
 International Journal of

Geo-Information

Article

Detecting Intra-Urban Housing Market Spillover
through a Spatial Markov Chain Model

Daijun Zhang 1, Xiaoqi Zhang 2 , Yanqiao Zheng 1 , Xinyue Ye 3,*, Shengwen Li 4

and Qiwen Dai 5

1 School of Finance, Zhejiang University of Finance and Economics,
Hangzhou 310018, China; zdj0303@126.com (D.Z.); yanqiaoz@buffalo.edu (Y.Z.)

2 National School of Development, Southeast University, Nanjing 210000, China; xiaoqizh@buffalo.edu
3 Department of Informatics, New Jersey Institute of Technology, Newark, NJ 07102, USA
4 Department of Information Engineering, China University of Geosciences, Wuhan 430074, China;

swli@cug.edu.cn
5 School of Economics & Management, Guangxi Normal University, Guilin 541004, China; sxsfdx520@163.com
* Correspondence: xye@njit.edu

Received: 29 November 2019; Accepted: 14 January 2020; Published: 19 January 2020
����������
�������

Abstract: This study analyzed the spillovers among intra-urban housing submarkets in Beijing,
China. Intra-urban spillover imposes a methodological challenge for housing studies from the spatial
and temporal perspectives. Unlike the inter-urban spillover, the range of every submarket is not
naturally defined; therefore, it is impossible to evaluate the intra-urban spillover by standard
time-series models. Instead, we formulated the spillover effect as a Markov chain procedure.
The constrained clustering technique was applied to identify the submarkets as the hidden states
of Markov chain and estimate the transition matrix. Using a day-by-day transaction dataset of
second-hand apartments in Beijing during 2011–2017, we detected 16 submarkets/regions and the
spillover effect among these regions. The highest transition probability appeared in the overlapped
region of urban core and Tongzhou district. This observation reflects the impact of urban planning
proposal initiated since early 2012. In addition to the policy consequences, we analyzed a variety of
spillover “types” through regression analysis. The latter showed that the “ripple” form of spillover is
not dominant at the intra-urban level. Other types, such as the spillover due to the existence of price
depressed regions, play major roles. This observation reveals the complexity of intra-urban spillover
dynamics and its distinct driving-force compared to the inter-urban spillover.

Keywords: constrained clustering; housing price; intra-urban spillover; ripple effect; spatial
Markov chain

1. Introduction

The externalities and spillover effect in housing markets have attracted growing scholarly interest [1–7].
Extensive studies have been reported for the housing markets in the developed world [8–11], while
developing countries have also begun to pay attention [7,12–15]. Meen [16] provides convincing economic
explanations for the driving forces of spillover and summarizes four major mechanisms by which the
housing price spillover can occur: migration, equity transfer, spatial arbitrage, and spatial patterns. Many
empirical studies have examined the four mechanisms in the setting of inter-urban spillover [8–11,13,17–25].
Most studies support the mechanisms, such as the spatial arbitrage and spatial patterns, which generate
the “ripple”-form spillover with the spatial continuous pattern. While little evidence could support
the migration and equity transfer mechanisms, they can potentially lead to the spillover with spatially
discontinuous pattern.
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The spillover mechanisms documented in [16] are applicable to both intra and inter-urban
spillovers, but most studies are on the latter, despite a few exceptions [26,27]. The intra-urban spillover
occurs quite differently from its inter-urban analogue. First, spillover within cities allows discontinuity
and does not have to be equipped with “ripple” form. This is because within-city relocation is relatively
cheap due to the emergence of rapid commuting tools, such as rapid transit buses and metro rail
transit. Cheap commuting makes the migration a feasible mechanism to drive housing price spillover;
one such example is the reversed urbanization process, which reduced the attractiveness of living close
to one’s workplace and lifted up housing prices in surburban areas [28–30]. Consequently, spillover is
allowed to occur between two relatively distant locations, and thus displays discontinuity [31].

On the other hand, intra-urban spillover cannot arbitrarily occur everywhere. Instead, many other
types of spatial segregation that can still restrict spillover continue to function, such as the neighborhood
segregation induced by the differences in race [32], education level [33], wealth, and income [34,35], and
the possible discrimination between native and migrant residents [33]. Apart from the socioeconomic
segregation listed above, urban development and renewal initiatives and housing market intervention
policies can also alter the trend of intra-urban spillover [36–38]. Finally, market sentiment inspired by
various policies does play a role in affecting the range and strength of spillover [25,39,40]. All these
competitive forces make the intra-urban spillover a complicated, dynamic system; the direction and
boundaries of spillover cannot be so simply predicted as in the inter-urban case, which makes intra-urban
spillover deserve a thorough investigation, even if it is not yet receiving sufficient attention in the
existing literature.

The intra-urban spillover also differs from its inter-urban analogue in terms of the methodology
need. The widely used vector auto-regressive (VAR) model [27,41–43] in the inter-urban spillover is
not sufficient to analyze the intra-urban spillover. VAR models are designed to capture the dynamic
dependence of a sequence of finite dimensional random vectors. Regarding inter-urban spillovers,
the housing market in every city can be naturally abstracted as a finite-dimension random vector
with its value as the city-level average price. This abstraction is valid because of the stratified
network structure displayed in the inter-urban spillover. In fact, spillover effect can always be
modeled as occurring through a network, in which nodes represent places among which spillover
can happen. Edges describe the existence of economic/geographic connections between their end
nodes; these connections form the media for spillover to happen. Because cities are usually distant
from each other, the strength of economic/geographic connections is much weaker for places between
two distant cities than within the same city. Therefore, the spillover network can always be stratified
into two levels. The lower level includes a family of disjoint sub-networks each of which consists of
nodes and edges within a city; the higher level is another network with its nodes representing cities
and edges being connections among cities. Apparently, if our focus is on the inter-urban spillover,
only the high level network is needed, which usually has a relatively small amount of nodes and can
be embedded into a finite-(low-)dimensional VAR model [41]. However, for the intra-urban spillover
within a city, only a sub-network at the low level is needed. For such a within-city network, due to the
lack of geographic isolation, there is not a clear division of nodes and edges into a small amount of
disjoint groups in terms of the strength of connections. Consequently, the intra-urban spillover forms
an infinite and irreducible network, so VAR models are not applicable due to the lack of limitation.

