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Abstract: As a major labor force of cities, young people provide a huge driving force for urban
innovation and development, and contribute to urban industrial upgrading and restructuring.
In addition, with the acceleration of urbanization in China, the young floating population has
increased rapidly, causing over-urbanization and creating certain social problems. It is important to
analyze the demand of urban youth and promote their social integration. With the development of the
mobile Internet and the improvement of the city express system, ordering food delivery has become
a popular and convenient way to dine, especially in China. Food delivery data have a significant
user attribute where the ages of most delivery customers are under 35 years old. In this paper, we
introduce food delivery data as a new data source in urban functional zone detection and propose a
time-series-based clustering approach to discover the urban hotspot areas of young people. The work
and living areas were effectively identified according to the human behavioral characteristics of
ordering food delivery. Furthermore, we analyzed the relationship between young people and the
industry structure of Hangzhou and discovered that the geographical distribution of the identified
work areas was similar to that of the Internet and e-commerce companies. The characteristics
of the identified living areas were also analyzed in combination with the distribution of subway
lines and residential communities, and it was found that the living areas were mainly distributed
along subway lines and that urban villages appeared in the living hotspot regions, indicating that
transportation and living cost were two important factors in the choice of residential location for
young people. The findings of this paper can help urban industrial and residential planning and
young population management.

Keywords: food delivery data; urban youth; urban hotspots; industrial structure; urban village

1. Introduction

The youth population is a group with strong creativity and high consumption power, who provide
a strong driving force for urban innovation and development. With the acceleration of urbanization
in China, a large number of young people have migrated from villages to cities. The fast-growing
young floating population causes over-urbanization, which leads to urban congestion and insufficient
infrastructure, and creates certain social problems, especially with respect to housing, employment,

ISPRS Int. J. Geo-Inf. 2020, 9, 42; doi:10.3390/ijgi9010042 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0003-1475-8480
http://dx.doi.org/10.3390/ijgi9010042
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/9/1/42?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2020, 9, 42 2 of 20

and transportation [1–3]. On the other hand, young people are accustomed to learning new things and
can better adapt to the development of emerging industries [4] such as new-generation information and
renewable energy technologies, and they contribute to urban industrial upgrading and restructuring.
Therefore, it is important to analyze the demand of urban youth and facilitate their social integration
to promote sustainable urban development.

Housing and employment are hot research areas for urban issues and are also the focus of
urban youth. Many studies use questionnaires or government survey statistics to analyze the urban
residential environment and employment situation such as the built environment of residential areas
and workplaces, the choice of the commuting mode, and the regional jobs–housing balance [5–7].
However, these survey methods have certain defects in subjective bias, sample size, and timeliness.
In recent years, with the widespread use of positioning devices such as civilian GPS (Global Positioning
System) technology on mobile terminals and the development and popularization of location-based
services and mobile social networks, a large number of trajectory or geotag data are accumulating in
daily life and are serving different types of applications [8–10]. These data sources mainly include
mobile phones [11–16], taxis [17–21], public or shared bicycles [22–25], transit smart cards [26–29], and
so on. They convey human mobility and activity information and provide content and methodological
innovation to the research of the spatial-temporal behavior of people in urban areas [8,30].

The identification of urban functional areas such as residential and industrial areas is an important
way to understand urban land use structure and population distribution [31,32]. Mao et al. extracted
the spatial distribution of urban jobs and housing areas by using a re-clustering algorithm based on
the “job–residential factor” index from massive taxi origin-destination (OD) points [17]. Pei et al.
identified land use types such as residential, business, commercial, open space and others from mobile
phone activity data by using a semi-supervised clustering method [13]. Long et al. analyzed the
urban job–housing structure and commuting patterns with the location–time–duration (PTD) data
mined from the raw bus smart card data [29]. Zhang et al. used urban bicycle rental records and
Point-of-Interest (POI) information to delineate urban functional zones by applying topic modeling
techniques where business areas, industrial areas, and residential areas were well detected [25].
However, the above-mentioned data have certain geographical limitations. Taxi GPS data mainly exist
in road networks, and the location of the mobile phone data comes from the locations of the base
transceiver stations. The smart card data only provide the location of transportation stops and stations,
and the origin and destination location of public bicycles are determined by the service stations. These
limitations will not be able to effectively identify the complex geographical environment such as
communities and colleges where they are outside the road networks or away from the transportation
stations. In addition, most studies on the relationship between urban areas with age, gender, and
socio-economic factors are based on static survey data. Therefore, there is a lack of a big data-driven
approach to detect the geographic distribution of specific age groups.

