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Abstract: The electrification of the transport sector together with an increasing share of renewable
energies has the potential to reduce CO2 emissions significantly. This transformation requires the
rollout of charging infrastructure, which has an impact on power grids. For grid planning and
dimensioning purposes, it is crucial to assess this rapidly growing impact. We present an approach
using socio-economic data such as income levels together with a model for demographic changes to
estimate where electric mobility is likely to be concentrated, especially during the transformation
phase. We present a total-cost-of-ownership approach for the ramp-up of electric mobility, considering
an increased penetration of renewable energies. With the city of Wiesbaden in Germany as an example
for an application area, the possible expansion of vehicle ownership and charging points is modeled
on the level of individual buildings. Compared to a simpler approach, the detailed model results in
more consistent charging point allocations, higher line/transformer loadings and lower bus voltages
for the investigated grids. Predicting future distributions of charging points with such a level of detail
in terms of ramp-up and spatial resolution proves potentially beneficial for grid analysis and planning
purposes, especially in urban areas, where infrastructure changes are expensive and time-consuming.

Keywords: charging demands; electric vehicles; spatial allocation; scenarios; grid planning

1. Introduction

Electric vehicles can significantly contribute to a reduction of carbon emissions in the mobility
sector. This transformation will be very dynamic, which poses a technical and economic challenge.
The necessary charging infrastructure is a new element in our energy systems, which will have to
be integrated into electric grids. Therefore, spatial modeling of future charging behavior is essential.
An important area of application is grid planning as challenges may arise especially in distribution grids.

Modern approaches provide numerous methods of estimating the future spatial distribution of
electrical generators and loads in the context of grid studies [1]. Criteria for spatial distributions can be
based on probabilistic methods (e.g., wind energy in [2,3]), general siting suitability (e.g., photovoltaics
in [2]) or prioritization [4,5]. In many studies, a spatial allocation at a higher level (e.g., municipal
level) is carried out before a fine spatial distribution takes place [2,4,6–8]. The reasons presented for
this two-step approach are increased robustness of the distributions and the option of using different
allocation criteria at different levels [1,2,4]. The broad landscape of studies and methods for the spatial
distribution of electrical power generation and electric loads is more limited when it comes to the
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distribution of electric vehicles and their charging points. There are fairly general allocation models
based on population or vehicle distribution in general [2,9,10]. Various more detailed studies focus on
public charging infrastructure, even if their concrete focus of investigation varies. Some of these studies,
for example, [11], concentrate on fast-charging stations and a distribution based on optimization
algorithms in order to assess those stations’ influences on the power grid. Another field of research
is the differentiation between charging types and their optimal deployment [12]. Some studies have
specific applications such as the optimal distribution across American state roads [13]. Numerous
methodologies, such as the cross-entropy method [14] or agent-based models [15], are used to achieve
an optimization of certain model variables. Furthermore, the target or evaluation size considered varies:
while some studies address consumer costs for optimal placement [16,17], others explicitly consider
environmental costs [18,19]. The studies have been developed partly in the context of providing
concrete designs for planned charging point expansions [20,21].

There are grid integration studies that examine electric mobility by means of probabilistic
allocations of charging points with a high level of spatial resolution [2] or scenario data based on
population and market research data [22]. However, these two scenario aspects are not combined in
previous research and there are no analyses about which level of spatial resolution is most suitable for
grid planning applications in (urban) low-voltage grids.

The aim of this work is to establish a method that generates possible future distributions of
electric vehicles and to investigate their impact on grid planning through domestic charging stations.
This paper differs from many state-of-the-art publications in that it does not aim to optimize the
distribution of charging points but to depict plausible developments based on a probabilistic approach.
For example, this method could be used to determine the expected costs of necessary grid expansion
and is thus a small building block in paving the way for the energy transition. The availability of a
method for a possible distribution of home charging stations with a broad applicability in Germany
can advance research and the industry (especially distribution network operators) and allow for more
accurate cost estimation for grid reinforcement. It is not in competition with optimization models but
represents a different field of application.

This paper presents and evaluates the following hypothesis: detailed models for the spatial
allocation of charging points considering socio-economic attributes are beneficial for power grid
planning purposes.

Section 2 presents our methods for generating high-resolution charging point distributions and
how they can be used in power grid calculations. In Section 3, the results of the application of these
methods are presented based on a case study for the city of Wiesbaden in the year 2040. Section 4
discusses the applicability but also the limits of the methodology and how it could be expanded and
further developed in the future. Furthermore, the validation of the hypothesis from the beginning of
this paragraph is discussed in Section 4.

2. Materials and Methods

In this section, we present our approach, which consists of the following steps: first, a nationwide
vehicle fleet is modeled. After that, demographic change and the expected number of charging points
are modeled on a municipal level. Based on these results, high-resolution distributions of charging
points are determined considering population properties like income or age. Finally, the impact
of the expected charging point distribution on the existing power grid infrastructure is examined.
Figure 1 presents an overview of the components of our model. Each component is described in a
subsequent subsection.

2.1. Methods: Vehicle Fleet Modeling for Germany

In this section, the methods to create a vehicle fleet composition in the target year 2040 including
electric vehicles is presented. In [23,24], a model to quantitatively determine future vehicle fleets was
developed that considers a variety of technical, ecological and economic input parameters and allows
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for a detailed simulation of the market penetration of different types of electric vehicles. The model is
summarized below, and a schematic overview is shown in Figure 2. The general idea is to calculate the
changes in the vehicle fleet over time for the coming years at a yearly resolution.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 3 of 27 
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The first step is to initialize the model by a defined vehicle fleet (e.g., a representative vehicle mix
consisting of 67% gasoline cars and 33% diesel cars across the small and medium segment). Building on
the initial vehicle fleet, the yearly turnover in the fleet is calculated. Vehicles leave the fleet because of
damage or age, and newly purchased vehicles are added.

The modeling approach is based on a bottom-up consumer demand model combined with dynamic
stock modeling. As a central element, the individual purchase decision is based on the difference in
total cost of ownership (TCO) of the considered vehicle types. For this purpose, all foreseeable costs
for vehicle use are calculated for a specific holding period or vehicle lifetime and transformed into
specific costs per kilometer. A distinction is made between private and commercial customers in terms
of holding period, interest rate and possibility of a value-added tax refund [23,24].