Other than VAR models, there are many other (spatial-) regression-based methods with which
to analyze the intra-urban spatial correlations of housing prices [44–47] (which are closely related
to the intra-urban spillover studied in this paper). Methods in this class always set up a cut-off
value for the range of distance only within which spillover can occur [44,45]. The methods are useful
in terms of detecting the existence of the “ripple-form” spillover and/or evaluating its scale and
significance. But on the other hand, the cut-off value restricts the range of analysis. Only the spillover
within the predefined neighborhood can be analyzed; it excludes the possibility of the other types of
spillover, such as the co-movement of housing prices across different locations that are not covered
by the predefined neighborhood. More critically, due to the restriction within fixed neighborhoods,
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the spatial dimension of spillover is degenerated. It is represented as a dummy variable; namely,
whether or not a spatial structure in the neighborhood, such as the direction and geographic range
of spillover, is completely lost. In reality, this type of structural information is often more important
than the quantitative scale. Finally, Markov chain models are also used in the study of housing market
spillover and the other types of housing market dynamics, such as in [8,10,14,48], among which the
Markov-switching model is applied most frequently. It applies particularly to the housing price
fluctuations and spillovers induced by the economic boom or recession. The Markov-switching model
highlights more on the temporal dependence rather than the spatial dependence of housing price.
Although the spatial correlation of housing prices can be added into the framework through inserting
the Markovian regime switch into a spatial regression equation [10], the resulting model separates
the space from the time, and neglects the interaction between the spatial dimension and the temporal
dimension, which, however, is most critical to interpreting the housing market spillover.

To fill the gap discussed above, we integrated a modified version of the constrained k-means
clustering method [49–53] and the spatial Makarov chain model to study the intra-urban housing
price spillover. Different from the Markov-switching model, a novel combination of the Markov chain
model with the time series of housing price is proposed to capture the dynamics behind spillover;
the constrained clustering is utilized to search for the most proper set-up for the Markov chain.
The proposed method was applied to a data sample consisting of 120,618 housing transaction records
(the variables include price, transaction time, and the location of every transacted housing units) in
Beijing, China, from October 2011 to October 2017. The data were collected from fang.com, the largest
and most well-known online platform that provides detailed transaction information of second-hand
apartments in China. After analysis, we found that in the housing market of Beijing, there are 16
robust housing submarkets among which price spillover occured during the observation period 2011
October–2017 October. In addition, some interesting properties regarding the spillover process were
detected, for instance:

• Interventions of local government on a housing market bubble only generate marginal influence
on housing market spillover; they does not change the spillover transition in the long run.

• The driving forces of the housing market spillover are directed to two submarkets located around
Tongzhou, a new city which is planned to be a major satellite city of Beijing and will be equipped
with many valuable medical, educational, and administrative resources. Therefore, the direction
of spillover transition in Beijing is highly consistent with policy preference.

• The driving forces and mechanism behind intra-urban spillover in Beijing are significantly distinct
from those behind the widely-documented inter-urban spillover. The ripple form of spillover is
no longer dominant. In contrast, the migration effect induced by price-gap and the spatial pattern
are two major forces driving the intra-urban spillover in Beijing, although they are considered the
least important forces in inter-urban spillover studies.

This paper contributes to the existing literature from theoretical and methodological perspectives:

• This paper proposes a new space-time method to study housing price spillover by integrating
Markov chain model and constrained clustering.

• The differences we reveal herein between the intra- and inter-urban housing market spillovers
could promote future investigations, both theoretical and empirical.

• Various types of policy shocks can differ significantly in terms of affecting the long-run spillover
mechanism, which provides insight for the field of housing market regulation.

2. Data and Methods

2.1. Data Description

The intra-urban housing price spillover in Beijing, China, is studied in this paper. Like most large
cities in China, Beijing has experienced a surge in housing prices in the last decade, with the average
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housing price having tripled from 18,741 yuan/m2 in 2009 to 57,768 yuan/m2 in 2017. At the same time,
a large gap exists among different regions of Beijing in terms of both housing price and its variation
trend. The ratio between the lowest and highest unit price posted on fang.com in Beijing was very close
to 1:100 by the end of 2017, but this ratio was only 1:20 during 2011. The huge and expanding intra-urban
price gap in Beijing is to some extent the consequence of the spillover, forming a stylized faction of urban
housing markets in China. Therefore, we believe a comprehensive investigation is needed.

The data analyzed in this paper consist of 120,618 housing transaction records of second-hand
apartments (the variables include price, transaction date, and the address of every transacted housing
unit) in Beijing, China, during the period from October 2011 to October 2017. The raw data have many
other attributes for each transacted apartment, such as the floor level, construction area, building period,
and so on. A statistical summary of these attributes is presented in Table A1 in the Appendix A1.
However, these attributes were not used, nor are they useful, in the analysis of the price variation
setting, as they are static and contribute mainly to the price level rather than the price difference. We
will not go over the details of them. Second-hand apartments were used for the study, because there
have been no new apartments in the built-up area since 2010 in Beijing. The price of each second-hand
apartment is the only spatial data for housing price in Beijing. The data were collected from fang.com,
the largest and most well-known online platform that provides detailed transaction information of
second-hand apartments in China. The accurate longitude and latitude of every apartment/community
was converted from each address by using Baidu geocoding API. (A full description of the API and
the other Baidu APIs that we used in the study can be found in the url: http://lbsyun.baidu.com/.)
The address description of every transacted apartment is accurate up to the community level that it
belongs to; this accuracy should be enough for an analysis at the city level. After removing those records
with missing values and/or with inaccurate longitude-latitude locations, there were 92,048 transactions
and 6013 communities remaining; those constituted of our full sample in the following analysis.

Because the difference of housing prices between two consecutive time periods have to be repeatedly
evaluated in order to estimate the Markov transition matrix, specifications of time interval and grid
structure are needed for temporal comparison. Three months (or equivalently, a quarter) was used as
the time window of comparison. This is because an appropriate interval length has to be long enough
that it admits a dense coverage of transaction records on map, while it should not be long enough to
loose important information regarding market change. The transaction frequency in our raw data was a
day, but a preliminary analysis showed that the coverage could not be uniformly dense if interval length
was selected to be a day or a week, or even a month. When the time horizon was expanded to a quarter,
at least three hundred communities were included for all seasons during the entire data collection period.
This amount can guarantee a quite good coverage of the built-up areas of Beijing. We show in Section 3.1
that the geographic ranges covered by samples on the quarterly base do not vary significantly from 2012
to 2017; this observation verifies the robustness of our selection. Finally, the National Bureau of Statistics
of China also takes a quarter as the official time window to announce their housing market index, which
supports the quarterly specification on time-interval length.

