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Abstract: The accurate and timely access to the spatial distribution information of crops is of great
importance for agricultural production management. Although widely used, supervised classification
mapping requires a large number of field samples, and is consequently costly in terms of time and
money. In order to reduce the need for sample size, this paper proposes an unsupervised classification
method based on principal components isometric binning (PCIB). In particular, principal component
analysis (PCA) dimensionality reduction is applied to the classification features, followed by the
division of the top k principal components into equidistant bins. Bins of the same category are
subsequently merged as a class label. Multitemporal Gaofen 1 satellite (GF-1) remote sensing images
were collected over the southwest of Hulin City and Luobei County of Hegang City, Heilongjiang
Province, China in order to map crop types in 2016 and 2017. Our proposed method was compared
with commonly used classifiers (random forest, K-means and Iterative Self-Organizing Data Analysis
Techniques Algorithm (ISODATA)). Results demonstrate PCIB and random forest to have the highest
classification accuracies, reaching 82% in 2016 in the southwest of Hulin City. In Luobei County
in 2016, the accuracies of PCIB and random forest were determined as 81% and 82%, respectively.
It can be concluded that the overall accuracy of our proposed method meets the basic requirements of
classification accuracy. Despite exhibiting a lower accuracy than that of random forest, PCIB does not
require a large field sample size, thus making it more suitable for large-scale crop mapping.

Keywords: PCIB; random forest; K-means; ISODATA; crop mapping; unsupervised classification;
GF-1

1. Introduction

Food security is crucial for the livelihood and economic development of the global population. The
timely and accurate acquisition of crop planting area and its spatial distribution is of great significance
for the accurate estimation of crop yield, the management of crop planting structure adjustments and
the formulation of relevant regulatory policies [1–4]. The majority of current remote sensing-based
crop classification methods fall into the category of supervised classification, including machine
learning [5–12] and deep learning [13,14]. Such methods require the collection of ground sample data
in order to train the classification model. The accuracy and spatial distribution of the sample data
collected in the field also affects the classification accuracy. The recent increase in demand of large-scale
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crop classifications has resulted in the dramatic rise of ground sampling [8,15]. Consequently, annual
field sampling consumes an extensive amount of manpower, material and financial resources [16].
Furthermore, the majority of the current crop classification techniques require current-year samples,
while the sample collection, data processing and additional steps are highly time consuming, leading
to a lag in classification data. This prevents the effective application of the classification results for the
current agricultural season.

Current research focuses on reducing the dependence on large sample datasets while ensuring
the accurate and timely classification of crops for the current season. At present, there exist three
methods to directly classify crops using limited or no sample data from the current season: (i) the
supervised classification of crops based on historical samples; (ii) semi-supervised classification; and
(iii) unsupervised classification.

Historical-based classification is often established using auxiliary information such as the stability
of the crop planting structure, or the use of past unchanged crop pixels as the “training samples” for
the crops in the present season. For example, Hao [17] used historical year cropland data layer (CDL)
data collected in Kansas, the United States to extract hypothetical samples. These samples were then
screened via the Artificial Antibody Network (ABNet) method to obtain "training samples" for the
classification of crops in the current season at 90% accuracy. Zhang [18] integrated historical information
with current crop planting structure and spectral data to investigate new sample production and
screening methods based on cluster analysis. The proposed seasonal crop classification model was
able to attain a classification accuracy of 80.44% for samples located in Hulin City, China. Despite the
high accuracy of crop classification based on historical data, such methods are limited in areas lacking
historical samples.

Semi-supervised learning methods are able to leverage large amounts of relatively inexpensive
unlabeled data with a limited amount of labeled data [19–22]. For example, Liu [20] proposed a
semi-supervised support vector machine approach using a self-training algorithm for land cover
classification in Yanji City, Jilin province, China, with the highest accuracy achieved for the marked and
unmarked sample ratio of 1:3. In Hu [23], a cooperative training method based on the random forest
and matrix completion collaborative representation (MCCR) classifiers was applied to map land cover
using Landsat time-series (LTS) images of Wuhan City, China, between 2000 and 2015. Results revealed
that the MCCR classifier exhibited the same working efficiency as that of the random forest classifier in
the presence of data noise, yet the cooperative training method was able to improve the classification
through the iterative learning of unlabeled data. However, these semi-supervised learning-based
models are not suitable for the land cover classification of remote sensing images with a very small
number of labeled and large unlabeled samples because of high computational complexities associated
with the use of a greater number of kernels [24]. Ratle [25] proposed a semi-supervised remote sensing
image classification framework based on neural networks, improving the classification accuracy and
scalability of previous techniques. Solano [26] combined hierarchical correlation clustering (HCC)
and an artificial neural network (ANN) for a semi-supervised classification method (HHC-ANN)
based on the Normalized Difference Vegetation Index (NDVI) and phenological characteristics. The
classification accuracy of HHC-ANN (84%) surpassed that of both K-means and ANN. Neural networks
are associated with multiple benefits, including adaptivity, speed, fault tolerance and optimality [27].
Thus, we can choose robust semi-supervised classification models for efficient crop classification.