To take into consideration updated data and the focus on electric vehicles for this work, the model
from [23,24] has been adjusted as follows:

• Updated policy trends, including a faster increase of the CO2 price and a faster reduction of the
feed-in tariff (see Appendix A, Table A1 for specific values)
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• Added parameter “car rank” in order to distinguish between a household’s first car and second
car. The type of vehicle use varies for the parameter (e.g., no long-distance travel for second
cars, which represent almost 25% of all registered cars in Germany [25]) and thus the boundary
conditions, for example, for battery range (see Appendix A, Table A3)

• New regulatory framework, described in [26], with differentiated price forecasts for every
consumer group in all energy sectors, including the energy industry, general industry, residential
and commercial buildings and the transport sector

• Updated starting point for the simulations to 2018 due to availability of data [27]
• Updated vehicle component costs (see Appendix A, Table A2) and battery capacities (Table A3)

The outcome of this vehicle modeling approach is the expected composition of the nation-wide
vehicle fleet in the relevant years and thus forms an input for creating regionalized vehicle and charging
point figures at the municipal level.

2.2. Methods: Municipal Level

The goal of the next step is to regionalize the expected nationwide numbers of electric vehicles at
the municipal level. However, besides the vehicle fleet, a second central basis is to take into account
changes in the population structure for future scenarios (Section 2.2.1). Demographic change has,
among others, an influence on the number of charging points per municipality (Section 2.2.2).

2.2.1. Methods: Demographic Change

We use a forecast of demographic change until 2030 by the Bertelsmann Foundation [28].
The forecast includes population projections for municipalities with more than 5000 inhabitants.
To display the development from 2030 to 2040, a demographic model has been established that takes
into account the following annual changes throughout the municipalities:

• Birth: number of births, depending on the number of women potentially giving birth in the age
group of 15–49 [29]

• Death: mortality rates per age [30]
• Migration: taking into account the migration factors of the years 2016 and 2017 by age group in

each municipality [31]

The future population of municipalities with less than 5000 inhabitants is estimated based on the
projected population size of the district. After the per-district processing of the population data, the size
of the individual municipalities is determined proportionally, based on the population distribution in
the year 2017 [32].

In order to avoid outliers in the overall development through extreme migration over the
model years, the overall growth compared to 2017 is limited to the 1–99% quantile. In Section 3.2.1,
the applicability and its limits are discussed. The modeled demographic change serves as an input for
two other parts of our model: charging points per municipality (Section 2.2.2) and building-specific
household modeling (Section 2.3.1).

2.2.2. Methods: Charging Points per Municipality

In the first step, we determine the number of electric vehicles at the municipal level
with a methodology that was developed within the framework of the Verteilnetzstudie Hessen
(Distribution Grid Study Hesse) [2]. In the second step, these numbers are used to determine the
number of domestic charging points needed for these electric vehicles.

The classic top-down allocation procedure distributes an initial variable (electric vehicles from the
scenario framework) to a lower level (municipalities) using a distribution variable. The distribution
variable is made up of the number of inhabitants and various other factors. In order to take into
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account updated data and further development of the methodology, the following adjustments have
been made compared to the above source:

• Vehicle fleet figures have been adjusted and extended to cover a longer period (until 2040)
• Distribution factors: adjustment of the influence of commuters since a scenario further in the future

is described in which their influence decreases (damping the original factor of [2]); new inclusion
of demographic change (see Section 2.2.1); new inclusion of registered vehicles per municipality
in consideration of structural and geographical modal-split characteristics; and updated input
data for residents [33] and commuters [34]

• The conversion between vehicles and charging points is updated to use a new factor of 0.7, which is
based on [35] and defined as the base case in the project consortium of Ladeinfrastruktur 2.0 [36].

The number of vehicles is thus determined—in analogy to [2] and with the changes mentioned
above—based on the following equation:

ncp, j = fcp/ev × nev, j = fcp/ev ×
Ij × fdemogr, j × fv/inh, j × fcom, j∑
i

(
Ii × fdemogr, i × fv/inh, i × fcom, i

) × nev, national, (1)

where:
j: considered municipality; i: all municipalities; ncp: number of charging points; fcp/ev:

charging points per electric vehicle; nev: number of electric vehicles; I: inhabitants; fdemogr:
demographic-change factor; fv/inh: registered vehicles (including combustion vehicles) per inhabitant
and fcom: commuters factor.

The definition of the factors is used as a base case. The benefit of this methodology is that it can
be updated with newer input data and findings. The number of charging points refers to domestic
charging points.

2.3. Methods: Household Level

Based on demographic change (Section 2.2.1) and the number of charging points per municipality
(Section 2.2.2), the high-resolution, house-specific population structure and a possible distribution of
vehicles and—in a second step—charging points is modeled. These high-resolution scenarios will
be calculated in different allocation variants (the same boundary conditions but different random
samples) to allow for a probabilistic power grid calculation (Section 2.4). Additionally, sensitivities
(changed boundary conditions) provide an opportunity to investigate the influence of variables.

2.3.1. Methods: Population Structure

The spatial distribution of charging points is based on population structure data. To generate
household-exact data, it is necessary to know the positions of households and their characteristics.
Relevant data is only available at a higher and aggregated level for now. For that reason, we have
developed a model for creating representative individual households that also includes their positions.
The model is based on a dataset that contains household data aggregated by street sections and a wide
range of socio-economic characteristics provided by GfK Geomarketing [33]. In the German city of
Wiesbaden, a street section comprises almost 28 households on average, and, in the areas most relevant
in this application (city areas), a street section usually extends to only a few buildings due to a high
number of street crossings. Single outliers of larger groups of households are rare. The street section
with the maximum number of households contains large apartment blocks on the outskirts of the
city with a homogeneous building structure. However, the data is stated as marginal sums for the
respective street and needs a methodology for allocation to individual households so scenarios for a
point-precise distribution of charging points to addresses rather than street sections can be created.
This synthetic population is created using the iterative proportional fitting algorithm [37] for the
characteristics of income and household type. Age, sex and the number of inhabitants per household
are assigned using a random weighted distribution based on statistical data of the German Federal
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Statistical Office [38,39]. We wish to emphasize that we do not assume that the resulting household
data matches the actual household distribution of any individual household but does adequately
reflect the population for the question at hand (distribution of charging points).

In order to take into account the demographic change until 2040, households will be added or
removed, based on the development of age in the municipality (see Section 2.2.1). As an assumption,
the household attributes of added households are taken from the previous average, differentiated
by age.

An example for both assumptions is given in Appendix B. The number of households of each
age group can increase or decrease in the future. A number of households of the type subject to a
decrease is randomly chosen and removed from the datasets of the relevant age groups. In case the
number of households of other age groups increases, the removed households are replaced. If available,
additional households can be assigned to new development areas in the study area. For the area of
Wiesbaden, addressed in this paper, this kind of data was not available. According to our assumption,
the additional households are accounted for by redensification and randomly placed in the existing
street sections, with street sections that currently have a high number of inhabitants being more likely
to receive additional households.