2.2. Markov Chain Model

The Markov chain model is established in the following way: we first assume the housing price
spillover occurs among a set of locations within a city, denoted as M. Every location m ∈ M is
supposed to belong to a housing submarket such that the set of submarkets form a partition of the
location set, denoted as P = {Pi, . . . , Pm} where Pi ⊂M, Pi ∩ Pj = if i 6= j, and

⋃m
i=1 Pm =M.

At every fixed time t and t+ 1, spillover between locations m0, m1 ∈ M can be naturally identified
as the occurrence of the event that the price varies at m1 during t + 1 in the same way as at m0 during
t. In the other words, if we denote r as a {−1, 1}-valued function such that r(t, m) takes value −1, if at

http://lbsyun.baidu.com/
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location m and time t, the housing price falls down, and 1 if the price jumps up, then the spillover from
m0 to m1 at time t and t + 1 is identified as the following:

r(t, m0) = r(t + 1, m1). (1)

The spillover process is Makarovian in the following sense: for every time t, the spillover
between any two locations occurs randomly, with the occurrence probability depending solely on
the submarket that the from-location belongs to and the submarket that the to-location belongs to.
Formally, the occurrence probability can be defined at the submarket level and be expressed as
a |P| × |P| stationary Makarov transition matrix, denoted as T (|.| is the number of elements in a set),
such that for every Pi and Pj with m0 ∈ Pi, m1 ∈ Pj

Ti,j = Pr
(
rm0 = rm1 | m0 ∈ Pi, m1 ∈ Pj

)
. (2)

Without loss of generality, we assume ∑
|P|
j=1 Ti,j ≤ 1 such that 1−∑

|P|
j=1 Ti,j can be thought of as

the probability of the event that the spillover decays completely.
Given the stationary Markov transition matrix T and a panel of price data

O = {Ot = {rm,t : m ∈ M} : t = 1, . . . , T} (3)

where T is the number of observational time, we can adopt the procedure discussed in the reference [54]
to estimate entries of T; formally, there are two estimators which can be derived, both of which are
consistent for the number of observed locations being large:

T̂i,j,t =
1
|Pi| ∑

i∈Pi

1
|M| ∑

j∈Pj

I
(

rt,mi = rt+1,mj

)
, (4)

T̂i,j =
1
T

T−1

∑
t=1

 1
|Pi| ∑

i∈Pi

1
|M| ∑

j∈Pj

I
(

rt,mi = rt+1,mj

) . (5)

Since both estimators (4) and (5) are consistent with Ti,j, they must asymptotically be equal to
each other. In addition, following the literature [54], we can derive that the following statistics derived
from the two estimators asymptotically follows a χ2 distribution with degrees of freedom |P| · (T− 2):

χ2
·,P′ = ∑

P∈P

T−1

∑
t=1

(√
|P|
√
|M|T̂P,P′ ,t − T̂P,P′

)2

T̂P,P′ · (1− T̂P,P′)

χ2
P,· = ∑

P′∈P

T−1

∑
t=1

(√
|P|
√
|M|T̂P′ ,P,t − T̂P′ ,P

)2

T̂P′ ,P · (1− T̂P,P′)
.

(6)

2.3. Constrained K-Means Clustering

The total number of subregions |P| and their geographic ranges in the spatial Markov chain
model are still unknowns. To complete the model set-up, one option is to take administrative and/or
zip-code districts as the partition set P . However, compressing administrative/zip-code districts to
points is not appropriate in an intra-urban setting, as it may loose important information of economic
connections between different locations. In this section we present a data-driven method to identify
the partition set P . The new method combines the standard inference procedure of transition matrix T
with k-means clustering through adding a set of constraint conditions to the optimization problem
associated with k-means clustering. This new method is essentially a kind of the constrained clustering
studied in literature [49–52], while in our setting, the constraint is derived from the spatial Markov
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chain model in a customer way. Formally, constrained clustering can be expressed as an constrained
optimization problem as below:

min
SK

∑
S∈SK

∑
x∈S

(xc − xc,S)
2 (7)

s.t.

{
f j (xS, x−S) > 0, j = 1, . . . , m

S ∈ SK, K ≥ 1,
(8)

where SK is a K-fold partition of the entire sample; x is the feature vector representing the value of
all features associated with a housing unit in sample. The features should include the 2D geographic
coordinates of every grid and the other features attached to that grid and important for analysis,
such as the local price growth rate. The dimensions associated with coordinates are denoted as c;
xc represents the projection of the vector x on the c dimensions. Under this notation, (7) is exactly
the objective function for the standard k-means clustering with the similarity function taken to be the
euclidean distance on map, which is widely discussed in the literature [55].

In addition, xS in (8) is the feature matrix with each column being a single feature vector whose
entries correspond to values of that feature attached to grids in cluster S; x−S is the feature matrix
associated with the set of grids complement to S. f j for j = 1 . . . , m are functions that form m constraints
for every cluster S. Notice that f j depends on the features of all grids both inside and outside of a cluster
(both xS and x−S are involved as arguments); this set-up reflects the spatial dependence between
different clusters and is designed to capture the transition structure of the spatial Markov chain model.

In the current setting, the specific form of constraints (8) and their economic meaning are derived
from the spatial Markov chain transition of spillovers among housing submarkets as blow:

χ2
·,P′ ≤ τ|P|·(T−2),α

χ2
P,· ≤ τ|P|·(T−2),α,

(9)

where χ2
P,· and χ2

·,P′ are the χ2 statistics derived in (6). τ|P|·(T−2),α is the 1− α quantile level of a χ2

distribution with degree of freedom being |P| · (T − 2).
The constraint (9) arises from the stationary property of the Makarov chain model (2). In fact,

when the true Markov chain model that generates the observed price spillover data is stationary,
under the correct recovery of the hidden submarkets, the following null hypothesis must hold:

H0 : Ti,j,t = Ti,j,t′ for all i, j and t 6= t′. (10)

Given (10) and that the two estimators (4) and (5) are consistent, the meaning of constraint (9)
is clear and nothing more than that for every correctly identified submarket P and P′, the transition
probability estimated at every time point t must be consistent with that estimated at any other time
t′, and consequently consistent with the mean estimator taken over the entire time span at least in
the confidential level α according to the well-known Pearson’s χ2 test. As α is often selected among
0.1, 0.5 and 0.01 in hypothesis test setting; we followed the convention and selected α = 0.1. That was
because in our setting, we expected the evidence to support the null hypothesis. To be prudent,
we selected the greatest threshold, 0.1.