Unsupervised classification methods have been applied in order to efficiently process a large
number of unlabeled samples in remote sensing images. Such methods do not require sample data
and only rely on spectrum or texture information to extract and divide image features based on their
statistical characteristics. For example, Gumma [28] and Xiong [29] used K-means and ISODATA
classification for the clustering of Moderate-resolution Imaging Spectroradiometer (MODIS) 250
m 16-day-derived NDVI time series to determine a rice distribution map of South Asia and crop
distribution across Africa. Hao [30] and Cai [31] combined MODIS and Landsat images with field data
to determine NDVI time series. This was then used to extract the spatial distribution information of the
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key crops in northeast China and Hubei province via the ISODATA algorithm and spectral coupling
technology. Sherrie [32] used K-means and Gaussian mixture model (GMM) to perform unsupervised
classification of crops in the midwestern United States, with CDL data employed for ground truth.
Classification accuracies were observed to vary with vegetation density. Iounousse [33] proposed an
unsupervised approach based on a Probabilistic Neural Network (PNN) with the implementation of
the cluster validity technique. The approach was applied for a sequence of seven time series of NDVI
remote sensing images acquired by Landsat and Systeme Probatoire d’Observation de la Terre (SPOT)
to build a land use map. The obtained results are compared with real land use and exhibited an overall
accuracy of 96.56%. Venkata [34] combined K-means and a probabilistic neural network to propose a
new classification method with improved classification accuracy.

Unsupervised classification mapping does not require a large number of ground samples. This is
particularly true for the traditional K-means and ISODATA methods which are widely used in land
cover and crop classification [28,32,35]. However, these algorithms are highly sensitive to outliers,
high dimensionality, and noise. Thus, in order to improve classification accuracy, the dimensionality of
remote sensing images must be reduced prior to classification. Principal component analysis (PCA) is
able to maintain the maximum amount of original information for the elimination of noise and can
be applied to classify land cover via satellite imagery time series [36–40]. For example, Abedini [39]
performed the land classification of the Ulu Kinta Catchment in the state of Perak and across Peninsular
Malaysia based on Landsat Thematic Mapper (TM) images. PCA was used to determine the optimum
band combination for classification, followed by ISODATA clustering with an overall accuracy of 80%.
Dharani [41] performed PCA dimensionality reduction and morphological operations using Landsat-8
images and retained the first three principal components for K-means clustering to determine the
changes in land use and cover (LULC), with promising classification results. Therefore, in order to
obtain high-precision crop distributions mapping, we can also use PCA to obtain low-dimensional and
high-quality feature data prior to classification.

Clustering algorithms such as K-means and ISODATA need to randomly select K0 samples from
the dataset as the initial clustering center. However, the classification results are sensitive to the initial
center. Thus, in order to avoid local optimality, multiple experiments are needed [42–44]. Data binning,
commonly used in statistics, is often used to merge similar pixels in image processing. We attempted
to integrate this method with PCA for the classification procedure. Although PCA and data binning
have been widely applied in different fields, we combined and applied them to crop classification in
remote sensing, which is a new idea. The principal components, regarded as a series of continuous
variables, were divided into a number of bins. Unlike K-means and ISODATA, the process of binning
does not require multiple iterations per pixel, and is suitable for application of high-resolution remote
sensing images with a large number of pixels in crop classification.

Therefore, in the current paper, we propose a crop classification method based on principal
components isometric binning (PCIB), taking the southwest of Hulin City and Luobei County of
Hegang City, Heilongjiang Province, China as the study areas. We explore the feasibility of our proposed
method via comparisons with the traditional random forest, K-means and ISODATA approaches, and
demonstrate PCIB as a promising approach for crop classification mapping without the requirement of
seasonal sample data.

2. Materials

2.1. Study Area

The southwest of Hulin City and Luobei County, with a total area of 3000 km2 in Heilongjiang
Province, were selected as the research area (Figure 1). The planting calendar is relatively stable, with
small inter-annual differences. The growing season of the key crops generally lies from March to
October. For example, maize is sown in late April to early May, reaches maturity in September and is
harvested around October. Rice is planted in April and matures in September.
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Figure 1. Study area, including the Luobei County and the southwest of Hulin City. Both are in the
Heilongjiang Province, China.

The two research areas are located in the main grain-producing areas of Heilongjiang Province
and are less affected by other field objects. At the same time, these areas can effectively compare the
regional differences and verify the feasibility of the method proposed in this paper.

2.2. Data Sources

2.2.1. Multitemporal GF-1 Data

Since the revisit cycle of GF-1 image is 4 days and the spatial resolution is 16 m, it has the
characteristics of large coverage area and high spatial and temporal resolution. We selected GF-1
wide field view (WFV) images during the main growing seasons of maize and rice in 2016 and 2017
(April–September) with cloud cover <10% (Table 1). The data were sourced from the China Centre for
Resource Satellite Data and Application (CRESDA) and were the level-one product (L1) [18].

Table 1. Specifications of GF-1 wide filed view (WFV) imagery used for classifications.

