness index, and distance from rivers; (III): permeability criterion: soil type,
soil moisture, TWI, soil erodibility factor (K), and rainfall erosivity factor (R); (IV): LU/LC dynamics
criterion: LU/LC, soil-adjusted vegetation index (SAVI), and NDVI; (V): anthropogenic interference:
population density, global man-made impervious surface (GMIS), global human built-up and settlement
extent (HBASE), and distance from roads.

All criteria were well-defined and preprocessed in the form of raster datasets. Their weights
were estimated using AHP after ranking them based on the opinions of experts in the field of soil
management, water resources, meteorology, disaster management, and local administration and
professionals. A final flood susceptibility map was generated by the weightage linear combination
method of AHP through multi-criteria analysis. A flow chart representing the procedure of the
study is presented in Figure 2. All the main criteria and sub-criteria affecting floods in the study
area were evaluated in the ArcGIS 10.5 software environment using the WGS84/UTM/Zone 45 North
coordinate system. The ranges of an individual parameter, based on its likelihood toward the flooding
zone, were classified into five susceptibility levels (5: very high, 4: high, 3: moderate, 2: low,
and 1: very low) (Table 3). Susceptibility of individual criterion was evaluated and combined to
estimate the susceptibility of a primary criterion (Figure 2). The selection and estimation of main and
sub-criteria were carried out based on the following information.

usgs.gov.in
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://www.mosdac.gov.in/
https://esdac.jrc.ec.europa.eu/content/globalsoilerosion
https://esdac.jrc.ec.europa.eu/content/globalsoilerosion
https://developers.google.com/earth-engine/datasets
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https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1
https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1
https://sedac.ciesin.columbia.edu/data/set/ulandsat-hbase-v1
https://sedac.ciesin.columbia.edu/data/set/ulandsat-hbase-v1
https://www.openstreetmap.org/export#map=9/25.4172/85.1660
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Table 3. Flood susceptibility criteria and sub-criteria ranges for flood susceptibility assessment.

Flood Causative Criterion Susceptibility Class Ranges and Ratings

Unit Very High (5) High (4) Moderate (3) Low (2) Very Low (1)

(A) Hydrologic criterion

Precipitation mm >7.50 7.0–7.50 6.50–7.0 6.0–6.50 <6.0

River network density km/km2 >1.53 1.26–1.52 1.00–1.25 0.70–0.99 0–0.69

Stream power index (SPI) level 0–0.005 0.006–0.642 0.643–0.990 0.990–1.500 >1.500

(B) Morphometric criterion

Elevation m 0–20 20–50 50–100 100–150 >150

Slope (◦) 0.0–2 2.1–5.0 5.1–15.0 15.1–35.0 >35

Profile curvature radians/m 0–0.25 0.26–0.90 0.91–2.5 2.56–3.00 3.00–3.50

Landforms level Valley, Valley
(narrow) Lower slope (flat) Upper slope (warm) Upper slope, Upper slope

(flat) Peak/ridge (warm)

Ruggedness index level 0.11–0.32 0.33–0.42 0.43–0.51 0.52–0.60 0.60–0.88

Distance from rivers m <200 200–500 501–1000 1001–1500 >2000

(C) Permeability

Soil type level Silty clay
Limestone and Marly,

Limestone and Dlomies,
Limestone Marly, and Gypsum

Alluvium, Silty sediments
and Quaternary sediments

Sandy clay sand and
conglomerate Coarse sand

Soil Moisture Average % 30.01–35.0 25.01–30.00 20.01–25.00 15.01–20.00 0–15.00

Topographic wetness index (TWI) level >20.01 15.01–20.00 10.01–15.00 0.001–10.00 <0.001

Soil erodibility factor (K) level >0.175 0.170–0.175 0.133–0.169 0.107–0.132 <0.106

Rainfall erosivity factor (R) level >5000 4500–5000 4200–4500 4000–4200 <4000

(D) Landcover Dynamics

Landuse and landcover (LU/LC) level River, urban Agriculture land Wet land, shrubs, bare land Low vegetation Mixed forest

SAVI level −0.50 to −0.30 −0.29 to −0.22 −0.22 to −0.13 −0.12 to −0.02 −0.02 to 0.14

NDVI level >−0.02 −0.02 to 0.30 0.31–0.40 0.41–0.50 0.51–0.65

(E) Anthropogenic interference

Population density Person/km2 >8000 6001–8000 4001–6000 2001–4000 2000

Human built-up extent level >200 151–200 101–150 51–100 0–50

Impervious area % >150 101–150 51–100 21–50 0–20

Distance to road network m 0–25 26–50 51–100 101–150 >150
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2.3.1. Hydrological Criterion

Hydrological criterion comprised three parameters: precipitation, river network density, and SPI.
Six weather stations distributed across Bihar were considered individual grids for precipitation
mapping. The values of average precipitation for 2010–2019 were collected and distributed over
the study area through geostatistical interpolation, which is called krigging. The drainage network
density (in km/km2) was determined and mapped using the “line density” tool of the ArcGIS software
environment. It was estimated as the ratio between the total length of “river segments” to the total
“drained area” or drainage basin [39]. According to Jebur et al. [35], SPI is defined as the rate of
discharge, with power of erosion of the flowing water, within a specified location, i.e., it is the workflow
in a river basin and can be given using Equation (1):

SPI = (Astanβ), (1)

where As is the basin area (m2 m−3), and β is the radiant of slope (in degree).