In addition to a set of clustered sub-regions which can be identified with P , the transition
probability matrix will also be output from the algorithm as the evaluation of (5) during the last
iteration. Within such a data-oriented Markov chain model, neither the partition set P nor the
transition matrix T need prior specification; therefore, they can better catch up with the transition
mechanism hidden behind housing price panel data.
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2.4. Kernel Density Estimation and Hotspot Analysis

In the original data, housing price is attached to every single housing unit. Such prices are not
directly comparable over time. To facilitate analysis, we applied the kernel density estimation method
and populated the price data on the housing-unit level to the price on the location level. In detail,
we divided the study area into a set of 1000 m× 1000 m square sub-regions and selected their centers
as the set of grids (preliminary analysis shows that 1000 m is the optimal choice because a grid size
larger than 1000 m tends to mask local differences and because a grid size smaller than 1000 m can
exaggerate local characteristics). Then, the Gaussian kernel density method was applied to estimate
the empirical price at every grid. Formally, we got:

p̂t,j =
1

mtb2
t

mt

∑
i=1

K

((
cpi − cj

)
b

)
· pt,i, (11)

where cpi is the geographic coordinates, (latitude, longitude), associated with the ith transaction record;
cj is the geographic coordinate associated with the jth grid. mt is the total number of all transactions
in collection by quarter t. K is the standard two-dimensional Gaussian density function with zero

mean. bt is the kernel width which is selected to be σ ·m−
1
3

t , where σ is the mean standard deviation
of the latitude and longitude of all sampled housing units; such a choice of kernel width guarantees
that as mt → ∞, the empirical price converges to its truth value in probability. For fixed time t, pt,i
and p̂t,j are the housing price at the ith transaction record and the estimated housing price at the jth
grid, respectively.

Applying (11) to the set of transactions recorded during quarter t and letting it go over every t and
every grid, we get a panel dataset in which there is a price variation path associated with every grid.

Due to the lack of data, the price (and the other attributes) estimated from (11) may not be accurate
on such grids where only a few transactions are recorded within their neighborhood. Thus, it was
necessary to remove grids of that type from the price panel. The Getis-Ord Gi∗ statistic [56,57] was
calculated and applied to kick out the grids within low-sample-coverage regions.

Formally, we calculated the Getis-Ord Gi∗ statistic for distribution density of transaction records
nearby every grid through the following formula:

G∗i =
〈wi − wi, x− x〉

Sx · Swi

, (12)

where x (wi) is the empirical mean of the the vector {x1, . . . , xn} ({wi1, . . . , win}). x (:= {x1, . . . , xn}) is
the vector representing a feature associated with every grid j ∈ {1, . . . , n}; wi (:= {wi1, . . . , win}) is the
weight vector associated a grid i with every wij being the weight assigned by grid i to grid j. n is the
number of all grids. Sx and Swi are the empirical standard deviations associated with the vector x and
wi respectively. 〈., .〉 denotes the inner product of two vectors in the n-dimensional euclidean space.

In the current setting, the feature x is chosen to be the empirical distributional density of all
sampled transactions. The construction of the spatial density of a grid is as below:

xj =
1

mb2

m

∑
i=1

K

((
cpi − cj

)
b

)
(13)

where all cpi, cj, and K have the same meaning as in (11); m is the total number of transaction records
over all quarters; and b is selected in the same way as in (11).

Weight wij is also selected through Gaussian kernel function as below:

wij =
1
b2 · K

((
ci − cj

)
b

)
(14)
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with the same choice of kernel width as for the empirical density (13).
The grids with significantly positive value on the Getis-Ord statistic are associated with the places

where transactions are densely clustered in its neighborhood, and therefore stand for regions that our
analysis should focus on. In contrary, places with negative Getis-Ord statistic only have transaction
sparsely distributed, which should be removed from the analysis. Following this rule, 1183 grids
finally remained in our data set; they correspond to 1183 paths representing the quarterly trend of
price variation at every grid from October 2011 to October 2017.

2.5. Hausdorff Distance

Hausdorff distance is a popular metric measuring the distance between two sets; it has been
widely applied in many fields, such as image matching and clustering efficiency evaluation [58,59].
Due to its simple definition through a minimax operation, it can be developed to a hypothetical test
with a very simple form of the null hypothesis distribution. The resulting test can examine whether
regions covered by two sets of sample points on map are identical. Formally, Hausdorff distance is
defined as below:

dH(S1, S2) = max

{
sup
x∈S1

inf
y∈S2
{d(x, y)} , sup

y∈S2

inf
x∈S1
{d(x, y)}

}
, (15)

where S1 and S2 are two open sub-regions in a region X on map; d is a default metric of X, and in our
setting can be defined as the euclidean metric on R2. Hausdorff distance dH is a well-defined metric of
the set of all subsets of X with open interior [59], which means it has the property dH(S1, S2) = 0 if
and only if S1 = S2 as sets. The empirical version dH can be defined through random samples from S1

and S2 as below:

d̂H(S1, S2) = max
{

max
xi∈S1

min
yi∈S2

{d(xi, yi)} , max
yi∈S2

min
xi∈S1

{d(xi, yi)}
}

, (16)

where xi is the ith identically independent distributed (i.i.d.) sample uniformly drawn from region S1;
yi is an analogue to xi for region S2.

Notice that (16) can be defined even without knowing the accurate range of S1 and S2; the minimum
knowledge to defined (16) is just that x and y are two sets of i.i.d. samples from two regions. Therefore,
(16) can be developed as hypothetical test to exam the null hypothesis that regions S1 and S2 behind the
two samples xis and yis are identical. Formally:

H0 : S1 = S2. (17)

The distribution under H0 is easy to compute from definition (15) as long as we know the
distribution of d(xi, yi), which can be generated from a simple Monte Carlo simulation; (16) and (17) will
be frequently used for testing the robustness of clustering result derived from constrained clustering.