Satellite
Type Parameter Value (µm) Southwest of Hulin City Luobei County of Hegang City

Image Dates
in 2016

Image Dates
in 2017

Image Dates
in 2016

Image Dates
in 2017

GF-1 WFV

Band 1-Blue 0.45~0.52
4/25, 5/18,
7/16, 9/30

5/2, 5/10,
6/16, 7/23

4/19, 5/18, 8/8,
8/17, 8/20, 9/30

4/3, 4/7, 5/5,
5/9, 5/10, 6/16

Band 2-Green 0.52~0.59
Band 3-Red 0.63~0.69
Band 4-NIR 0.77~0.89

2.2.2. Field Sample Data

Field samples were used to verify the accuracy of our proposed classification approach. The
sampling of land features included recording latitude and longitude coordinates with a handheld
global positioning system (GPS), manually noting vegetation type and collecting photos. Because of the
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large plots of Heilongjiang, most of the sampling was taken along the roadside of the field. In addition
to maize and rice, we also collected land cover samples of wheat plots, greenhouses, woodland, water
bodies and other land types. However, these land cover types were not the focus of the study and
thus their sampling was limited. These land cover types were combined into the “others” category
during classification.

A total of 322 and 455 samples were taken of the southwest of Hulin City in 2016 and 2017,
respectively. In Luobei County, Hegang City, a total of 383 samples were collected in 2016 and 406 in
2017 (Table 2). All samples within each year were used to build the supervised classifier, whereby the
samples were randomly divided into training samples (2/3 of the total sample size) and verification
samples (1/3 of the total sample size). Unsupervised classification methods require the same verification
samples as supervised classification to determine classification accuracy. One-third of the training
samples were taken randomly to determine the category label for the unsupervised classification results.

Table 2. Details of the ground reference samples.

Area Year Maize Rice Others Total No. of Auxiliary
Samples

No. of Verification
Samples

Southwest of
Hulin City

2016 165 103 54 322 71 109
2017 111 194 150 455 100 152

Luobei
County

2016 234 91 58 383 84 131
2017 137 99 170 406 90 136

3. Methods

The workflow of the proposed method can be divided into the following five components:
data preprocessing, feature value selection, comparison of classification methods, category label
determination and accuracy evaluation (Figure 2). In brief, the GF-1 WFV automatic processing
and sharing platform developed by our team was used to preprocess the image and sample data.
Following this, the Near-Infrared Reflectivity (NIR) reflectance and vegetation indices Normalized
Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were selected as
the characteristic values for the classification. The images were then classified using the random forest,
K-means, ISODATA and PCIB techniques. Category labels were determined for the classification
results of the K-means, ISODATA and PCIB methods. Finally, the results were verified and compared
between methods.

3.1. Data Preprocessing

The GF-1 images and field sample data were stored using the Raster Dataset Clean and
Reconstitution Multi-Grid (RDCRMG) grid system developed by China Agricultural University.
Based on the C # and the Geospatial Data Abstraction Library (GDAL), procedures such as
radiometric calibration, ortho-rectification and the image registration were performed for all data [45,46].
Radiometric calibration was used to eliminate the errors generated by the sensor and convert the
dimensionless digital number (DN) value recorded by the sensor into the radiation brightness or
reflectivity of the atmospheric top layer. Based on the official radiometric calibration coefficient
updated by the China Resources Satellite Application Center, we radiometrically calibrated the GF-1
data as follows:

Le(λe) = Gain·DN + Offset (1)

where Le(λe) is the radiation brightness after conversion, DN is the observed satellite load value, Gain
is the calibration slope, and Offset refers to the offset of absolute calibration coefficient.
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3.2. Feature Selection for Classification

The selection of features for remote sensing imagery classification is a function of the classification
objectives and accuracy, as well as the spatial and temporal scales. Potential features for crop
classification include spectral, spatial, temporal and polarization characteristics, digital elevation
model (DEM) and additional auxiliary information [5,11]. In order to identify the maize and rice crops
within the study area, we selected the NIR spectral signal, the vegetation indices NDVI and NDWI,
and temporal characteristics including categorical feature variables (Table 3).

Table 3. Feature value selection. R, G and NIR are the reflectance of red, green and near-infrared
bands, respectively.

Feature Value Formula Application

Near-Infrared Reflectivity NIR Canopy structure
Normalized Difference Vegetation

Index (NDVI) NDVI = (NIR − R)/(NIR + R) Vegetation status, canopy structure

Normalized Difference Water Index
(NDWI) NDWI = (G − NIR)/(G + NIR) Canopy structure, water content

Figure 3 presents the time-series curves of NDVI and NDWI during the growth periods of rice
and maize in Luobei County, Hegang City in 2016. The growth period of rice and maize was very
close, the NDVI and NDWI curves had a high similarity. The NDVI and the NDWI differed greatly in
the early growth stage and differed slightly in the middle and late stages.
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3.3. Random Forest Classification

We employ the supervised classification of the target crops using the random forest training
model on the feature values extracted from the GF-1 time series. Random forest classification (RF) is a
multi-decision tree classification method that was proposed by Breiman [47] in 2001. In particular,
multiple classification and regression trees (CART) were constructed through random resampling of
the data and feature variables. The classification of the data was then executed via multi-decision tree
voting [48].

We used the Python tool scikit-learn [49] to execute the random forest classifier, with a total of
100 trees generated. The number of features of each tree is equal to the square root of the number of
original features, and the number of samples selected for each tree is consistent with the number of
training sets.

3.4. Unsupervised Classification

We performed K-means and ISODATA unsupervised learning for the clustering of feature data
into crop types using ENVI (ver. 5.1, ESRI). K-means and ISODATA are the most basic and commonly
used unsupervised classification algorithms. They are simple in principle and easy to implement, and
are widely employed in the remote sensing field [28–30,35,39].