2.3.2. Morphometric Criterion

The six relevant flood sub-criteria grouped under morphometric criterion are elevation, slope,
profile curvature, landforms, ruggedness index, and distance from rivers. The elevation map of the
study area was estimated from a digital elevation model (DEM) with a spatial resolution of 30 × 30 m
using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM in the GIS
software environment. A slope map was also generated from the above DEM. The profile curvature was
also estimated, which is defined as the difference between convex and concave surfaces. Landforms
map was extracted from Global ALOS Landforms (with a 30-m resolution) and was processed by
the GEE API code editor. Another important flood evaluation criterion is “distance from rivers”,
where abundant runoff causes frequent flooding. The classes for the raster of “distance from rivers”
were estimated according to the natural break grading method using the “Euclidean distance” tool in
the ArcGIS software environment using a map with a spatial resolution of 1:50,000. Because of the
discrete character of a single maximum elevation, the ruggedness index is simply calculated using
Equation (2), using the Melton ruggedness number for flow accumulation index [40]:

R.I. = (Zmax − Zmin)/
√

A, (2)

where R.I. is the ruggedness index; Zmax and Zmin are the maximum and minimum elevations,
respectively; and A is the total study area (km2).

A low ruggedness value implies a gentle slope with less fragmentation or undulation of relief
with a highly eroded surface [41].

2.3.3. Permeability

Permeability criterion were considered primary criterion for identifying flood susceptibility zones.
Permeability influences the volume of peak flood wave and timing of occurrence and the groundwater
flow from aquifers to support lower river flows [42]. Permeability includes five sub-criteria, namely
soil type, soil moisture content, TWI, soil erodibility factor (K), and rainfall erosivity factor (R).
Permeability significantly affects soil moisture, water infiltration, runoff, and inundation flooding
frequency. The soil type map was collected in a vector format and converted to a raster format with
spatial resolution of 20 m. The maps were collected from the National Bureau of Soil Survey and
Land Use Planning (NBSS&LUP), Nagpur, India, with a spatial resolution scale of RF 1:7,000,000.
Soil moisture active-passive (SMAP) in GeoTiff format in L-band radiometer was retrieved from
www.mosdac.gov.in. The wetness index data was also estimated from the DEM. TWI was estimated as
follows (Equation (3)):

TWI = ln(α/tanβ), (3)

www.mosdac.gov.in
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where α is the cumulative upslope draining area per contour length (unity), and tanβ is the slope angle
at the point of contact.

Soil erosion is an environmental problem occurring in zones with less or no vegetation cover.
It degrades land and hydrologic systems in watersheds and accelerates sediment accumulation, causing
frequent floods [43]. In this study, the quantitative Revised Universal Soil Loss Equation (RUSLE)-based
Global Soil Erosion Modelling platform (GloSEM 1.1) approach was used to estimate the soil erodibility
(K), intensity of soil erosion problem (factor measured in terms of t h MJ−1 mm−1), rainfall erosivity
(R), and soil loss due to rainfall (measured in MJ mm ha−1 h−1 year−1) [44].

2.3.4. LU/LC Dynamics

The LU/LC map for the study region was extracted from quality indicator discrete dynamic
land cover map (CGLS-LC100). Maps with a spatial resolution of 100 m were retrieved by GEE Data
Cataloging. According to Goffi et al. [45], Outlook-Web-Access (OWA) segmented with SAVI that
was based on variable cutoff values of spectral indices was used to produce digital maps of flooded
areas distributed around the study area. In our study, the GEE platform utilized the resampling
cubic convolution of Landsat 8 (Collection-1 Tier-1) calibrated reflectance values for Path: 141 and
Row: 42 (covering the study area) images with supporting metadata between 20 August 2019 and
20 October 2019 with cloud-free images (<5% cloud cover) for SAVI and NDVI analyses ([46,47];
Equations (4) and (5)):

SAVI =1.5 (NIR − RED)/(NIR + RED + 0.5), (4)

NDVI = (NIR − RED)/(NIR + RED), (5)

where NIR = near infrared red band reflectance (band 5) and RED = red band reflectance (band 4).

2.3.5. Anthropogenic Interference

Anthropogenic interference criterion includes population density, global human settlement (GHSL)
extent, impervious layer, and distance to road network. Our study used gridded population density
data sets at a resolution commensurate with the hazard model output. A wide range of such data sets are
available, such as GHSL and gridded population of the world (GPW) [48,49]. Segmentation methods,
with cut off values, can automatically extract urban land or impervious surface layers [10]. Similar to
the effect of the distance to rivers, floods may also occur along roads and in sloppy areas surrounding
the roads [50]. Road construction results in an increased percentage of impervious surfaces, causing
reduced groundwater recharge and changes in topography that in turn affect flow accumulation and
high runoff. Flood susceptibility classes for the raster of distance to roads were defined the same as
those for “distance to rivers” following the grading technique using the “Euclidean” distance tool with
a vector layer in the ArcGIS software environment.