2.6. Evolution of Spillover Intensity

In this section, we introduce a way to quantify the multi-period dynamics of spillover transition.
As known, the nth power of Markovian transition matrix gives the n period transition probability; i.e.,

Pr (St+n = j | St = i) = Tn
i,j (18)

where Tn
i,j is the ijth entry of Tn, the nth power of T.
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Suppose the random force that drives housing submarket up and down is equally distributed
among all submarkets (uninformative initial distribution). The following formula gives the cumulative
net transit-in intensity (CI) of the random force among submarkets up to time t:

CIt =
1
K

t

∑
i=1

1 ·
((

Ti
)>
− Ti

)
(19)

where 1 denotes a K-dimensional row vector with all entries being constant 1; K is the number of
submarkets that is equal to the cardinality |P| and can be determined by constrained clustering;
for every time t, CIt is a K-dimensional vector; for every l ∈ {1, . . . , K}, the value on the lth dimension
of CIt represents the cumulative probability/intensity that random forces spillover into the lth
submarket at all time periods no later than t.

Letting t vary, (19) can effectively portray the patterns of temporal variation of spillover intensity
among submarkets.

3. Results

3.1. Study Area

In this section, we give a brief introduction to the study area of the paper and a graphic overview
of the sample statistics. As the capital of China, Beijing is enclosed by rings of roading. The officially
declared CBD is the Guomao center, lying between the south-east 2nd and 3rd ring roads. In addition
to CBD, there are multiple commercial centers in Beijing with extremely high-density populations,
such as the Zhongguan Village in Haidian district, which is also known as the “Silicon Valley” of China,
and contains the most well-known Chinese universities, Peking University and Tsinghua University.
There are several satellite centers lying around the suburb or exurb of Beijing, such as the Tongzhou
new city at the southeast corner of the old urban core. The other important socioeconomic features
of Beijing (up to the end of 2016) are summarized in Table 1 [60]. Because in this study, Beijing is
only taken as an example to demonstrate the analytic power of the proposed Makarov model and
constrained clustering method, it would be misleading to present too many details on the background
of the city; interested readers can find comprehensive introductions to Beijing’s housing market by
themselves in the references [61,62].

Table 1. Important socioeconomic features of Beijing.

City Center Location
(Lat, Lon)

GDP (billion
RMB)

Population Size
(million)

Built Area
(km2)

# County-Level
Administrative Units # Subway Lines

Beijing 39.9◦ N, 116.41◦ E 2800 21.7 1419 16 18 up to Nov. 2017

In the following two figures, We plot the spatial distribution of housing units (Figure 1) and the
temporal variation trend of housing prices (Figure 2) in the housing market of Beijing during the data
collection period.

Figure 1 sketches the study area and locations of all sampled housing units. Apparently, the spatial
distribution of apartments roughly reflects the development status across Beijing. The main portion
of apartments are located within the area enclosed by the 6th-ring road or in the areas around local
centers of a few big counties in the suburbs. These regions are also the most well-developed parts of the
city. In addition, it is obvious that the distribution of house units is quite even within the 5th-ring road,
which coincides with the fact that all places in this region are almost evenly developed. Also notice
that sampled housing units are densely distributed in the local center of Tongzhou district; its density
is significantly higher than in the other administrative districts in suburb of Beijing, such as Changping
and Fangshan.
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Figure 1. Study area and spatial distribution of samples.

Figure 2 shows quarterly variations of spatial distribution of sampled apartments during October
2012–October 2017 The distributional pattern of apartments is almost invariant over the entire time
span, which agrees with the fact that Beijing is a relatively developed city; the locations of various
functioning zones have been fixed. Meanwhile, an increasing number of sampled apartments appear in
the band area between the local center of Tongzhou and core region of Beijing. These newly appearing
samples correspond to new communities that were built after the start of data collection period and
reflect the policy preference for building Tongzhou, the new city that was initiated in 2012.

3.2. Boundaries of Housing Market and Submarkets in Beijing

Figure 3 plots the segmentation of the housing market in Beijing, generated on the set of 1000 m×
1000 m grids and colored according to the cluster membership of every grid. Hotspot analysis was
applied to all grids and those “cold-spot” grids where few housing units being transacted were
removed nearby. The remaining grids give a sketch of the natural boundary of the entire housing
market. It is clear that second-hand housing market in Beijing is agglomerated in the area enclosed
by the sixth-ring road, which is also known as a cut-off of urban-suburb and exurb area of Beijing.
In addition, the housing market region is not quite symmetric according to the distance between the
boundary of the market and sixth-ring road. Comparing to the south and west boundary, the distance
between sixth-ring road and the north and east side of boundary of housing market is much smaller;
this asymmetricity reflects that the northern and eastern parts of Beijing lead its southern and western
parts in terms of economic development and completeness of infrastructures [63].
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2012 season 1 2012 season 2 2012 season 3 2012 season 4

2013 season 1 2013 season 2 2013 season 3 2013 season 4

2014 season 1 2014 season 2 2014 season 3 2014 season 4

2015 season 1 2015 season 2 2015 season 3 2015 season 4

2016 season 1 2016 season 2 2016 season 3 2016 season 4

2017 season 1 2017 season 2
2017 season 3

Figure 2. Spatio-temporal distribution of samples.

The entire housing market is divided into submarkets through constrained clustering. For robustness
checking, we re-ran the algorithm 100 times under random initialization; the number of clusters
returned varied from 14 to 16, and the range of each submarket was not significantly distinct based on
comparing the Hausdorff distance between a submarket in one set of result with the nearest submarket
in the other set of result. The small variance of clustering result with respect to random initiation
shows the stability of our result. Through comparing the BIC of 100 results, we finally selected one set
of submarket divisions which had 16 submarkets. The location and the range of every submarket are
plotted in Figure 3. To facilitate the comparison, the range of administrative districts are sketched in
Figure 3, illustrating that the range of submarkets significantly disagrees with administrative regions.
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This fact confirms the invalidity of directly using administrative districts as intra-urban analogue to
cities in inter-urban spillover analysis.