3.4.1. K-Means

K-means partitions m samples into k clusters by alternately assigning samples to the nearest
cluster centroid, as measured by Euclidean distance. The cluster centroids are updated using the mean
of the samples assigned to the cluster.

3.4.2. ISODATA

ISODATA initially calculates the average of evenly distributed classes within the data space, and
subsequently employs the rule of minimum distance to iteratively aggregate the remaining pixels. The
mean value is recalculated in each iteration, and the pixel is reclassified according to the new mean
value. This process continues until the number of pixels in each class changes less than the selected
threshold or reaches the maximum number of iterations. The parameters required for the ISODATA
classification include the initial clustering center and the number of categories [50].

3.5. Principal Components Isometric Binning Classification

The PCIB proposed in this paper is based on PCA dimensionality reduction and principal
components isometric binning. Figure 4 presents the classification process.
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3.5.1. PCA Dimensionality Reduction

Key applications of principal component analysis (PCA) include compressing and reducing the
dimensionality of data, as well as converting multiple interrelated numerical variables into a few
unrelated comprehensive indicators. These indicators are the principal components of the original
multiple variables. Each principal component is a linear combination of the original variables, and the
individual principal components are not related to each other.
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Let m denote the number of pixels in the target area, and assume that n is the feature variable,
then matrix X can be used to represent the m × n data as follows:

X =


x11 · · · x1n

...
. . .

...
xm1 · · · xmn

 (2)

where xmn represents the value of the mth pixel and the nth feature vector. The correlation coefficient
matrix R is then calculated as:

R =


r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 (3)

where rij (i = 1,2, . . . ,m, j = 1,2, . . . ,n) is the correlation coefficient of xi and xj. The eigenequation |λE−R|

= 0 is solved for eigenvalue λ j( j = 1, 2, . . . , n) and λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Eigenvector ej( j = 1, 2, . . . , n)
corresponds to eigenvalue λ j. When the cumulative contribution rate of the principal components
following the eigenvector transformation reaches a high percentage, the required dimensionality
reduction of the data is attained.

In this study, we apply the cumulative contribution rate to determine k. When the cumulative
contribution rate of the current k principal components reaches more than 70%, the former k principal
components are retained, that is, the k-dimensional data is reduced. The cumulative contribution rate

of the first k principal components is defined as
k∑

i=1

λi∑n
i=1 λi

, namely, the number of original variables

information extracted from the first k principal components.
PCA can be used for dimensionality reduction, classification and feature extraction [51,52].

3.5.2. Principal Components Isometric Binning

We reduce the original dataset to k-dimensions to obtain matrix Y, described as follows:

Y =


r11 · · · r1k
...

. . .
...

rm1 · · · rmk

 (4)

where k is the number of principal components following the dimensionality reduction and m is the
number of pixels in the study area. Matrix Y is divided into bins of equal distance, which are then
further divided into k1 bins. The detailed steps are as follows:

(i) The first principal component


r11

. . .
rm1

 is divided into k11 intervals. All pixels falling into each

interval are gathered together, with bin distance h1 =
r j1−ri1

k11 , where r j1 is the maximum value of
the column and ri1 is the minimum value.

(ii) The second principal component


r12

. . .
rm2

 is divided into k11 intervals corresponding to the binning

result of the first principal component. Each interval is then divided into k12 sub-intervals. All
pixels in each sub-interval are divided into a bin, and bin distance h =

r j2−ri2
k12 , where rj2 and ri2 are

the maximum and minimum values of the column.
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(iii) The k-th principal component


r1k
. . .
rmk

 is divided into k11* k12* . . . * k1k bins, that is, k1 = k11*

k12* . . . * k1k, until the end. A frequency distribution histogram is drawn to show the binning
situation intuitively.

By exploring the results of the first binning, we found that there will be confusion if a large number
of pixels fall into a bin. In order to improve the classification accuracy, these bins are regathered. More
specifically, each bin is divided into k2 (k2 = k21*k22* . . . *k2k) bins, with the division steps equal to
those of the first binning.

3.6. Determination of Category Labels

The binning results do not represent crop type, and crop labels need to be assigned to them.
Visual recognition was combined with minimal ground auxiliary data (auxiliary identification data
mentioned in Section 2.2.2.) to perform visual discrimination via ArcMap (ver. 10.2, ERSI) using a 432
band false color synthesis and Google Earth high-resolution images.

The first binning results in the discrimination of water bodies, grasslands, woodlands, bare land
and towns (denoted as “other classes”), while the naming of rice and maize is based on the auxiliary
ground samples. If a bin contains a single sample type, it is denoted as a single class; if multiple sample
types are present, it is denoted as a confusion class. As the accuracy of the first binning results must be
evaluated to determine the value of k1, a label for each confusion bin is determined. This allows for the
selection of the ground objects compromising the largest proportion in this bin as the bin category.

We labelled the second binning result using both the aforementioned method and the auxiliary
ground samples.