2.4. AHP Modeling Approaches

AHP is a multi-perspective multi-objective decision-making model that enables users and planners
to quantitatively derive a scale of preference drawn from a set of alternatives [51]. Saaty [52] introduced
a PCM method to construct weighting factors for individual criterion by applying a ranking scale [53],
which was estimated and assessed by a random consistency index [52]. The average RI varied as per
number of factors or for different matrix orders. The consistency ratio (CR) was defined for validation
(Equation (6)), which was defined as the ratio of the consistency index (CI) and the RI (Equations (6)
and (7) [54]). To validate the weightage, CR value should be <0.1; otherwise, the weights of the
comparison matrix must be recalculated. The researchers applied the approximation technique [55]
for calculating the final weights and normalized the PCM. The acquired weights were used to design
the flood susceptibility technique (Equation (8)). In this method, hydrologic criterion, morphometric
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criterion, permeability, and land cover dynamics had a significant impact on flood occurrence in the
study area, whereas anthropogenic interference had a low impact:

CR =
CI
RI

, (6)

CI =
(λmax−n)

n− 1
, (7)

where:
CR: Consistency ratio;
CI: Consistency index;
λ: Average value of consistency vector;
n: Number of criteria; and
RI: Random CI randomly generated PCM, which was accessed from the table of random

inconsistency indices [56].
To validate the criteria weights, the final CR value should be low (<0.10). However, a high CR

(>0.10) value indicates inconsistent judgments, requiring re-estimation of the weights:

S =
∑

i

WiXi

∏
j

C j, (8)

where:
S: Susceptibility composite score;
Wi: Weight given to the factor i;
Xi: estimated score of the factor i; and
Cj: Constraint j score (0 to1).

2.5. Validation of the Susceptibility Map

The flood susceptibility maps were validated with pre- and post-flooding images of Bihar during
20–30 August 2019 and 20–30 September 2019. The ascending SAR Ground Range collection images
of Sentinel 1 C band were used with a 5 × 5 m resolution. A speckle filter was applied followed by
mosaicking of the raster image cells. A supervised classification technique was used to collect training
data for the classifier. The geometry tool in the GEE code editor was used to collect representative
samples of backscatter for each sample classifier for flood inundated areas to VV and VH backscatter
(dB) images for both pre- and post-flood instances through thresholding. Classified inundated layer
backscatter values were extracted for the classification of the inundated layer. Thus, a flooding map for
the study area was extracted. The “Map Query” tool in the Arc GIS software was used to validate the
final susceptibility map against the flooded area map for September 2019.

The final flood susceptibility map was also analyzed for flood distribution along the length of
the river in the region. A 500-m “distance from the river” query was carried out on flood susceptible
maps in the ArcGIS software environment. The distance of 500 m from river was selected based
on the range of susceptibility (Table 2) for “distance from river” criterion under very high and high
susceptibility classes.

3. Results and Discussion

3.1. Flood Susceptibility Mapping

The flood susceptibility map was created using the range of values for individual criterion in
five classes. The combined flood susceptibility map for the five criteria was developed using the
sub-criteria classified under each criterion. The primary criteria-based flood susceptibility maps were
further used for developing the final flood zoning map. By applying the AHP, the relative importance
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of each criterion was estimated after constructing PCMs. The values of each row are compared with
values of each column to determine the relative significance and to obtain a rating score. After applying
the weighting sum of all causative criteria, the final flood susceptibility map was generated with
a sigma max value of 5.32 and CR value of 0.09 (<0.1, validated). The degree of influence of the
hydrologic criterion in identifying flood susceptibility zones was highest, as evidenced by the weight
of 0.497, assigned by the MCA technique in AHP; the morphometric criterion weight was second
highest at 0.259. Land cover dynamics, permeability, and anthropogenic interference were considered
least important with weights of 0.128, 0.079, and 0.037, respectively (Table 4). However, each primary
criterion can enhance flood susceptibility by itself at a given time.

Table 4. Pair-wise comparison matrix, and final weights (wi) for flood susceptibility criteria.

Hydrological
Criterion

Morphometric
Criterion

Land Cover
Dynamics Permeability Anthropogenic

Interference Weightage

Hydrological
criterion 1 3 5 6 8 0.497

Morphometric
criterion 0.33 1 3 4 7 0.259

Land cover
dynamics 0.2 0.33 1 2 5 0.128

Permeability 0.167 0.25 0.5 1 3 0.079

Anthropogenic
interference 0.125 0.143 0.2 0.333 1 0.037

Note: Sigma max = 5.32, CR = 0.09 (<0.1, valid).