Figure 3. Boundaries of housing (sub-)markets in Beijing.

Figure 3 also shows that spatial distribution of submarkets displays a sprawl pattern. More precisely,
submarkets are clearly stratified to two layers according to their distance to the center of Beijing, marked
as the Ti’an Men Square. Every layer is roughly annular-shaped; the number of submarkets lying on
layers is increasing along the direction from the inner layer (closer to center) to outer layers (further
away from center). This annular-sprawl pattern of submarket distribution reflects the mono-centric city
structure of Beijing, as does the fact that we utilized k-means as the base clustering tool for constrained
clustering, which forces every cluster to be as compact as possible.

3.3. Robustness Analysis by Policy Shock

Beijing attempted to restrict its housing market in order to squeeze the price “bubble” induced
by housing speculation. Unlike indirect restrictions, such as taking the property tax [64], since the
third quarter of 2013, the local government of Beijing initiated a series of intervention policies to
control the market demand, including lifting up interest rate and down-payment rate of mortgage,
quota restricting and freezing transactions that involved non-local buyers. The entire housing market
in Beijing cooled down sharply since then, and entered a depression period until late 2016 when the
intervention was relaxed. Therefore, there exists a major policy change during our data collection
period. The shocks induced by policy changes can be formulated either as one-time shocks such that
they do not affect distributional patterns of submarket and the spillover transitions between them,
or as permanent effects on spillover transitions in terms of altering the submarkets’ structures and/or
the transition probability matrix.

To distinguish the one-time and permanent shocks, we re-ran constrained clustering within two
separated time intervals, which were (1) before 2013 Q3 and (2) after 2013 Q3. The structural change
test was conducted toward the range and location of every submarket and the transition probabilities
among submarkets. The null hypothesis was always that over the two periods, there would be no
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structural changes, for which we considered two sets of hypothesis tests:

H1
0 :dH(Si, Sl

i∗) = 0

H2
0 :pi,j − pl

i∗ ,j∗ = 0.

H1
0 is tested on the basis of empirical Hausdorff distance (16) (see the method section) between

a submarket Si generated from the assumption that there were no structural changes during the entire
data collection period and the submarket Sl

i∗ nearest to Si generated before (l = 1) and after (l = 2)
the time, 2013 Q3, when intervention policy was initiated. Thus, test of H1

0 examines whether there is
location-based and/or ranging changes for submarkets.

In contrast, the test of H2
0 examines changes of transition probability, where pi,j denotes the

transition probability calculated under the assumption that no structural changes happened during
the entire period, while pl

i∗ ,j∗ measures the transition probability between submarkets nearest to i and

j respectively before 2013 Q3 when l = 1 and after 2013 Q3 when l = 2. H2
0 is implementable through

Pearson’s χ2 test, which can be conducted either separably for every pair (i, j) or in a bulk way for the
sum of square difference of all (i, j)s. The bulk test is more informative for the overall impact of policy
change, while the separate test is better at detecting its impact to specific submarkets. In this study, we
first applied the bulk test for both cases of l = 1 and l = 2. Failure to pass the bulk test indicates the
occurrence of a transition probability change for some pairs of submarkets; thus, a separate test was
carried out and the set of pairs that failed to pass it are reported.

Table 2 reports the Hausdorff distance tests for all 16 submarkets before and after 2013 Q3. It is
apparent that at the 5% credential level, almost all submarkets have no significant changes in their
locations and ranges before and after the conduction of intervention policy. Thus, the policy does not
affect the market structure of Beijing. The only exception is submarket 13; it seems to be relocated
after 2013 Q3. The detailed reason of the movement of submarket 13 is interesting, but it is beyond the
scope of this study; we leave it for future studies.

Table 2. Hausdorff test.

Before 2013 Q3 After 2013 Q3

Cluster Nearest-Distance p-Value 0.05 CI Nearest-Distance p-Value 0.05 CI

1 0.061 1 0.82 0.094 0.986 0.76
2 0.098 0.999 0.5 0.063 1 0.92
3 0.16 0.345 0.32 0.098 0.999 0.69
4 0.152 0.51 0.36 0.184 0.999 0.73
5 0.08 0.96 0.6 0.044 1 0.88
6 0.107 1 0.71 0.092 0.999 0.73
7 0.121 0.788 0.72 0.138 0.671 0.39
8 0.108 0.203 0.14 0.079 0.999 0.68
9 0.126 0.239 0.24 0.099 0.994 0.5
10 0.123 0.076 0.16 0.131 0.998 0.7
11 0.112 0.675 0.7 0.113 0.831 0.49
12 0.236 0.002 0.06 0.188 0.309 0.39
13 0.173 0.498 0.69 0.175 0.004 0.06
14 0.12 0.833 0.39 0.121 0.939 0.49
15 0.061 1 0.85 0.099 0.999 0.74
16 0.098 0.813 0.54 0.124 0.505 0.53

Table 3 reports the results of Pearson’s χ2 test conducted in a bulk way. The transition matrix has
no structural difference between the entire data collection period and the period after policy change.
However, interventions make difference for period before 2013 Q3, which is reflected by the null
hypothesis H2

0 failing to hold before 2013 Q3.
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Table 3. χ2 test (bulk).

Period Test-Statistics p-Value 0.05_CI

Before 2013 Q3 501.523 0 294.321After 2013 Q3 208.79 0.986

To better detect where policy changes matter, separated Pearson’s χ2 tests were conducted; Table 4
collects all pairs of submarkets that failed to pass the test on a 5% credential level, in which the results
have been sorted, along with their p-values, in an ascending way:

As shown in Table 4, there are 30 out of 256 (=16× 16) different pairs of submarket combinations
whose transition probabilities did not pass the χ2 test. Thus, the main portion of submarket pairs
were still quite stable facing intervention policies, which implies an overall robustness of the spillover
mechanism of the housing market in Beijing. Among those pairs whose transition probabilities were
changing as policy changed, Table 4 indicates that all of them are ended up with one of the three
submarkets, 1, 10, or 11. In fact, for all the three regions, both of transit-in/-out probabilities from/to
all the other regions are much smaller in relation to the other regions; the significance before and
after the policy change just reflects the sensitivity of the small number. Hence, we can conclude the
intervention policy did not entail significant change to the spillover mechanism; it can be considered
persistent over the entire data collection period during 2011–2017.