3.7. Accuracy Assessment

One-third of the total sample size collected in the field was taken as the verification sample,
with the confusion matrix employed to evaluate the accuracy of the classification results. Evaluation
indicators include the total, producer and user accuracies and Kappa coefficient:

OA =
TP + TN

N
, (5)

PA =
TP

TP + FN
, (6)

UA =
TP

TP + FP
, (7)

K =
OA− Pe

1− Pe
, (8)

Pe =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)

N2 , (9)

where TP and FN refer to the true category of samples as positive examples, and the model prediction
results as positive and negative examples, respectively. TN and FP refer to the negative examples of
the true category of samples, which are predicted by the model as negative examples and positive
examples, respectively. N is the total number of real samples.

4. Results

4.1. Effect of Parameter Selection

The selection of parameters is a critical step in our proposed method as it has a direct impact on
the binning results. In the following, we detail the selection of two key user-defined parameters.
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(1) Number of the first bin, k1

The determination of parameter k1 is key. If the value of k1 is too small, the classification results
will be highly inaccurate; whereas, if k1 is too high, visual recognition proves to be difficult. Thus,
we set the initial range to 5 ≤ k1 ≤ 50, with the various k (number of principal components) used to
further determine k1. Here, based on the dataset after dimensionality reduction, only two cases are
discussed (k = 1, 2). Taking the southwest of Hulin City as an example, in the following, we determine
parameter k1.

For k = 1, an interval of 5 is used to divide the k-dimensional data into 5, 10, 15, . . . , 50 bins and
calculate the classification accuracy of each bin (Figure 5, left). The classification accuracy increases
with k1 until the maximum accuracy is reached for k1 = 35. Thus, we set 30 ≤ k1 ≤ 40.
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When k = 2, the k-dimensional data are divided into k1 = k11 * k12 bins. The contribution rate
of the first principal component is greater than that of the second principal component, k11 > k12,
and 5 ≤ k11 * k12 ≤ 50, thus, there are 51 combinations of k11 and k12 that satisfy the above conditions
(Table 4). According to a certain interval, 15 values of k1 are selected relatively uniformly. Figure 5
(right) demonstrates the classification accuracy corresponding to each value. The peak classification
accuracy is observed for k12 = 3 and k12 = 4. Thus, k1 is set as follows:

k1 =


12 ∗ 3, . . . , 16 ∗ 3, 12 ≤ k11 ≤ 16, k12 = 3

5 ∗ 4, . . . , 12 ∗ 4, 5 ≤ k11 ≤ 12, k12 = 4
(10)

The value of k1 that corresponds to the highest classification accuracy is selected as the final value.

(2) Number of the second bin, k2

Taking the southwest of Hulin City as an example, the value range of k2 is derived in a similar way.
We initially set 3 ≤ k2 ≤ 20. According to the different k(number of principal components) values, k2
is then determined as follows:

(i) When k = 1: 11 ≤ k2 ≤ 16 (11)

(ii) When k = 2: k2 =


4 ∗ 3, . . . , 6 ∗ 3, 4 ≤ k21 ≤ 6, k22 = 3

5 ∗ 4, k21 = 5, k22 = 4
(12)

The confusion bin for k1 = X (the classification accuracy is highest when k1 = X) is divided into
k2 bins again, and the accuracy of the binning results is evaluated. The value of k2 is selected as that
with the highest classification accuracy.
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Table 4. Different values of k1.

k1 k12 = 2 k12 = 3 k12 = 4 k12 = 5 k12 = 6

k11 = 3 k1 = 3 * 2 \ \ \ \

k11 = 4 k1 = 4 * 2 k1 = 4 * 3 \ \ \

k11 = 5 k1 = 5 * 2 k1 = 5 * 3 k1 = 5 * 4 \ \

k11 = 6 k1 = 6 * 2 k1 = 6 * 3 k1 = 6 * 4 k1 = 6 * 5 \

k11 = 7 k1 = 7 * 2 k1 = 7 * 3 k1 = 7 * 4 k1 = 7 * 5 k1 = 7 * 6
k11 = 8 k1 = 8 * 2 k1 = 8 * 3 k1 = 8 * 4 k1 = 8 * 5 k1 = 8 * 6
k11 = 9 k1 = 9 * 2 k1 = 9 * 3 k1 = 9 * 4 k1 = 9 * 5 \

k11 = 10 k1 = 10 * 2 k1 = 10 * 3 k1 = 10 * 4 k1 = 10 * 5 \

k11 = 11 k1 = 11 * 2 k1 = 11 * 3 k1 = 11 * 4 \ \

k12 = 12 k1 = 12 * 2 k1 = 12 * 3 k1 = 12 * 4 \ \

k11 = 13 k1 = 13 * 2 k1 = 13 * 3 \ \ \

k11 = 14 k1 = 14 * 2 k1 = 14 * 3 \ \ \

k11 = 15 k1 = 15 * 2 k1 = 15 * 3 \ \ \

k11 = 16 k1 = 16 * 2 k1 = 16 * 3 \ \ \

k11 = 17 k1 = 17 * 2 \ \ \ \

k11 = 18 k1 = 18 * 2 \ \ \ \

k11 = 19 k1 = 19 * 2 \ \ \ \

k11 = 20 k1 = 20 * 2 \ \ \ \

k11 = 21 k1 = 21 * 2 \ \ \ \

k11 = 22 k1 = 22 * 2 \ \ \ \

k11 = 23 k1 = 23 * 2 \ \ \ \

k11 = 24 k1 = 24 * 2 \ \ \ \

k11 = 25 k1 = 25 * 2 \ \ \ \

Note: The bold values indicate the 15 values selected for k1.