After the household dataset for the scenario year 2040 and each street section has been created,
the households are placed at exact geographic locations (i.e., buildings and their addresses). For the
assignment of buildings to addresses, a dataset is used that assigns addresses to streets by means of
string comparison using the Levenshtein distance from the street name [40]. The living space per
building is determined based on the floor area and height of the building [41], and the households are
distributed proportionally. To determine which household is placed in which building, a weighted
random distribution is applied based on data from the German Federal Statistical Office relating to
household types and buildings [42].

2.3.2. Methods: Charging Point Allocation

In this section, we explain how we proceed from charging points per municipality (Section 2.2.2)
and a high-resolution population structure (Section 2.3.1) towards a possible allocation of charging
points in a municipality.

The process uses the following steps: first, several criteria are combined in a utility value
analysis [43], which models the probabilities of purchasing an electric vehicle for the individual
households. Second, a sample for an allocation of electrical vehicles to households is drawn from the
resulting probability distribution. Third, a probability for these vehicles to receive a charging point is
modeled. Last, a sample of charging points is drawn. This process is depicted in Figure 3, followed by
a more detailed explanation of the methodology.
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In the following, the individual steps are explained in detail, starting with the question of how
to derive criteria for electric vehicles from a population structure. Various sources indicate a more
likely purchase decision for electric vehicles in households with certain characteristics [25,44,45].
We use a method analogous to a utility value analysis to apply a score to households. Table 1 shows
the criteria (with their respective weighting in the overall score) and their different specifications
(with the respective scores). The weightings have been determined by various experts in the project
team as plausible starting values and are investigated using a sensitivity analysis (see Section 3.3.2
and Appendix C). The scoring is based on the characteristics of electric-vehicle buyers—that is,
for example, the fact that first-time users of electric vehicles have a high income and are predominantly
male [25,44,45]. Based on the scoring model, each household gets a specific score depending on the
individual household characteristics. We wish to emphasize the fact that weightings and scorings can
be varied if new findings become available.

Table 1. Charging points at municipal level: Wiesbaden in 2040 as an application example.

Attribute Weighting Specification Score

Household type 15% Single 1
Multi-person w/o child 8
Multi-person w. child 6

Building type 40% Single-family house 9
Two-family house 7

Apartment building 1
Residential and

commercial 3

Income 1 40% <2000 € 1
2000–4000 € 5

>4000 € 9

Sex of main wage earner 5% m 9
f 1

1 Per household.

As an example, a multi-person household without children (15% × 8 = 1.2) in a two-family
house (40% × 7 = 2.8) with an income above 4000 € (40% × 9 = 3.6) and a female main wage earner
(5% × 1 = 0.05) would receive an overall score of 1.2 + 2.8 + 3.6 + 0.05 = 7.65.

The higher the score, the higher the likelihood is of that household acquiring an electric vehicle.
In general, a wide range of options are available for combining different properties and reducing

them to one parameter. We have chosen an additive method analogous to a utility value analysis for
the following reasons:

• A multiplicative method would require independent variables (e.g., income without
interdependence on household type) to be known, which is rarely the case for statistical statements
on purchasing behavior.

• A clearly defined probability for a purchase decision does not appear to be determinable for the
actual complex problem. It is rather a matter of comparing different households, which corresponds
to the objective of a utility value analysis

In an iterative process, vehicles are distributed to households until all vehicles per municipality
have been distributed. The number of sampled vehicles is limited to one vehicle per single household
and two vehicles per multi-person household.

In a second step, charging points are distributed. Each household with an electric vehicle can get
one charging point per vehicle, and the likelihood of assigning a charging point to a vehicle depends
exclusively on the building type. This process is repeated 50 times to achieve a variety of possible
charging point distributions, which allows for probabilistic modeling of grid calculations.

In summary, the methodology is characterized in particular by the following features:
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• Mapping of household characteristics
• A variety of possible charging point distributions
• Suitability for sensitivity analysis
• Exact spatial distribution, which enables a precise allocation to house connections

For a complete and detailed grid analysis, other types of charging points as well as other
generation and load types can be considered to get a more accurate picture of the impact on the grid.
Other generation and consumer types have been modeled in [2]. One example are photovoltaic systems,
which are sized and allocated based on scenario targets and potentially available areas and whose
feed-in time series are calculated using irradiation-based satellite data [46]. Another example is heat
pumps, which are allocated based on size classes and applications regarding the distribution between
residential and commercial buildings and average mixes of plausible size classes. These producers and
consumers can be taken into account for grid planning applications. To simplify the analysis, the grid
analysis in this paper is limited to charging points.

2.4. Methods: Grid Calculation

As outlined in the previous section, we can determine a possible spatial allocation of charging
points in a defined area. What remains to be determined is the impact of these charging points on the
power grid. When power is drained from the electrical grid, two things happen. First, the voltage around
that point in the grid drops, and second, the loading of the power line(s) leading from the transformer
station to the point increases due to the additional current. For a high number of simultaneous charging
processes, these effects can accumulate and lead to violations of the minimal-voltage requirement or to
the overloading of either lines, transformers, or both.

In the following, we demonstrate how we use the derived spatial allocation of charging points
to assess worst-case situations that might realistically occur in distribution grids caused by charging
vehicles. Additionally, we present an approach to evaluate the influence of the level of detail in our
model for spatial allocation of charging points on those worst-case assessments.

2.4.1. Charging Point Grid Integration

Up to this point, the spatial allocation of charging points has been carried out completely
independently of any information about the power grids they are connected to. However, in order to
assess the impact of the charging infrastructure, we need to determine the exact connection point to the
underlying power grid. Domestic charging points—as considered in this paper—are assumed to be
attached to the low-voltage connection point of the buildings they belong to. For this reason, we assign
each charging point to the closest low-voltage connection point within a radius of 30 m. This cut-off

distance is necessary to prevent the assignment of a charging point to a building it is too far away
from. For each grid, this process is carried out for 50 probabilistic spatial charging point allocations.
This is of central importance as an analysis of a variety of possible charging point allocations provides
a more robust indication whether problems are likely to occur in a grid or not than a result based on a
single allocation.