Table 4. χ2 test (separated).

# Var Test-Statistics p-Value

1 p6,11 13.002 0.0003
2 p7,11 12.307 0.0005
3 p1,10 11.871 0.0006
4 p12,11 11.682 0.0006
5 p3,11 11.589 0.0007
6 p6,10 11.42 0.0007
7 p2,10 10.849 0.001
8 p7,10 10.814 0.001
9 p2,11 10.575 0.001
10 p5,10 10.531 0.001
11 p5,11 10.384 0.001
12 p12,10 10.302 0.001
13 p1,11 9.991 0.002
14 p3,10 9.771 0.002
15 p16,11 7.722 0.005
16 p4,11 7.365 0.007
17 p14,11 6.777 0.009
18 p16,10 6.766 0.009
19 p4,10 6.746 0.009
20 p14,10 5.952 0.015
21 p1,1 5.083 0.024
22 p10,11 5.051 0.025
23 p6,1 4.708 0.03
24 p2,1 4.649 0.031
25 p5,1 4.476 0.034
26 p7,1 4.385 0.036
27 p10,10 4.341 0.037
28 p12,1 4.18 0.041
29 p11,11 4.018 0.045
30 p8,11 3.887 0.049
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3.4. Factors Affecting Spillover

In this section, we describe regression analysis performed to identify the factors that have strongest
connection to the intensity of spillover transitions. Among all factors, we were mainly concerned
with the impacts of distance, price difference, area difference, and location among submarkets on the
transition probabilities, because a preliminary analysis showed that among all alternative covariates,
these five classes of variable were sufficient to account for above 90% of the total variation of transition
probabilities. Formally, we estimate regression equation of the following form:

Ti,j = β0 + β1 · distancei,j + β2 · price_di f i,j + β3 · lati + β4 · latj + β5 · loni + β6 · lonj + εi,j, (20)

and for a robustness check, we also considered the alternative regression equation:

Ti,j = β0 + β1 · distancei,j + β2 · price_di f i,j + β3 · lat_di f i,j + β4 · lon_di f i,j + εi,j (21)

where pi,j are the transition probabilities between submarket i and j; distancei,j is the center distance
between two submarkets (i.e., the euclidean distance between the centers of two submarkets); and
price_di fij is the mean difference of price (i.e., the difference between the within-cluster means of
two submarkets). εi,j is the residual. (20) differs from (21) in the sense that whether the relative
location between transit-in and transit-out submarkets or the exact location of them is involved. In (20),
exact location is included through the latitudes and longitudes of centers of transit-out and transit-in
submarkets, which provide more information.

In the preliminary analysis, we tried both (20) and (21). The final result reported in Table 5 was
selected as the one generated from the equation that had the greatest explanatory power for the data
(measured by the adj. R2 statistics). In addition to taking the entries of the transition matrix T as
dependent variables, we also considered the regression based on using the net transit-out probability;
namely, entries of T− T>, as the dependent variable. The regression for the net transit-out probability
can help detect the source of the spillover effect; the result reported is also based on the combination
that generates the greatest adj. R2.

Table 5. Regression analysis for transition probability.

Model Selected (20) T Model Selected (21) T− T>

distance 0.0135 ∗∗ distance ∼0
price_dif 0.0283 ∗∗∗ price_dif 0.0566 ∗∗∗

area_dif −0.0006 area_dif −0.0011
out_lon 0.0083 diff_lon −0.0291 ∗∗∗

in_lon 0.0029 - -
out_lat −0.0187 ∗∗∗ diff_lat 0.0054
in_lat −0.0128 ∗∗∗ - -

Adj. R2 0.984 Adj. R2 0.849
F-statistic 2275 ∗∗∗ F-statistic 287.8 ∗∗∗

∗: 10% significant, ∗∗: 5% significant, ∗ ∗ ∗: 1% significant.

Table 5 shows that the regression model (20) has better explanatory power for the full transition
probability T, while (21) fits better to the net transit-out probability T− T>. This fact implies that the
exact locations of both the transit-out and transit-in submarkets matter to the full transit probability,
while only the relative position between the two submarkets matters to the net transit probability.
Such a difference should reflect some deep-level mechanism behind the intra-urban housing market
spillover, which is a bit beyond the scope of the current study, so we left it for future works.

Table 5 also reveals that no matter what type of transit probability we consider, the distance
between two submarkets is either irrelevant or positively contribute to the probability. This fact implies
that in intra-urban setting, geographic neighborhood is no longer a major mechanism through which
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spillover can happen, so housing market spillover is not of the “ripple” form, which is quite different
from the findings from inter-urban spillover [20,21]. On the other hand, the difference of price between
submarkets turns out to have significant positive impact on transition probability. This finding agrees
with the argument that the existence of price gap and price-depressed regions is sufficient to intrigue
housing market spillover, even if there are geographic gaps between transit-in and transit-out regions.
Unlike “ripple” effect, spillover induced purely by price gap allows geographic discontinuity; thus,
it is classified as a migration effect [65] in order to be distinguished from the “ripple” effect, which
requires geographic continuity.

In inter-urban spillover studies, the migration effect is extremely weak, but it is dominant in
our current study. We believe the difference in strength of the migration effect to be by and large
attributable to the distinct transition mechanisms between inter-urban and intra-urban spillovers.
In the intra-urban case, relocation cost is usually low in contrast to the cost of housing; this is true
especially for a city like Beijing where the ratio between income and housing price can even exceed 100+.
Thus, comparing to the limited transaction cost induced by relocation, moving into a price-depressed
region is much more profitable and should be able to intrigue huge and immediate move-in flows
and drive up local housing prices. In contrast, at the inter-urban scale, relocation costs are always
extraordinarily high compared to price differences in two distant cities; the high transaction cost
restricts long-distance relocation, and thus reduces the strength of the migration effect; spillovers
are only possible to exist between neighborhoods, which leads to the widely documented “ripple”
effect [20,21]. The finding from Table 5 supports that argument; it also highlights the theoretical
necessity to distinguish intra-urban spillover from inter-urban spillover.