4.2. Comparison of PCIB Results

Taking the southwest of Hulin City for the example, we compared the results of the two sets of
data binning in 2016.

The contribution rate of the first and second principal components reached 70% following the
principal component dimension reduction of the multidimensional characteristic data, and thus k = 2.
The two-dimensional data were divided into k1 bins, with the corresponding frequency distribution
histograms depicted in Figure 6.

Taking k1 = 12 * 4 as an example, Table 5 reported the number of pixels falling into the bins.

Table 5. Number of pixels per bin for k1 = 12 * 4, k11 refers to the division of the first-dimension data
into k11 bins, k112 refers to the division of the second-dimension data into k12 bins. Number is the
number of pixels (there are 11,718,750 pixels in a study area) falling into each bin.

k11 Number k12 Number k11 Number k12 Number

1 3667

1 1554

7 979,072

1 237,690
2 1539 2 671,312
3 323 3 69,849
4 251 4 221

2 75,943

1 1437

8 78,262

1 4197
2 19,095 2 52,829
3 51,150 3 20,716
4 4261 4 520

3 566,651

1 1682

9 30,113

1 650
2 116,532 2 9634
3 408,409 3 19,027
4 40,028 4 802
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Table 5. Cont.

k11 Number k12 Number k11 Number k12 Number

4 810,072

1 25,130

10 37,935

1 99
2 299,158 2 2001
3 454,909 3 27,854
4 30,875 4 7981

5 2,454,312

1 550,465

11 96,883

1 10
2 1,751,244 2 491
3 147,883 3 79,420
4 4720 4 16,962

6 6,562,114

1 2,466,921

12 23,726

1 7
2 3,799,395 2 15,165
3 290,144 3 8274
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Figure 6. Frequency distribution histogram of k1 (k = 2). 

Taking k1 = 12 * 4 as an example, Table 5 reported the number of pixels falling into the 
bins. 

  

Figure 6. Frequency distribution histogram of k1 (k = 2).



ISPRS Int. J. Geo-Inf. 2020, 9, 648 14 of 24

We assign a crop type label to each bin according to the method described in Section 3.6. The bins
with the same label are merged to obtain the classification result map of the region corresponding to
the k1 values. The overall accuracy is reported in Table 6. The maximum overall accuracy is observed
for k1 = 12 * 4 at 75.23%.

Table 6. The overall accuracy for the k1 values in 2016, where k1 refers to the division of the 2D data
after dimension reduction into k1 bins.

k1 Overall Accuracy k1 Overall Accuracy

k1 = 12 * 3 68.81% k1 = 5 * 4 68.81%
k1 = 13 * 3 68.81% k1 = 6 * 4 64.22%
k1 = 14 * 3 69.72% k1 = 7 * 4 69.72%
k1 = 15 * 3 67.89% k1 = 8 * 4 68.81%

k1 = 16 * 3 71.56%

k1 = 9 * 4
k1 = 10 * 4
k1 = 11 * 4
k1 = 12 * 4

67.89%
74.31%
66.01%
75.23%

The k1 = 12 * 4 confusion bin is divided for the second time. Table 7 reports the overall classification
accuracy of the k2 values. The overall accuracy peaks at k2 = 5 * 4, reaching 81.65%.

Table 7. The overall accuracy for the k2 values in 2016, where k2 refers to the division of the confusion
bins that existed following the initial binning into k2 bins.

k2 Overall Accuracy k2 Overall Accuracy

k2 = 4 * 3 79.82%
k2 = 5 * 4 81.65%k2 = 5 * 3 78.90%

k2 = 6 * 3 77.98%

Figure 7 presents the corresponding 2016 crop distribution. Figure 7a,b are able to distinguish
between water and forests. However, in Figure 7a, the road was misclassified into maize, and rice was
misclassified into maize. In Figure 7b, this misclassification was greatly reduced and the rice plot outline
is clear. This indicates the improvement of the crop classification accuracy via the second binning.

4.3. Comparison of Classification Methods

We applied the random forest (RF), K-means, ISODATA and PCIB classifiers to the preprocessed
images and based on the verification samples, we used the confusion matrix to evaluate the accuracy
of the classification results. Evaluation indicators include the total accuracy, user accuracy, producer
accuracy and Kappa coefficient. The classification accuracy of the PCIB method in the southwest of
Hulin city and Luobei County of Hegang City was slightly lower than that of random forest, yet it was
consistently more accurate than K-means and ISODATA (Table 8). In 2016, the PCIB method exhibited
the most accurate classification in the southwest of Hulin City, reaching 82%, which is equal to that of
random forest and higher than that of K-means (76%) and ISODATA (78%). The PCIB classification
accuracy of Luobei County, Hegang City was reduced in 2017 (76%), and the accuracy of the other three
methods in this area was also low, at 79%, 74% and 75% for random forest, K-means and ISODATA,
respectively. This is attributed to the limited availability of the images for the region in 2017 (early
April to late June). However, images in July, when rice is in the jointing stage with vigorous growth,
are key to distinguishing maize from rice. Thus, the absence of images from July to September affected
the final classification accuracy.
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Table 8. Accuracy analysis of different classification methods.