As shown in the sections above, our model for spatial allocation relies on various sources of
statistical, geographic and demographic information. As stated in the hypothesis (Section 1), we wish
to investigate if detailed models for the spatial allocation of charging points are beneficial for power
grid planning purposes. In order to do so, we aim to evaluate if this very detailed model results in
different worst-case assessments than simpler approaches. For that purpose, we perform the same grid
simulations based on three allocation approaches with different levels of complexity:

1. Allocation per household considering household attributes: charging points are allocated to
households according to their overall scores (see Section 2.3.2). Households with higher scores
are more likely to receive charging points. This is the detailed approach presented in Section 2.3.
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2. Allocation per household ignoring household attributes: all charging points are allocated to
random households, pretending that the method presented in Section 2.3.2 was not available.

3. Allocation per street section considering household attributes: charging points of buildings in the
same street section are aggregated at the street center level instead of that of individual buildings.
All household attributes are considered as presented in Section 2.3.2.

For all three allocation approaches, the number of charging points per municipality is
identical. The simplifications represent real-world grid planning processes, where the availability of
non-grid-related information is usually very limited. The result of this allocation process is 50 spatial
allocation variants per allocation approach.

2.4.2. Worst-Case Assessment

After the allocation of charging points, we know how many charging points are connected to a
specific grid at what location. As a result, we also know the hypothetical maximum power flow that
would occur in that grid if all charging points were used at exactly the same time. In reality, however,
this situation is highly unlikely. Therefore, the next step in assessing worst-case grid situations is
to determine the realistic maximum simultaneous power flow caused by charging vehicles. This is
nontrivial since the relation between the number of charging points and the resulting maximum power
demand is nonlinear: with an increasing number of charging points, the additional worst-case power
flow decreases. The more charging points are connected to a grid, the less likely it is that they will be
used simultaneously. In grid planning, this fact is taken into account by using simultaneity factors.
A simultaneity factor for n consumers or producers is the ratio between the sum of their maximum
simultaneous power flows and the sum of all individual peak power flows:

fsimultaneity,n=

∑n
i=1 max. simultaneous power flowi∑n

i=1 max. individual power flowi
. (2)

When this factor is determined for different values of n, the result is a simultaneity curve that can
be used to quickly obtain simultaneity factors for any number of charging points. Figure 4 shows the
simultaneity factors for any number of 11-kW charging points from 1 to 10,000. The simultaneity curves
we use in this paper are calculated based on simulated charging profiles. The method is described
in [47].
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The combination of charging point allocations and simultaneity factors allows us to calculate the
worst-case voltages and power line/transformer loadings for all 62 grid models. All grid calculations are
performed with pandapower [48,49], an open-source grid modeling, analysis and optimization software.
Since we consider 50 variants of spatial charging point allocation per grid, we obtain 50 different
grid calculation results. In order to compare the different allocation approaches (see Section 2.4.1),
we determine the median bus voltage, line loading and transformer loading of 50 simulations for every
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bus, line and transformer per grid. These median values represent the expectable worst-case results
and allow us to evaluate whether different allocation methods lead to different worst-case assessments
or not.

3. Results

This section is structured in analogy to the methods section, following the same subsections
(see Figure 1). The results of vehicle fleet modeling (Section 3.1), demographic change and the number
of charging points at municipal level (Section 3.2), the fine-scale, household-related distributions
(Section 3.3) and the grid calculation (Section 3.4) are discussed.

3.1. Results: Vehicle Fleet Modeling for Germany

The vehicle fleet model (see Section 2.1) for Germany has been determined based on the
assumptions of Tables A1–A3. It was run with 20,000 vehicles representative of the German vehicle fleet.

The results of the simulation showed a market ramp-up of electric vehicles (see Figure 5). The share
of electric vehicles will increase from today’s 0.3% of the total German vehicle fleet to 16.2% in 2030,
on to more than 52% in 2040 and, finally, to more than 80% in the long-term perspective (see Table 2).
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Figure 5. Yearly results of the simulation for 2019–2050: overall market share between conventional
and electric cars.

Table 2. Results of the simulation in million cars and share of the overall market.

Car Type 2018 1 2025 2030 2040

BEV 2 0.09 (0.2%) 1.62 (3.4%) 5.87 (12.2%) 15.58 (33.8%)
PHEV/REEV 2 0.07 (0.1%) 0.64 (1.3%) 1.88 (3.9%) 8.52 (18.5%)
BEV + PHEV/REEV 2 0.16 (0.3%) 2.26 (4.7%) 7.75 (16.2%) 24.10 (52.2%)

1 Registered cars as of January 1, 2019 [50]. 2 BEV—battery electric vehicle; PHEV—plug-in hybrid electric vehicle
and REEV—range-extended electric vehicle.

More progressive assumptions (the reform scenario as shown in Table A1) resulted in a much
faster market uptake of electric vehicles, so that electric vehicles (EVs) accounted for 24% (11.68 million
EVs) of the total German vehicle market in 2030 and a penetration rate of over 90% in the long-term
perspective. The results of 2030 meet the minimum target of the German federal government [51].

3.2. Results: Municipal Level

Together with the scenario framework, modeling at the municipal level forms the basis for a
detailed modeling of charging points. Demographic change (Section 3.2.1) and the number of charging
points (Section 3.2.2) are presented in this section for the Wiesbaden application area.
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3.2.1. Results: Demographic Change

The application of the methodology for demographic change presented in Section 2.2.1 shows a
plausible change in the population for most municipalities in Germany (see Figure 6a).ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 27 

 

 
(a) 

 
(b) 

Figure 6. (a) Population projections for 2040 compared to 2017 per municipality. Map data copyright 
GeoBasis-DE / BKG (2020). (b) Population pyramid for Wiesbaden in 2030 [26] and 2040 (our own 
calculations). 

Particularly for the specific detailed consideration of small municipalities, an expansion of the 
input data on migration would be very helpful but is currently hampered by the inconsistent data 
situation [29]. The model appears valid for application to the example area of Wiesbaden and 
produces the population distribution shown in Figure 6b. Wiesbaden thus shows a predicted 
population increase of 4% by 2040, compared to the average development in Germany of –6%. 

3.2.2. Results: Charging Points per Municipality 

The methods described in Section 2.2.2 are applicable to every municipality in Germany. The 
figures for the municipality of Wiesbaden are presented in Table 3 and compared to nationwide 
average figures. 

Table 3. Charging points on municipal level: Wiesbaden in 2040 as an application example. 

 Demography 1 Vehicles per 
Inhab. 2 

Commuters 
Factor 

Electric 
Vehicles 

Charging 
Points 

Charge 
Point per 

Inhab. 
Wiesbaden 1.04 0.43 0.92 72,064 50,445 0.17 
Nationwide 0.94 0.51 13 24,100,000 16,870,000 0.22 

1 2040 to 2017. 2 Vehicle registration numbers according to [49]. 3 Definition of the factor not applicable 
to Germany. The average municipality has a factor of 1. 