From the perspective of spatial variation, an interesting finding from Table 5 is that probability
of spillover transit-in, which is just the negative transit out probability, is decreased along with the
direction from southeast to northwest in Beijing. This finding coincides with a fact that the northwest
part of Beijing is much more well-developed in terms of the concentration of high-tech industry,
educational resources, and the absolute value of housing prices (high); the increasing strength of
spillover transit-in is then a reflection of the equalization effect of housing market spillover, as widely
discussed in the literature [7].

3.5. Transition Intensity of Multi-Period Spillovers

In this section, we study the spatio-temporal variation pattern of spillover intensity in Beijing
through applying the methodology introduced in the Methods section.

By letting t vary, we can evaluate the spatio-temporal trend of CIt, which sketches the relative
strength of driving force distributed among submarkets by time t. It turns out the variation of CIt

becomes stable. Since t = 4 (measured by time difference CIt being less than a threshold value, say 0.01),
we plot the spatial distribution of CIt up to time 4 in Figure 4.

As shown in Figure 4, driving forces of the housing market in Beijing are inclined to spread
from its northern and western parts to the south and to the east, this dynamic pattern agrees with the
regression result shown in previous section. On the other hand, two submarkets in east-most area of
the entire study area have the greatest long-term transit-in intensity, and both of these two submarkets
are located within the Tongzhou district of Beijing and next to the western boundary of Tongzhou
district and the city core of Beijing. It is remarkable to notice that these two regions cover exactly
Tongzhou, the new city which is planned to absorb most of administrative departments, schools,
and medical facilities that were originally located in the core of Beijing. This finding reveals the large
influence of urban planning policy on mechanisms of housing market spillover in China, and it also
reflects the consistency between the trends of housing market spillover and reallocation of valuable
public resources.
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Period 1 Period 2

Period 3 Period 4

Figure 4. Evolution of the distributional density of market driving force.

4. Discussion

Based on the findings in the previous sections, some useful policy suggestions can be derived.
First, the ultimate direction of spillover is largely affected by the official urban planning proposal
(Figure 4). This fact implies that on one hand, the local government can significantly manipulate
the way by which spillover happens, but on the other hand, the government’s behavior can induce
inequality in housing prices for different regions. The case of Beijing shows that the submarkets close
to Tongzhou (covered by the red color in Figure 4) benefit significantly from the urban planning in
terms of the appreciation of housing price; the price gap between Tongzhou and the old core region,
exemplified by the submarket covering the Zhongguan Village (Cluster 1 in Figure 3), almost vanished
according to Figure 3. In contrast, the submarkets (e.g., the Clusters 1 and 2 in Figure 3) in the southwest
part of Beijing did not get much from the price spillover, and the price gap between there and the
Tongzhou is even enlarged in Figure 2. Based on its influence on spillover and price distribution,
and the fact that the relative change of housing prices is closely related to the re-distribution of family
wealth and social welfare, we believe the local government should be cautious before issuing any
planning proposal. Second, the intra-urban spillover turned out to be discontinuous geographically
and price-gap driven (Table 5) in Beijing. This observation implies that speculation might be the
main force driving the housing price dynamics, which is not healthy for housing market development
and urban growth in the long run. Therefore, stabilizing the housing price variation and controlling
the speculative transaction should be a main targets of local housing policy in Beijing in the future.
Finally, the regular marketization intervention policies, such as increasing the down-payment rate and
assigning purchase quota to home-buyers, turned out to be ineffective at controlling the long-term
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spillover trend and housing price dynamics, which recalls policy innovation. More non-marketization
tools can be taken into account, such as increasing the supply of public housing.

5. Conclusions

This paper analyzed the intra-urban spillover of Beijing through a constrained-clustering-based
Markov chain model. The empirical result shows that first, the intra-urban spillover of housing price
occurs quite differently compared to the widely studied inter-urban spillover. In particular, the widely
observed “ripple-form” spillover in inter-urban setting is no longer dominant in the intra-urban setting.
In contrast, intra-urban spillover can be discontinuous in the geographic sense, and is mainly driven by
price gap and speculative demand. Second, the urban planning policies can entail significant impacts
on housing market spillover, while the pure intervention on housing prices based on marketization
methods seems not to be quite influential. This finding implies the effectiveness of policy varies from
case to case; the determinants have not yet attracted enough attention and deserve further investigation.

Other than the empirical findings, this study also has a methodological contribution for the
existing literature. The constrained clustering technique not only applies to intra-urban housing
market spillover, but is very helpful to a wide range of spatio-temporal topics where the nodes among
which a spatio-temporal effect takes place are not clearly defined beforehand.

Some limitations and possible extensions are identified as below. First of all, only the direction
and intensity of each spillover were included in the constrained clustering framework, and the scale
of spillover was not referred to. A more comprehensive study is needed in the follow-up research.
Time series models such as the vector autoregressive model (VAR) are powerful for modeling the
transition scale, and how to embed it into the constrained clustering is a promising direction for the
future research. In addition, the covariate is not yet included for determining the transition probability,
so extending the current framework to embrace the covariate is important for better understanding
the mechanism of the spillover transition.
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Appendix A. Data Summary

Table A1. Summary of major variables in the collected housing sales data.

Beijing

Variable Meaning Min Max Mean Std.

Construction

area (m2) Construction area (m2) 10.5 140 87.38 10.1

age
The age (years) of the apartment
unit (2017 minus the year built) 0 59 12.23 6.98

South
Whether the orientation direction
includes south (south, southeast,
southwest, etc., 1 = yes, 0 = no)

0 1 0.8 0.4

lobby num The number of lobby rooms 0 8 1.7 0.79

room num The number of bedrooms 1 9 2.79 1.19

floor
The floor level that
an apartment is on 1 57 4 3.9
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Table A1. Cont.

Beijing

Variable Meaning Min Max Mean Std.

Public Transport

dist subway
Distance (km) to

the nearest metro station 0.1 31.5 1.14 2.94

dist bus
Distance (km) to

the nearest bus station 0.1 18.17 0.41 3.06

num bus routes
Number of bus routes offered

by the nearest bus station
within 1 km

0 312 84.42 58.84

Neighborhood

dist school
Distance (km) to nearest

primary and middle school 0.1 18.54 0.69 2.83

dist mall
Distance (km)
to nearest mall 0.11 31.5 1.15 3.13

dist hospital
Distance (km)

to the nearest hospital 0.16 29.67 2.44 0.29
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