Study Area Year Types OA Kappa Producer Accuracy, % User Accuracy, %

Other Maize Rice Other Maize Rice

Southwest of
Hulin City

2016

RF 82% 68.52% 75% 78% 91% 50% 89% 86%
K-means 76% 59.40% 89% 78% 71% 44% 82% 83%

ISODATA 78% 62.39% 90% 79% 74% 50% 86% 80%
PCIB 82% 69.84% 67% 88% 79% 56% 82% 94%

2017

RF 82% 71.74% 76% 68% 94% 70% 76% 94%
K-means 77% 64.39% 73% 62% 88% 74% 57% 91%

ISODATA 76% 63.28% 70% 58% 90% 76% 49% 92%
PCIB 80% 68.27% 73% 71% 88% 82% 54% 92%

Luobei
County

2016

RF 82% 65.24% 68% 83% 88% 65% 90% 71%
K-means 78% 58.60% 55% 81% 88% 60% 86% 68%

ISODATA 80% 60.01% 82% 79% 87% 45% 94% 68%
PCIB 81% 62.25% 83% 80% 85% 50% 93% 71%

2017

RF 79% 67.96% 74% 78% 93% 85% 77% 74%
K-means 74% 60.47% 76% 69% 79% 72% 74% 76%

ISODATA 75% 61.46% 73% 73% 81% 74% 74% 76%
PCIB 76% 62.26% 72% 72% 92% 76% 81% 68%

The classification accuracy of the PCIB method is generally slightly lower than that of random forest,
but it is consistently higher than K-means and ISODATA. For years where ground and historic samples
are insufficient, the classification accuracy of PCIB can potentially meet the classification requirements.

Confusion matrices are commonly used to evaluate the accuracies of algorithms. However, due
to the small sample size of our data, applying just the confusion matrix data size to evaluate the
classification accuracy is insufficient. Thus, we integrate the crop distribution map to assess the quality
of the classification results. Figure 8 depicts the crop distribution map of 2016 for Luobei County. The
maps are superimposed with false color images in the area. Figure 8a–d correspond to the random
forest, K-means, ISODATA and PCIB results, respectively. All four methods are able to distinguish
water and forests from maize and rice, but the magnified area demonstrates that the misclassification
of roads as maize was more serious for the K-means, ISODATA and random forest classification
methods. Moreover, the rice plot outline is not clear for K-means and ISODATA. The PCIB method
exhibits improved classification results, with the clear identification of the rice plot contour, roads and
buildings. This can be attributed to the initial PCA dimensionality reduction performed by the PCIB
method, eliminating the influence of noise on the classification results by maintaining as much of the
original information as possible, thus achieving better classification results on the crop distribution
map compared to the other methods.
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5. Discussion

5.1. Advantanges, Deficiencies and Improvenments of PCIB

We propose a classification method based on principal components equidistant binning, denoted
as PCIB, for the extraction of crop planting structure. PCIB essentially performs PCA dimensionality
reduction on the classification features and subsequently divides the top k principal components into
equidistant bins. The category of each bin is visually recognized based on a small number of field
samples, and the same category bins are merged as a class label. PCIB includes PCA and data binning,
PCA has low computational costs and is not limited by parameters. Furthermore, the dimensionality
reduction technique can effectively remove the redundancy and noise of data by keeping the original
information as far as possible, and thus it is employed widely in the remote sensing field [53–55].
Data binning is a common method in statistics, for the merging similar pixels in image processing.
In statistics, nonparametric estimation [56] is mainly used for binning in datasets with unknown
probability density, including histogram, kernel density estimation and non-parametric regression.
In this study, we chose the simplest histogram, which has the advantages of constant bin distance,
rapid binning and high efficiency, and is suitable for large data volumes.

In recent years, soft clustering methods such as GMM and PNN have also been gradually applied
in the field of remote sensing for land cover and crop type, and promising classification results have
been obtained. The GMM method has a long run time because it includes the time used for searching
optimal components [32,57]. PNN is a special form of radial basis function neural networks (RBFNN),
and it provides satisfactory results if the initial target classes are defined correctly. So, finding the basis
function centers with their appropriate number is an important step to achieve suitable classification.
However, this process has a high requirement for space-time complexity, so computational optimization
is essential [33,34,58–60]. Compared with these clustering methods, PCIB has high computational
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efficiency, but has some deficiencies in classification accuracy. In order to solve this problem, we can
explore such dynamic methods as kernel density estimation and non-parametric regression to divide
the dataset and automatically determine bins in our future research.

5.2. Analysis of Sources of the Errors

In this study, the classification accuracy of Luobei County, Hegang City in 2017 was low, which
we believe resulted from two aspects. On the one hand, the available images for the region in 2017
only cover early April to late June. In July, rice is in the jointing stage with vigorous growth. Images
from this period may be beneficial to distinguish maize from rice. However, the absence of images
from July to September affects the classification accuracy. On the other hand, the planting structure
of Luobei County was adjusted in 2017. The planting area of maize was reduced, and instead small
amounts of soybeans, grains, fruits and vegetables were planted, which increased the crop diversity in
this region and had a certain impact on the classification results [32].

Therefore, we consider the fusion of GF-1, Sentinel-2 and Landsat-8 medium-resolution images.
Multiple data sources can alleviate the problem of missing images. In addition, both Sentinel-2 and
Landsat-8 contain short-wave infrared bands, which perform well in crop classification [9].