For Wiesbaden, the value for electric vehicles per inhabitant is close to the German average, due 
to close-to-average or mutually offsetting values (a growing municipality but low commuter and 
vehicle registration figures). 

3.3. Results: Household Level 

Application of the methodology presented in Section 2.3 provides a building-specific household 
structure, including changes due to demographic change (Section 3.3.1) and charging point 
allocations (Section 3.3.2). The calculation of 50 allocation variants of charging points makes a 
probabilistic grid planning approach possible (see Section 3.4). In this article, individual areas in 
Wiesbaden are presented as application areas. 

Figure 6. (a) Population projections for 2040 compared to 2017 per municipality. Map data
copyright GeoBasis-DE / BKG (2020). (b) Population pyramid for Wiesbaden in 2030 [26] and 2040
(our own calculations).

Particularly for the specific detailed consideration of small municipalities, an expansion of the
input data on migration would be very helpful but is currently hampered by the inconsistent data
situation [29]. The model appears valid for application to the example area of Wiesbaden and produces
the population distribution shown in Figure 6b. Wiesbaden thus shows a predicted population increase
of 4% by 2040, compared to the average development in Germany of –6%.

3.2.2. Results: Charging Points per Municipality

The methods described in Section 2.2.2 are applicable to every municipality in Germany. The figures
for the municipality of Wiesbaden are presented in Table 3 and compared to nationwide average figures.

Table 3. Charging points on municipal level: Wiesbaden in 2040 as an application example.

Demography 1 Vehicles per Inhab. 2 Commuters Factor Electric Vehicles Charging Points Charge Point
per Inhab.

Wiesbaden 1.04 0.43 0.92 72,064 50,445 0.17
Nationwide 0.94 0.51 1 3 24,100,000 16,870,000 0.22

1 2040 to 2017. 2 Vehicle registration numbers according to [49]. 3 Definition of the factor not applicable to Germany.
The average municipality has a factor of 1.

For Wiesbaden, the value for electric vehicles per inhabitant is close to the German average, due to
close-to-average or mutually offsetting values (a growing municipality but low commuter and vehicle
registration figures).

3.3. Results: Household Level

Application of the methodology presented in Section 2.3 provides a building-specific household
structure, including changes due to demographic change (Section 3.3.1) and charging point allocations
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(Section 3.3.2). The calculation of 50 allocation variants of charging points makes a probabilistic
grid planning approach possible (see Section 3.4). In this article, individual areas in Wiesbaden are
presented as application areas.

3.3.1. Results: Population Structure

Based on street section population structure data [33] and the model for demographic change,
the potential population for the year 2040 is determined for each household. The data—which
can be determined for all municipalities in Germany according to the methodology described in
Section 2.3.1—is presented here for Wiesbaden. For all 141,860 individual households, combinations
of attributes (like income, household type, etc.) are assigned. An example is provided in Figure 7.
Furthermore, there are additional households due to demographic change, a total of 5437 in Wiesbaden.
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The data on the household-specific population distribution is used to determine possible charging
point distributions as described in the next subsection.

3.3.2. Results: Charging Point Allocation

The distribution of household attributes (see Section 3.3.1) and the utility analysis presented in
the methodology section (Section 2.3.2) yield results in the form of a score per individual household
(see Figure 8a). The score is used for the repeated allocation of electric vehicles, which is shown for 1 of
the 50 variants in Figure 8b. The scoring for the distribution of charging points (exclusively dependent
on the building type, not shown separately) results in the distribution of charging points (Figure 8c),
again for 1 of the 50 variants.

3.4. Results: Grid Calculation

In this subsection, the charging point allocations presented in Section 3.3 are used to assess their
impact on the underlying low-voltage grids. To this end, the charging points are integrated into the
grid models as described in Section 2.4.1. Finally, by means of a power flow calculation, we determine
the worst-case grid situations based on simultaneity factors according to Section 2.4.2. All these steps

www.openstreetmap.org/copyright
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are performed for 62 real low-voltage grids and 50 spatial charging point allocation variants. The key
result of this subsection is a comparison of three different levels of detail in spatial charging point
allocation and the consequences for grid planning applications.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 27 
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3.4.1. Results: Charging Point Grid Integration

In the following, we show the results based on the three charging point allocation approaches for
a specific low-voltage grid. Additionally, we analyze how the number of allocated charging points
in the same grids differs between the approaches. Figure 9 shows a section of a low-voltage grid
combined with the same charging point allocation as presented in Figure 8. Figure 9a is in analogy
to Figure 8c. Green dots represent one or multiple charging points that are connected to the closest
low-voltage connection point of a building. Red dots are charging points that are too far away from
this specific grid. These charging points are very likely connected to a different low-voltage grid.
This grid configuration considers all available information on the location of charging points. Figure 9b
shows the grid integration of charging points without considering the detailed allocation model
based on household attributes. Instead, charging points are assigned to randomly chosen low-voltage
connection points, resulting in different spatial distributions of charging points. The total number of
charging points per municipality that are allocated to individual households is the same as for the
method considering household attributes. However, the number of charging points in a specific grid is
not necessarily the same: if households’ attributes are considered, some households have a higher
probability of being chosen than others. As a result, grids containing these kinds of households will
receive, on average, more charging points compared to a random distribution where the probability is
equal for all households. If the median numbers of charging points per grid between both allocation
approaches are compared to each other, the results differ quite a lot: the approach with household
attributes results, on average, in 14% more charging points that are added to the 62 low-voltage
grids. The highest positive deviation regarding the median number of charging points per grid is
131% more charging points when considering household attributes compared to random distribution.
The highest negative deviation amounts to 48% less charging points. This indicates that—at least
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for these 62 low-voltage grids—the consideration of household attributes has a big impact on the
spatial distribution of charging points within a municipality and therefore is also an important factor
of influence on grid planning results.
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Figure 9. 1 of 50 charging point allocation variants (a) at household level considering household attributes,
(b) at household level ignoring household attributes and (c) at street level considering household
attributes. Prints use map data from Mapbox and OpenStreetMap and their data sources. To learn more,
visit https://www.mapbox.com/about/maps/ and http://www.openstreetmap.org/copyright.