The flood susceptibility maps were produced by the AHP reclassification technique for21 sub
criteria using data from recent flood events (Figure 3) and secondary topographic information.
Susceptibility maps based on primary criteria were also evaluated (Figure 4). Based on hydrologic
criterion susceptibility, very high and high susceptibility classes cover 34.26% and 27.85% of the total
area, respectively. As per the morphometric criterion, the share of the moderately susceptible class
was 26.60%, while the low susceptibility class had a coverage area of 28.68%. Low susceptible criteria,
such as permeability and land cover dynamics, had shares of 12.36% and 0.01%, respectively, in the
very low susceptibility class. The anthropogenic criterion was the most susceptible to floods with very
low susceptibility in 49.83% of the area, while 12.27% of the area was under moderate susceptibility
(Table 5). The final flood susceptibility map estimated through the AHP-GIS technique had 13.57%
and 12.36% areas under very high and very low flood susceptibility classes, respectively (Figure 5).
The high flood susceptibility class covered an area of 26.79% (Table 5), showing the majority of the
study area as flood prone.
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Table 5. Area coverage of flood susceptibility classes.

Criteria Very High,
sq km % High,

sq km % Moderate,
sq km % Low,

sq km % Very Low,
sq km %

Hydrologic 2057.73 27.8 2531.3 34.3 1324.36 17.9 1355.2 18.3 119.44 1.62

Morphometric 405.83 5.49 1389.1 18.8 1965.14 26.6 2118.7 28.7 1509.28 20.4

Permeability 1513.60 20.5 1773.4 24.0 2084.08 28.2 1104.0 14.9 912.94 12.4

Land cover
dynamics 314.20 4.3 5117.9 69.2 1897.84 25.6 57.42 0.78 0.55 0.01

Anthropogenic 159.290 2.2 294.22 3.98 906.82 12.2 2346.3 31.7 3681.27 49.8

Final flood
susceptibility 1002.710 13.6 1978.9 26.7 1956.17 26.5 1536.6 20.8 913.49 12.4

3.2. Validation with Sentinel 1 C Images

Sentinel 1 C radarsat data were collected for before and after the flood event (Figure 6) in the study
area during September 2019. The GEE code editor tool was used to estimate VV and VH backscatter
values (dB) for pre- and post-flood instances through thresholding. The flooded area map showed that
major flooding had occurred along the basins of Ganga and Gandak rivers. However, water logging is
observed in areas in various parts of the study area, which may be attributed to heavy monsoon rain
events (Figure 6).
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The 2019 flood map was compared with the final flood susceptibility map developed through the
AHP-GIS/RS technique on cloud platform. The “Map Query” operation was carried out for the flooded
area against the area classified as the very high and high flood susceptibility class map (Figure 7).
According to the resultant map, major flooding was found in areas classified as showing very high and
high susceptibility to flood. This result showed the validity of the susceptibility map, which can be an
early warning system against flood events. However, the exact percentage of validity may differ as
floods mostly occurred in areas with weak earthen embankment structures, with water flowing above
the dangerous level during the rainy season.
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3.3. Flood Susceptible Zone near the River

Further analysis of the location and distribution of the flood susceptible zone in the study area was
carried out using the “Map Query” tool in Arc GIS to examine the direct impact of rivers’ flow paths
(Figure 8). The analysis showed that nearly 83% of flood susceptible zones (under very highly and
highly susceptible zones) are located within 500 m of the river bank and the remaining 17% of flood
susceptible zones are located further away from the river basin. The “Map Query” tool can be further
used to analyze the impact of individual criterion on final susceptible zone mapping. This validates and
enhances the applicability of the AHP-GIS technique for flood susceptible mapping in the study area.
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3.4. Discussion

The study area is located in the Indo-Gangetic plain, hosting many rivers, such as Burhi-Gandak,
Gandak, Ghaghra, Kosi Mahananda, and Ganga. As expected, areas in the vicinity of these rivers were
found to be most susceptible to floods. The Kosi river (The Sorrow of Bihar), as its nature quickly
and frequently changes its course, causing floods every alternate year. In this study, the methodology
adopted showed that hydrologic criteria have a higher influence in determining flood susceptibility areas.
In other studies, hydrologic-SPI was considered as the leading parameter causing frequent floods [57].
However, low-quality embankment structures, deforestation at river banks, sediment deposition,
and non-removal of sediment from dams and barrages are some factors that may cause floods at river
banks [58]. Heavy rains in Nepal can also cause flash floods in northern districts of Bihar. Districts in
Bihar, such as Bhojpur, Khagaria, Buxar, Vaishali, Samastipur, Bhagalpur, and Patna, are more prone to
floods due to very low slopes.

AHP is a simple and executable weighing technique, though it depends on experts’ opinions and
judgments during the initial stages for assigning weights to different criteria, which may introduce some
uncertainty. AHP is suitable for local and regional susceptibility studies [23] and mostly influenced by
local hydrological, hydrogeological, and morphological characteristics. Researchers have determined
that rainfall, topography, and soil significantly influence the occurrence of floods [59], which is inline
with our results. Flood susceptibility mapping can be improved using modern techniques, such as
the naïve Bayes method of alternating decision tree (AD Tree) and random forest (RF) [60,61] and
frequency ratio and support vector machine models [62,63].