5.3. Comparison of Computational Complexity of Three Clustering Algorithms

Computational complexity is an important evaluation indicator of an algorithm. Thus, we
compared the clustering time between the PCIB, K-means and ISODATA clustering algorithms.
To make the comparison more complete, we selected a commonly used clustering benchmark dataset
(iris dataset). Our model was implemented in the Windows 10 Professional operation system with
1.60 GHz Intel Core i5-8250U. The times of the three clustering methods were shown in Table 9.

Table 9. Clustering time comparison of K-means, ISODATA and PCIB.

Cluster Method Number of Clusters Maximum Iterations Clustering Time

K-means 3 20 0.029”

ISODATA 3 20 0.059”

PCIB 3 / 0.006”

K-means exhibits a faster clustering time than ISODATA, as the latter automatically merges and
splits classes in the clustering process, thus making the algorithm more complex. The PCIB clustering
time is far shorter than that of K-means and ISODATA, it does not require multiple iterations per pixel
and can realize rapid classification.

5.4. Additional Experiments

We chose Luobei County and the southwest of Hulin City in Heilongjiang Province as the research
areas. Both regions have a temperate monsoon climate and are cultivated once a year. The planting
structure is relatively simple, and the main crops are maize and rice. However, considering that crop
characteristics vary with different planting regions, we also selected the northwest of Wuwei City,
Gansu Province (Figure 9) as the research area for additional experiments. The region has a temperate
continental arid climate, which is characterized by a large temperature difference between day and
night, sufficient sunshine, drought and little rain. With its extremely advantageous geographical, soil,
water and climatic resources, the region provides a good planting environment for crops such as maize,
pear, wheat and grape.
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We also selected GF-1 WFV images during the main growing seasons of main crops in 2018
(April–September) with cloud cover <10% as remote sensing data sources. The image phase is shown
in Table 10.

Table 10. Description of GF-1 data used in the northwest of Wuwei City.

Satellite Type Parameter Value (µm) Phase

GF-1 WFV

Band 1-Blue 0.45~0.52
4/16, 4/20,

5/27, 7/17, 8/13
Band 2-Green 0.52~0.59
Band 3-Red 0.63~0.69
Band 4-NIR 0.77~0.89

The samples for this region were also from field research. Sampling points are regularly distributed
within the area. The collected data include crop types, growth situations, geographical coordinates
and field photographs. The number of sample points are shown in Table 11. Others include buildings,
water and small amounts of pepper, soybeans and greenhouses.

Table 11. Details of the ground reference samples.

Area Year Maize Spring
Wheat Grape Pear Forest Others Total

No. of
Auxiliary
Samples

No. of
Verification

Samples

Northwest
of Wuwei

City
2018 73 25 36 65 36 82 317 106 71

The PCIB method described above was used to classify the region. The classification results are
shown in Figure 10. Additionally, the classification accuracies are shown in Table 12, with the overall
accuracy reaching 84%. The region is rich in crop types, including corn, spring wheat, grapes and
pears. As crop planting is concentrated, good classification results are obtained. This also verifies the
feasibility of PCIB method in areas with abundant crop types.
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Table 12. Accuracy analysis of PCIB method for the northwest of Wuwei City.

Study Area Year Method OA Kappa
Producer Accuracy %

Others Maize Spring
Wheat Grape Pear Forests

93% 81% 100% 100% 76% 100%

Northwest of
WuWei City 2018 PCIB 84% 76.5%

User Accuracy%

Others Maize Spring
Wheat Grape Pear Forests

88% 88% 44% 100% 89% 75%

6. Conclusions

In the current paper, we propose a classification method (PCIB) with GF-1 remote sensing images
acquired during the growing season as the data source to extract the planting information of the key
crops in the southwest of Hulin City and Luobei County, Heilongjiang province, China. The underlying
motivation of this work is to reduce the dependence of crop distribution mapping on a large number
of field samples and to determine the spatial distribution information of crops in a timely manner.
We compare PCIB with the traditional random forest, K-means and ISODATA classifiers. The key
results can be summarized as follows:

(1) The overall accuracy of the PCIB method in the southwest of Hulin City in 2016 reaches 82%,
exceeding the K-means and ISODATA algorithms. In 2017, Luobei County of Hegang City
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exhibited the lowest PCIB classification accuracy, with the other three methods also exhibiting
low accuracies, (79%, 74% and 75% for random forest, K-means and ISODATA, respectively).
Although the overall accuracy of PCIB is slightly lower than that of the random forest classifier,
it meets the mapping accuracy requirements for years where large amounts of field samples
are absent.

(2) PCIB conducts the isometric binning of k principal components directly after the PCA
dimensionality reduction. Multiple iterations per each pixel are not required, and the time
complexity is linear. This consequently improves the computational efficiency compared with the
Euclidean distance-based K-means and ISODATA classifiers.

(3) The dependence on a large number of field samples for classification is reduced. In addition, the
spatial distribution information of crops is determined in a timely and accurate manner. Our
proposed method can potentially be applied to the mapping of crop classification.

The PCIB method proposed in the paper can obtain the spatial distribution information of
crops accurately and timely, which is of great significance for guiding agricultural production. The
classification results can be used to calculate the evapotranspiration of crops and calculate the planting
area of crops, and so on.
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