Figure 9c represents a case where all household attributes are considered but their spatial
allocation is performed at a lower resolution: instead of placing charging points at individual buildings,

https://www.mapbox.com/about/maps/
http://www.openstreetmap.org/copyright


ISPRS Int. J. Geo-Inf. 2020, 9, 699 15 of 26

all charging points in the same street section are aggregated at the center of that section. The number
of charging points per street section is exactly the same as in Figure 9a. The example in Figure 9c,
however, reveals an important issue with this allocation approach: only one of the two charging point
locations in the left-hand part of the figure is connected to a low-voltage connection point. As indicated
by its red color, the dot in the upper left-hand part of the image is not connected to any low-voltage
connection point since there is no connection point within a 30-m radius. Increasing this radius is not
a valid option either: if one did so, the red dot in the right-hand center area would be connected to
this grid even though it represents charging points located at buildings that likely are supplied by
a different low-voltage grid. This is not a cherry-picked example: only in 45 of 3100 charging point
allocations (62 grids × 50 allocation variants) did the aggregated approach result in exactly the same
number of charging points integrated into the grid. In the extreme cases, the lower spatial resolution
leads to 500% more charging points or 100% less charging points compared to the more detailed
allocation method. This issue especially occurs in urban areas, where low-voltage grids typically cover
a relatively small area. Consequently, there is a high risk that charging points are assigned to the wrong
grid if they are not allocated to specific buildings.

Based on these findings, the approach shown in Figure 9c cannot be recommended for grid
planning purposes. For this type of use case, scenario allocations should not be aggregated before they
are combined with grid data. A high degree of granularity in spatial allocation increases the likelihood
that new producers and consumers are assigned to the correct low-voltage grids. Another central
finding is that the consideration of household attributes leads to a significant shift of charging points
from some grids to others compared to random distribution. However, a random-distribution approach
is much easier to carry out, since it requires much less information. Therefore, in the following section,
we will analyze to what degree neglecting household attributes affects grid calculation results.

3.4.2. Results: Worst-Case Assessment

The results of Section 3.4.1 indicate that a random distribution of charging points leads to
significantly different numbers of allocated charging points per grid. In this section, we want to
investigate to what degree the consideration of household attributes like income or building type is
an important influence on grid planning results. Therefore, we compare the results of power flow
calculations based on charging point allocation with and without consideration of household attributes
as shown in Figure 9a,b. Figure 10 presents the line loadings of 25 lines for 50 charging point allocations
variants for the same grid as presented in Figure 9. This subset was chosen because all of those lines
have a median loading of over 50%. For grid planning purposes, grid elements that are closer to
violating a technical limit are usually most important. The line loadings are visualized as boxplots,
consisting of 50 data points each. The boxes mark the 25th/75th percentile and the median; the whiskers
show the absolute minimum/maximum per line in 50 variants. The blue boxes represent the results
based on an allocation with consideration of household attributes. The results presented in orange
have been calculated without this information. At first, in order to analyze if there is an overall
trend and to ignore outliers, we compare the median results based on the two different allocation
approaches. The results for this subset of lines show slightly higher loadings when household attributes
are considered. For 15 of 25 lines, the median line loading determined with consideration of household
attributes is higher, for the remaining 10 lines it is significantly lower. In this case, there is not a single
line where the median loading for both allocation approaches is on an equal level. However, it can be
seen that the approach without consideration of household attributes results in a much higher spread
of line loadings over the 50 charging point allocation variants. This is consistent with the findings of
Section 3.4.1: for the approach without household attributes, there are much fewer constraints for the
allocation of charging points, resulting in a higher variance of their spatial distribution. This also leads
to a higher variance of line loading results.
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Figure 10. Comparison of line loadings based on charging point allocations with and without
consideration of household attributes. Subset of 25 lines in a single grid, 50 spatial allocation variants.

Figure 11 makes the line loading comparison in this grid easier to understand. Each dot in this
figure represents the relation between the median line loads of a single line, determined with and
without consideration of household attributes. The x-axis shows the results with consideration of
household attributes, the y-axis the results without using this information. If a dot is located on the
diagonal zero line, both results are identical. If it is located below the zero line, a charging point
allocation with household attributes resulted in a higher median line loading and vice versa. The red
dots show the medians of the same 25 lines as presented in Figure 10. The results are similar to those
shown in Figure 10: for the majority of lines, considering household attributes results in higher median
loadings. This is not just the case for the 25 lines marked in red but for all lines in the grid.
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Figure 11. Comparison of median line loadings based on charging point allocations with and without
consideration of household attributes. 50 spatial allocation variants.

Figure 12a presents the same graph for the median loadings of all lines in all 62 low-voltage grids.
The overall trend remains the same: the majority of median line loadings are higher if household
attributes are considered. Additionally, the absolute deviation between both approaches increases
for higher line loadings. The median transformer loadings presented in Figure 12b show a similar
pattern. Since there is only one transformer per grid and all charging points in a grid directly increase
transformer loading, these results deliver a comparison of the median worst-case power flows per grid:
in 34 of 62 low-voltage grids, the approach with consideration of household attributes results in higher
worst-case power flows. In 13 grids, the results are on a similar level and, in 15 grids, the approach
without household attributes leads to higher power flows.
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Figure 12. Comparison of median (a) line loadings, (b) transformer loadings and (c) bus voltages based
on charging point allocations with and without consideration of household attributes in 62 grids and
50 spatial allocation variants.

Figure 12c shows the same comparison for the median voltages of all low-voltage connection
points in the 62 grids. The results are given as per-unit (p.u.) values. This means all voltages are
divided by the reference voltage of low-voltage grids (400 V). Since more electric consumers in a grid
lead to lower voltages, this graph needs to be interpreted the opposite way compared to Figure 12a,b:
dots above the diagonal line mean that the approach with household attributes results in a higher
voltage drop (lower voltages). Therefore, the voltage results show a similar pattern as the line and
transformer loading results: the allocation approach with consideration of household attributes results
in lower voltages for the majority of low-voltage connection points. The absolute deviation also
increases with lower voltages.
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When interpreting the differences in grid calculation results based on 50 spatial allocation variants,
two statistical properties are of central importance:

1. Median difference between median loadings/voltages
2. Median standard deviation (distribution width) of loadings/voltages