The flood susceptibility map was further validated with a radarsat images-based flood map for
2019. The qualitative validation showed that the majority of the flooding occurred in areas that can be
classified as very highly and highly flood susceptible.

4. Conclusions

Flood disaster susceptible zone mapping is one of the most constructive methods that allows a
reduction offlood hazard damages and assist planners, stakeholders, and decision-makers to have
proper supervision over the flood-prone areas, ensuring proper and sustainable socio-economic
development. The remote sensing GEE-based multi-parametric AHP-GIS technique is a sound
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alternative approach to identify the flood susceptibility zones in the state of Bihar, India. For total flood
susceptibility evaluation, 21 criteria were grouped into 5 primary criteria based on their proximity
and relative level of influence in causing flood. Each and every flood affecting the raster layer was
processed in the code editor GEE API platform and then reclassified in the GIS environment for
flood susceptibility map development. Using Saaty’s AHP technique, the hydrologic criterion was
given the highest rank for finding areas susceptible to flooding, followed by morphometric criterion,
permeability, land cover dynamics, and anthropogenic interference. An area of ~3000 sq km (40.36%)
was concentrated in high to very high flood susceptibility zones that were in the vicinity of rivers,
whereas an area of ~1000 sq km (12%) had very low flood susceptibility. The GIS-AHP technique
provided useful insights for flood zone mapping when a higher number of parameters were used in
GEE. The majority of the detected flood-susceptible areas flooded during the 2019 floods and was
mostly located within 500 m of the rivers’ paths.

Author Contributions: Investigation, Kishore Chandra Swain; Methodology, Kishore Chandra Swain,
Chiranjit Singha and Laxmikanta Nayak; Project administration, Laxmikanta Nayak; Resources, Chiranjit Singha;
Software, Kishore Chandra Swain; Validation, Chiranjit Singha and Laxmikanta Nayak. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We do acknowledge the Visva-Bharati University for hosting this research work.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Giordan, D.; Notti, D.; Villa, A.; Zucca, F.; Calo, F.; Pepe, A. Low cost, multiscale and multi-sensor application
for flooded area mapping. Nat. Hazards Earth Syst. Sci. 2018, 18, 1493–1516. [CrossRef]

2. Sofia, G.; Roder, G.; Dalla Fontana, G.; Tarolli, P. Flood dynamics in urbanised landscapes: 100 years of
climate and humans’ interaction. Sci. Rep. 2017, 7, 40527. [CrossRef] [PubMed]

3. Smith, A.; Bates, P.D.; Wing, O.; Sampson, C.; Quinn, N.; Neal, J. New estimates of flood exposure in
developing countries using high-resolution population data. Nat. Commun. 2019, 10, 1814. [CrossRef]
[PubMed]

4. Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM-AHP modeling
for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2019, 35, 991–1017.
[CrossRef]

5. Pradhan, B. Flood susceptible mapping and risk area delineation using logistic regression, GIS and Remote
sensing. J. Spat. Hydrol. 2009, 9, 1–18.

6. Siahkamari, S.; Haghizadeh, A.; Zeinivand, H.; Tahmasebipour, N.; Rahmati, O. Spatial prediction of
flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int. 2018, 33, 927–941.
[CrossRef]

7. Shafapour-Tehrany, M.; Shabani, F.; NeamahJebur, M.; Hong, H.; Pourghasemi, H.R.; Xie, X. GIS-based spatial
prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and
their ensemble techniques. Geomat. Nat. Hazards Risk 2017, 8, 1538–1561. [CrossRef]

8. Liu, K.; Li, Z.; Yao, C.; Chen, J.; Zhang, K.; Saifullah, M. Coupling the k-nearest neighbor procedure with the
Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int. J. Sediment Res. 2016,
31, 149–158. [CrossRef]

9. Dano, U.; Balogun, A.L.; Matori, A.N.; Wan Yusouf, K.; Rimi Abubakar, I.; Said Mohamed, M.; Pradhan, B.
Flood Susceptibility Mapping Using GIS-Based Analytic Network Process: A Case Study of Perlis, Malaysia.
Water 2019, 11, 615. [CrossRef]

10. Li, Y.; Martinis, S.; Wieland, M.; Schlaffer, S.; Natsuaki, R. Urban Flood Mapping Using SAR Intensity and
Interferometric Coherence via Bayesian Network Fusion. Remote Sens. 2019, 11, 2231. [CrossRef]

11. Darabi, H.; Choubin, B.; Rahmati, O.; Haghighi, A.T.; Pradhan, B.; Kløve, B. Urban flood risk mapping
using the GARP and QUEST models: A comparative study of machine learning techniques. J. Hydrol. 2019,
569, 142–154. [CrossRef]

http://dx.doi.org/10.5194/nhess-18-1493-2018
http://dx.doi.org/10.1038/srep40527
http://www.ncbi.nlm.nih.gov/pubmed/28079147
http://dx.doi.org/10.1038/s41467-019-09282-y
http://www.ncbi.nlm.nih.gov/pubmed/31000721
http://dx.doi.org/10.1080/10106049.2019.1566405
http://dx.doi.org/10.1080/10106049.2017.1316780
http://dx.doi.org/10.1080/19475705.2017.1362038
http://dx.doi.org/10.1016/j.ijsrc.2016.02.002
http://dx.doi.org/10.3390/w11030615
http://dx.doi.org/10.3390/rs11192231
http://dx.doi.org/10.1016/j.jhydrol.2018.12.002