Table 4 compares the numeric results for both of these properties. The median difference between
median loadings/voltages of 50 allocation variants quantifies overall trends if the approaches are
compared to each other. As concluded from Figure 12, the results based on charging point allocations
with household attributes show overall higher median line/transformer loadings and lower median
bus voltages. However, it is important to note that this is only partially an effect of the different
allocation approaches. When household attributes are considered, the buildings in some street sections
have higher probabilities of being assigned charging points than others due to their socio-economic
properties. As mentioned in Section 3.4.1, the approach with consideration of household attributes
leads, on average, to 14% more charging points in the 62 investigated low-voltage grids. This is
consistent with the presented results regarding median line loadings and bus voltages. More charging
points means higher power demand, which leads to higher line loadings and lower bus voltages.
The specific results presented in Figures 10–12 as well as Table 4, however, depend on the investigated
low-voltage grids. The 62 grid models used in this comparison are only a fraction of all low-voltage
grids in the municipality of Wiesbaden, which comprises around 1000 low-voltage grids. Since the total
number of charging points distributed remains the same for both allocation approaches, the difference
lies in how many charging points are allocated to which grid. If the same investigation were conducted
for all low-voltage grids in Wiesbaden, the graphs presented in Figure 12 would likely show a more
symmetric distribution of data points around the diagonal line. In this case, if one grid were assigned
more charging points in the approach with household attributes, other grids would be assigned
less. On top of that, the spatial allocation of charging points within a grid also influences the results,
especially regarding bus voltages, but this is a grid-specific effect as well.

Table 4. Statistical comparison of grid calculation results based on charging point allocations with and
without household attributes.

Statistical Property Line Loading Transformer Loading Voltages

Median difference between medians of
50 allocation variants 10.2% 8.3% –0.3%

Median/max. standard deviation with
household attributes 1 2.3%/58.8% 2.6%/6.9% 0.0014 per unit/0.02 per unit.

Median/max. standard deviation
without household attributes 1 2.6%/91.7% 3.1%/8.3% 0.0016 per unit/0.03 per unit

1 Over 50 allocation variants for all lines/transformers/connection points in all 62 low-voltage grids.

However, when the focus is on the median and maximum standard deviations, there is also a
general conclusion that can be drawn that is very important for grid planning purposes. The standard
deviations of line/transformer loadings and bus voltages are significantly higher when calculated
based on charging point allocations without consideration of household attributes. This means that
the 50 charging point allocations per grid are much more different from each other compared to the
approach with household attributes. Therefore, the spread in grid calculation results is also higher.
The reason for this effect is that the approach with household attributes allows for the consideration
of areas with higher probabilities of future charging point installations and potential charging point
clusters. As a result, the charging point allocation variants are inherently more consistent with each
other. Consequently, if household attributes are neglected in grid planning processes, excessive
dimensions might be chosen for lines and transformers. As a conclusion, the presented results indicate
that the consideration of socio-economic data can be a valuable asset for the efficient dimensioning
of low-voltage grids with an expected increase of installed charging points. This shows a promising
potential for optimizing grid planning processes and decreasing necessary grid investments.
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4. Discussion and Conclusions

The initial hypothesis stated in Section 1 was: detailed models for the spatial allocation of charging
points considering socio-economic attributes are beneficial for grid planning purposes. The results of
this work are possible future locations of charging points. Since their actual location in a given year in
the future is not known today, it is not trivial to evaluate the generated charging point allocations as
well as their value for grid planning purposes. Nevertheless, in order to achieve this the evaluation
will be conducted based on three main questions:

1. Is the presented method generally suitable for the distribution of domestic charging stations, and
does it allow for their allocation to individual buildings?

2. Does the consideration of socio-economic data together with a very high spatial resolution provide
significant benefits compared to simpler approaches?

3. Is the presented method suitable and beneficial for grid operators in the context of practical grid
planning application?

In Section 3.3, it was shown that the presented method allows for the allocation of electric
vehicles and consequently domestic charging points to individual buildings based on population,
social-economic as well as market research data. These charging points can then be allocated to
building connection points as demonstrated in Section 3.4.1. Together with worst-case power flow
assessments (see Section 2.4.2), this provides all information that is needed for considering charging
points in power grid calculations. Therefore, with regard to the first evaluation question, it can be
stated that the presented method is suitable for the distribution of charging points as well as their
allocation to individual buildings.

As shown in Section 3.4.2, the consideration of socio-economic data allows for the identification
of areas with higher probabilities of future charging point installations and potential charging point
clusters. Additionally, it was demonstrated in Section 3.4.1 that charging point allocations with a spatial
resolution lower than the individual-building level are not sufficient for grid planning applications in
low-voltage grids. Especially in urban areas, where a single grid is relatively small, an insufficient
resolution leads to charging points being allocated to incorrect grids. Assuming a correlation between
household attributes and the existence of charging points, the presented approach is capable of
providing more accurate assessments as to where in a grid charging points are likely to be installed.
Besides the more accurate allocations to low-voltage grids, the consideration of socio-economic data
lowers the spread of grid calculation results (see Section 3.4.2), which is very promising for optimizing
grid planning processes and consequently decreasing necessary grid investments. Regarding the
second evaluation question, the presented results show that the consideration of socio-economic data
together with a high spatial resolution can provide significant benefits for grid planning applications
compared to simpler approaches.

From a practical perspective, the presented method would be highly beneficial for the economical
and efficient planning of future low-voltage grids. The results indicate that the presented approach
could potentially be a valuable asset for grid planning applications and grid integration studies
including scenario ranges based on the variation of parameters. However, it is questionable if grid
operators would be willing to integrate such a detailed model into their grid planning processes.
Additionally, the requirements for the availability of data are quite high. Nevertheless, for important
use cases like highly populated urban areas, where the implementation of grid reinforcement and
expansion measures is very expensive and time consuming, our presented approach could provide a
net benefit. For this reason, the practical implementation and usage of our approach for the allocation
of charging points will be carried out within the project Ladeinfrastruktur 2.0. In summary, regarding
the third evaluation question, it can be stated that the presented method is shown to be potentially
highly beneficial for grid planning applications. The practical suitability for grid operators still needs
to (and will) be investigated.
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A general concern, however, is data availability and the validation of (partial) numerical results,
which is limited at certain aspects. Examples include the available data on migration statistics and the
validation of the allocation of inhabitants to living space. Moreover, an updated population structure
through updated data such as a new census would be helpful for validation. Another example of
varying accuracy depending on data availability is data on new residential developments and new
housing areas. These are being prepared by the authors for a project involving the study area of the
German city of Hamburg. Current findings suggest that such a study could provide considerable
added value for network development. However, we do not have comparable data for the study area
of Wiesbaden, which is covered in this paper. The most significant methodological uncertainty so far is
the weighting of influencing variables for the allocation of electric vehicles. To figure out the impact of
this weighting on spatial distribution, a sensitivity analysis is carried out where the weights of the
attributes are changed to 100% for each attribute individually and compared to a sensitivity variant
where all attributes are equally weighted. The sensitivity analysis highlights the relevance of the
living-space analysis. A figure showing the shift in distribution over the different sensitivity variations
is provided as an example in Appendix C. The sensitivity analysis shows the importance of the building
type attribute due to relatively strong deviations of spatial distributions and thus the allocation of
inhabitants to living spaces. It should be emphasized that the sensitivity analysis does not provide a
unique correct weighting. In summary, it can be stated that there are still various uncertainties in the
parameterization of the model, which can be updated once new information becomes available.

Another important point is possibilities for further research and additions regarding the presented
approach. This paper describes different parts of our model, ranging from the scenario framework
to grid calculations. Due to its modular structure, the model can be supplemented or expanded
depending on the research question. Possibilities to expand the model include approaches that have
already been applied by the authors in other projects, such as the spatial allocation of photovoltaics
and heat pumps [2], which have been deliberately left out of this article in order to put the focus on
home charging points. Expansions being worked on also include the consideration of time-variant
charging behavior based on charging profiles and the extension of the model to include public charging
points, for which a consideration of journey times or destinations is crucial. Finally, more far-reaching
model expansions involving other disciplines such as transport modeling are possible, which could
include the modeling of route choice behavior and the demand behavior of electric-vehicle drivers,
and therefore would be of particular interest for the modeling of the temporal utilization of charging
points. Approaches to that subject can be found in various studies mentioned in the current literature,
such as [13,15,20].

In conclusion, this article has presented a comprehensive model that generates a high-resolution
distribution of domestic charging points that can be used for grid planning applications based on
scenarios including future charging point distributions. There are several indications that the model
components are highly beneficial for scenario modeling and the assessment of future grid situations.
At this point in time, the model is focused on the allocation of domestic charging points for worst-case
assessments in low-voltage grids. However, due to the modular structure of our model, there are
different components that can be expanded for other use cases. In particular, an extension to other
charging point types—such as public charging points—and the consideration of time-resolved charging
profiles seems desirable for further research.

The initial hypothesis detailed models for the spatial allocation of charging points considering
socio-economic attributes being beneficial for grid planning purposes can be confirmed from a
methodological point of view. There are various indications that the model presented here has added
value for practical applications in certain use cases and circumstances. Nevertheless, the benefits
still need to be evaluated in practical applications by grid operators to demonstrate its feasibility in
real-world grid planning. This is one important aspect that will be investigated within the project
Ladeinfrastruktur 2.0.
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Appendix A. Parametrization and Regulatory Framework of the Vehicle Fleet Model

Table A1. Fuel retail price estimations until 2050 in EUR/MWh.

Fuel Type Scenario 2018 2020 2030 2040 2050

Diesel
Reference 130.6 122.0 135.0 136.6 140.0

Reform 130.6 125.6 138.5 154.5 140.0

Gasoline
Reference 168.3 159.4 168.0 161.9 140.0

Reform 168.3 159.4 171.2 177.6 140.0

CNG
Reference 77.2 74.6 94.3 117.1 157.1

Reform 77.2 74.6 96.7 129.1 157.1

Hydrogen Reference 285.3 285.3 249.4 177.5 153.5
Reform 285.3 285.3 222.6 159.2 153.5

Electricity
(home charging)

Reference 291.2 299.8 213.3 202.8 175.1
Reform 291.2 299.8 181.2 190.3 190.5

Electricity
(public charging)

Reference 360.8 358.5 247.8 223.7 175.1
Reform 360.8 358.5 218.2 212.2 190.5

Table A2. Vehicle component cost developments.

2018 2030 2040 2050

Medium base vehicle 15,245 EUR 16,415 EUR 16,740 EUR 16,765 EUR
Diesel engine 59.0 EUR/kW 65.1 EUR/kW 72.0 EUR/kW 72.0 EUR/kW
Gasoline engine 35.0 EUR/kW 35.0 EUR/kW 35.0 EUR/kW 35.0 EUR/kW
Electric motor 12.5 EUR/kW 10.6 EUR/kW 9.7 EUR/kW 8.8 EUR/kW
Additional costs for
electrification per vehicle

BEV, PHEV, REEV 1560 EUR 1326 EUR 1209 EUR 1092 EUR
HEV, FCEV 1200 EUR 1110 EUR 1020 EUR 930 EUR

Fuel tank
Diesel, gasoline 2.3 EUR/l 2.3 EUR/l 2.3 EUR/l 2.3 EUR/l
CNG 155.6 EUR/kg 153.8 EUR/kg 151.9 EUR/kg 150.0 EUR/kg
H2 1200 EUR/kg 480 EUR/kg 480 EUR/kg 360 EUR/kg

Fuel cell system 168 EUR/kW 70 EUR/kW 56 EUR/kW 45 EUR/kW
Battery 200 EUR/kW 121.6 EUR/kW 97.3 EUR/kW 77.8 EUR/kW
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Table A3. Battery capacity of the battery electric vehicle.

Type Car Rank 2018 2030 2040 2050

Small
First, only 35 kWh 35 kWh 35 kWh 35 kWh

Second 25 kWh 25 kWh 25 kWh 25 kWh

Medium
First, only 60 kWh 60 kWh 60 kWh 60 kWh

Second 50 kWh 50 kWh 50 kWh 50 kWh
Large First, only 80 kWh 80 kWh 80 kWh 80 kWh
LCV First, only 45 kWh 45 kWh 45 kWh 45 kWh

Appendix B. Example for the Ratio of Households to Inhabitants and the Share of Characteristics
within Age Groups

Table A4. Inhabitants and households in 2017 and projections for 2040.

Age Group Inhabitants 2017 Households 2017 Households to
Inhabitants Inhabitants 2040 Households 2040

Female 18–29 20,548 6790 0.33 23,357 7718
Male 18–29 19,423 9930 0.51 20,331 10,394

Female 30–39 20,160 7592 0.38 19,481 7336
Male 30–39 18,012 16,635 0.98 18,089 16,706
. . . . . . . . . . . . . . . . . .

The “ . . . ” indicate that there are several other age groups. The table shows an example to explain the ratio of
households to inhabitants.

Table A5. Projections of household characteristics by age groups in 2040.

Age Group Type Income Share in Age Group Difference between
2017 and 2040

Female 18–29

Single <2000 € 51.0% –52
Single 2000–4000 € 13.6% +125
Single >4000 € 2.2% +16

Multi-person w.o. children <2000 € 0.4% –38
. . . . . . . . . . . .

The “ . . . ” indicate that there are several other combinations of type and income. The table shows an example to
explain how combinations are put together per age group.
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