ISPRS Int. J. Geo-Inf. 2020, 9, 720 21 of 23

12. Termeh, S.V.R.; Kornejady, A.; Pourghasemi, H.R.; Keesstra, S. Flood susceptibility mapping using
novelensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total
Environ. 2018, 615, 438–451. [CrossRef] [PubMed]

13. Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and
multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2016, 7, 1000–1017. [CrossRef]

14. Oeurng, C.; Sauvage, S.; Sánchez-Pérez, J.M. Assessment of hydrology, sediment and particulate organic
carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol. 2011, 401, 145–153. [CrossRef]

15. Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An ensemble prediction
of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support
vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [CrossRef]

16. Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.X.; Chen, W. Application of fuzzy weight of evidence and
data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci. Total
Environ. 2018, 625, 575–588. [CrossRef]

17. Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Bui, D.T. A comparative
assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed,
Northern Iran. Sci. Total Environ. 2018, 627, 744–755. [CrossRef]

18. Wang, Y.; Fang, Z.; Hong, H.; Peng, L. Flood susceptibility mapping using convolutional neural network
frameworks. J. Hydrol. 2020, 582, 124482. [CrossRef]

19. Jahangir, M.H.; Reineh, S.M.M.; Abolghasemi, M. Spatial predication of flood zonation mapping in Kan River
Basin, Iran, using artificial neural network algorithm. Weather Clim. Extrem. 2019, 25, 100215. [CrossRef]

20. Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff

models. Water Resour. Res. 1992, 28, 1015–1031. [CrossRef]
21. Bahrami, S. Global Ensemble Stream Flow and Flood Modeling with Application of Large Data Analytics,

Deep Learning and GIS. Unpublished Master’s Thesis, University of Naved, Reno, NV, USA, 2019; p. 210.
22. Tellman, B.; Kuhn, C.; Max, S.A.; Sullivan, J. Dynamic Flood Vulnerability Mapping with Google Earth

Engine. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA,
14–18 December 2015; pp. 5523–5527.

23. Liu, C.C.; Shieh, M.C.; Ke, M.S.; Wang, K.H. Flood Prevention and Emergency Response System Powered by
Google Earth Engine. Remote Sens. 2018, 10, 1283. [CrossRef]

24. Vojtek, M.; Vojteková, J. Flood Susceptibility Mapping on a National Scale in Slovakia Using the Analytical
Hierarchy Process. Water 2019, 11, 364. [CrossRef]

25. Yahaya, S.; Ahmad, N.; Abdalla, R.F. Multicriteria analysis for flood vulnerable areas in Hadejia-Jama’are
River basin, Nigeria. Eur. J. Sci. Res. 2010, 42, 71–83.

26. India Water Portal. Bihar Floods 2008 Archived 1 February 2009 at the Wayback Machine. 2009.
Available online: https://www.indiawaterportal.org/ (accessed on 2 February 2020).

27. GhorbaniNejad, S.; Falah, F.; Daneshfar, M.; Haghizadeh, A.; Rahmati, O. Delineation of groundwater
potential zones using remote sensing and GIS-based data-driven models. Geocarto Int. 2017, 32, 167–187.

28. Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.;
Amini, A.; Bahrami, S.; et al. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing
Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest
Neighbor Classifier. Remote Sens. 2020, 12, 266. [CrossRef]

29. Fernández, D.S.; Lutz, M.A. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and
multicriteria decision analysis. Eng. Geol. 2010, 111, 90–98. [CrossRef]

30. Beven, K.J.; Kirkby, M.J.A. Physically based, variable contributing area model of basin hydrology/Un modèle
à base physique de zone d’appel variable de l’hydrologie du basin versant. Hydrol. Sci. J. 1979, 24, 43–69.
[CrossRef]

31. Bilskie, M.V.; Hagen, S.C.; Medeiros, S.C.; Passeri, D.L. Dynamics of sea level rise and coastal flooding on a
changing landscape. Geophy. Res. Lett. 2014, 41, 927–934. [CrossRef]

32. Kourgialas, N.N.; Karatzas, G.P. Flood management and a GIS modelling method to assess flood-hazard
areas—A case study. Hydrol Sci. J. 2011, 56, 212–225. [CrossRef]

33. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble
weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2017.09.262
http://www.ncbi.nlm.nih.gov/pubmed/28988080
http://dx.doi.org/10.1080/19475705.2015.1045043
http://dx.doi.org/10.1016/j.jhydrol.2011.02.017
http://dx.doi.org/10.1016/j.scitotenv.2018.10.064
http://dx.doi.org/10.1016/j.scitotenv.2017.12.256
http://dx.doi.org/10.1016/j.scitotenv.2018.01.266
http://dx.doi.org/10.1016/j.jhydrol.2019.124482
http://dx.doi.org/10.1016/j.wace.2019.100215
http://dx.doi.org/10.1029/91WR02985
http://dx.doi.org/10.3390/rs10081283
http://dx.doi.org/10.3390/w11020364
https://www.indiawaterportal.org/
http://dx.doi.org/10.3390/rs12020266
http://dx.doi.org/10.1016/j.enggeo.2009.12.006
http://dx.doi.org/10.1080/02626667909491834
http://dx.doi.org/10.1002/2013GL058759
http://dx.doi.org/10.1080/02626667.2011.555836
http://dx.doi.org/10.1016/j.jhydrol.2014.03.008


ISPRS Int. J. Geo-Inf. 2020, 9, 720 22 of 23

34. Malinowski, R.; Groom, G.; Schwanghart, W.; Heckrath, G. Detection and Delineation of Localized Flooding
from WorldView-2 Multispectral Data. Remote Sens. 2015, 7, 14853–14875. [CrossRef]

35. CIESIN. Center for International Earth Science Information Network, Gridded Population of the World (GPWv3);
CIESIN, Columbia University, and Centro Internacional de Agricultura Tropical: Palisades, NY, USA, 2005.

36. Jebur, M.N.; Pradhan, B.; Tehrany, M.S. Optimization of landslide conditioning factors using very
high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens. Environ. 2014,
152, 150–165. [CrossRef]

37. Diwakar, S.K.; Nagarkoti, J. Performance of WRF (ARW) over River Basins under Flood Met Office, Patna during
Flood Season-2014; Indian Meteorological Department: New Delhi, India, 2016; p. 30. [CrossRef]

38. FMIS. Flood Management Information System (FMIS), Water Resource Department, Bihar. 2019.
Available online: http://fmis.bih.nic.in/mapWRD_INUN.html (accessed on 8 May 2019).

39. Dube, M. Bihar Floods: A Report on Bihar Floods 2016; Bihar Disaster Management Authority, Government of
Bihar: Patna, India, 2018; p. 36.

40. Drobot, R. Methodology for Determining Torrential Catchments in Which Human Settlements Are Exposed to Flash
Floods; Technical University of Civil Engineering: Bucharest, Romania, 2007. (In Romanian)

41. Amin, K. Application of Remote Sensing and GIS in Flash Flood Hazard Mapping and Hydraulic Design
(Case Study of Wadi Dahdah, Saudi Arabia). 2019. Available online: https://www.academia.edu/20126182/

Application_of_Remote_Sensing_and_GIS_for_Floodplain_mapping_and_Hydraulic_design (accessed on
1 January 2020).

42. Al-Saady, Y.I.; Al-Suhail, Q.A.; Al-Tawash, B.S.; Othman, A.A. Drainage network extraction and morphometric
analysis using remote sensing and GIS mapping techniques (Lesser Zab River Basin, Iraq and Iran).
Environ. Earth Sci. 2016, 75, 1243. [CrossRef]

43. Musy, A.; Higy, C. Hydrology. A Science of Nature; CRC Press, Taylor & Francis Group, Science Publishers:
Enfield, NH, USA, 2011.

44. Ochoa, P.; Fries, A.; Mejía, D.; Burneo, J.; Ruíz-Sinoga, J.; Cerdà, A. Effects of climate, land cover and
topography on soil erosion risk in a semiarid basin of the Andes. Catena 2016, 140, 31–42. [CrossRef]

45. Renard, K.G.; Foster, G.R.; Weesies, G.A. Predicting soil erosion by water: A guide to conservation planning
with the revised universal soil loss equation (RUSLE). In Agriculture Handbook Number 703; USDA-ARS:
Washington, DC, USA, 1997; p. 404.

46. Goffi, A.; Stroppiana, D.; Brivio, P.A.; Bordogna, G.; Boschetti, M. Towards an automated approach to map
flooded areas from Sentinel-2 MSI data and soft integration of water spectral features. Int. J. Appl. Earth Obs.
Geoinf. 2020, 84, 101951. [CrossRef]

47. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens.
Environ. 1979, 8, 127–150. [CrossRef]

48. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
49. Center for International Earth Science Information Network—CIESIN—Columbia University (CIESIN).

Gridded Population of the World, Version 4 (GPWv4): Basic Demographic Characteristics, Revision 11; NASA
Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018. Available online: https:
//sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed on 10 May 2019). [CrossRef]

50. Pesaresi, M.; Ehrilch, D.; Florczyk, A.J.; Freire, S.; Julea, A. GHS Built-Upgrid, Derived from Landsat, Multitemporal
(1975, 1990, 2000, 2014) (versionR2015); European Commission, Joint Research Centre (JRC): Ispra, Italy, 2019.
Available online: http://data.europa.eu/89h/jrc-ghsl-hs_built_ldsmt_globe_r2015b (accessed on 21 April 2019).

51. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility
mapping in the Kakuda–Yahiko Mountains, Central Japan. Geomorpho 2005, 65, 15–31. [CrossRef]

52. Singha, C.; Swain, K.C. Land Suitability Evaluation Criteria for Agricultural crop selection: A Review.
Agric. Rev. 2016, 37, 125–132. [CrossRef]

53. Saaty, T.L. The Analytical Hierarchy Process; McGraw Hill: New York, NY, USA, 1980.
54. Luu, C.; Von Meding, J.; Kanjanabootra, S. Assessing flood hazard using flood marks and analytic hierarchy

process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Nat. Hazards 2018,
90, 1031–1050. [CrossRef]

55. Saaty, T.L.; Vargas, G.L. Models, Methods, Concepts, and Applications of the Analytic Hierarchy Process.
Int. Ser. Oper. Res. Manag. Sci. 2001, 32, 93. [CrossRef]

http://dx.doi.org/10.3390/rs71114853
http://dx.doi.org/10.1016/j.rse.2014.05.013
http://dx.doi.org/10.13140/RG.2.1.1155.9286
http://fmis.bih.nic.in/mapWRD_INUN.html
https://www.academia.edu/20126182/Application_of_Remote_Sensing_and_GIS_for_Floodplain_mapping_and_Hydraulic_design
https://www.academia.edu/20126182/Application_of_Remote_Sensing_and_GIS_for_Floodplain_mapping_and_Hydraulic_design
http://dx.doi.org/10.1007/s12665-016-6038-y
http://dx.doi.org/10.1016/j.catena.2016.01.011
http://dx.doi.org/10.1016/j.jag.2019.101951
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1016/0034-4257(88)90106-X
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://dx.doi.org/10.7927/H46M34XX
http://data.europa.eu/89h/jrc-ghsl-hs_built_ldsmt_globe_r2015b
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.18805/ar.v37i2.10737
http://dx.doi.org/10.1007/s11069-017-3083-0
http://dx.doi.org/10.1007/978-1-4615-1665-1


ISPRS Int. J. Geo-Inf. 2020, 9, 720 23 of 23

56. Drobne, S.; Lisec, A. Multi-attribute decision analysis in GIS: Weighted linear combination and ordered
weighted averaging. Informatica 2009, 33, 459–474.

57. Singha, C.; Swain, K.C.; Saren, B.K. Land Suitability Assessment for Potato Crop using Analytic Hierarchy
Process Technique and Geographic Information System. J. Agric. Eng. 2019, 56, 78–87. Available online:
http://www.isae.in/journal_jae.aspx (accessed on 10 August 2020).

58. Al-Abadi, A.M.; Shahid, S.; Al-Ali, A.K.A. GIS-based integration of catastrophe theory and analytical
hierarchy process for mapping flood susceptibility: A case study of Teeb area, Southern Iraq. Environ. Earth
Sci. 2016, 75, 687. [CrossRef]

59. Santangelo, N.; Santo, A.; Di Crescenzo, G.; Foscari, G.; Liuzza, V.; Sciarrotta, S.; Scorpio, V. Flood susceptibility
assessment in a highly urbanized alluvial fan: The case study of Sala Consilina (southern Italy). Nat. Hazards
Earth Syst. Sci. 2011, 11, 2765–2780. [CrossRef]

60. Seejata, K.; Yodying, A.; Wongthadam, T.; Mahavik, N.; Tantanee, S. Assessment of flood hazard areas
using Analytical Hierarchy Process over the Lower Yom Basin, Sukhothai Province. Procedia Eng. 2018,
212, 340–347. [CrossRef]

61. Tanga, X.; Lib, J.; Liuc, M.; Liud, W.; Hong, H. Flood susceptibility assessment based on a novel random Naïve
Bayes method: A comparison between different factor discretization. Catena 2019, 189, 104536. [CrossRef]

62. Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Bin Ahmad, B. Modeling flood susceptibility using
data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci. Total
Environ. 2019, 701, 134979. [CrossRef]

63. Sahana, M.; Rehman, S.; Sajjad, H.; Hong, H. Exploring effectiveness of frequency ratio and support vector
machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve,
India. Catena 2020, 189, 104450. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.isae.in/journal_jae.aspx
http://dx.doi.org/10.1007/s12665-016-5523-7
http://dx.doi.org/10.5194/nhess-11-2765-2011
http://dx.doi.org/10.1016/j.proeng.2018.01.044
http://dx.doi.org/10.1016/j.catena.2020.104536
http://dx.doi.org/10.1016/j.scitotenv.2019.134979
http://dx.doi.org/10.1016/j.catena.2019.104450
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Flood Mapping Parameters 
	Scope and Objectives 

	Materials and Methods 
	Study Area 
	Source of Data 
	Flood Susceptibility Evaluation 
	Hydrological Criterion 
	Morphometric Criterion 
	Permeability 
	LU/LC Dynamics 
	Anthropogenic Interference 

	AHP Modeling Approaches 
	Validation of the Susceptibility Map 

	Results and Discussion 
	Flood Susceptibility Mapping 
	Validation with Sentinel 1 C Images 
	Flood Susceptible Zone near the River 
	Discussion 

	Conclusions 
	References