Due to the wide usage of mobile phones and the convenience of delivery systems, food delivery
has become a popular way of eating because it has convenient order services, takes less time, and
offers a variety of food options. Food delivery data are trajectory data produced by delivery riders
from the store to the customer’s place after receiving the order, usually using electric scooters in
China. According to the China delivery big data reports issued by the food delivery services (such
as Ele.me, meituan) in 2017 [33–35], the number of online catering users exceeded 300 million, and
the delivery dataset has significant user characteristics as follows: (1) the largest user population are
white-collar workers, which account for over 80% of the total delivery orders, and the second largest
user population are college students; and (2) the majority of users are under 35 years old. In other
words, young people are the major consumer groups of online ordering.

In this paper, food delivery data are introduced as a new data source into urban functional
zone detection. Compared with other trajectory or geotag data, the characteristics of delivery data
provide a new way to explore the spatially significant areas of the urban youth group. In addition,
the electric delivery scooters can enter complex geographical areas such as residential communities,
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college campuses, and large industrial parks, and can provide a more accurate dataset for functional
area extraction. This paper proposes a time-series-based clustering approach to discover the urban
hotspot areas of young people. A case study of Hangzhou, China, which is famous for its Internet
economy, was implemented to discuss the relationship between urban youth and the urban industrial
structure and the factors that affect the residential location choice of young people.

The remainder of this paper is organized as follows: Section 2 describes the study area and data
source, and performs some statistics of the dataset. Section 3 discusses the method for extracting urban
functional areas from food delivery data, and the results are verified with office urban planning maps.
Section 4 analyzes the spatial distribution of the urban youth population, combined with the industrial
structure and the distribution of residential areas in Hangzhou. This paper concludes with a brief
summary and discussion in Section 5.

2. Study Area and Data

Hangzhou, capital of East China’s Zhejiang Province, is famous for its Internet and digital
economy, and it is also home to Chinese Internet and e-commerce giant Alibaba and a number of other
world-leading high-tech companies. According to the statistics in 2018, the main business income
of Hangzhou’s digital economy exceeded 1 trillion yuan, and its added value reached 335.6 billion
yuan, accounting for 24.8% of the city’s GDP [36]. The study area of this paper is the main city area of
Hangzhou, which covers 74 street districts with an area of over 1600 km2 (Figure 1).
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The dataset used in this paper was provided by the Chinese logistics company “Dianwoda”,
which recorded food delivery electric scooter trips that occurred in Hangzhou from 28 July 2017 to 26
September 2017, and the user-related information was removed for privacy protection. The original
delivery data collected real-time GPS information of the electric scooters during the entire food delivery
process. The fields of the dataset mainly include the order ID, rider ID, status, timestamp, latitude,
and longitude. The order ID is a unique identifier for a delivery order, while the rider ID is a unique
identifier for a delivery rider. Real-time GPS location information is converted to latitude and longitude,
accompanied by a time stamp. The field “status” represents different stages of the food delivery
process including dispatch, arriving, arrive, leave, delivering, and finish. In this study, the origin and
destination (OD) pairs for each delivery order are worthy of our major concern, where the origin for
the delivery order refers to the location of the restaurant, and the destination refers to the location
of the delivery customer. The record, whose status changes from arrive to leave, was extracted as
the origin of one delivery order, and the record, whose status changes from delivering to finish, was
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extracted as the destination. In this way, we could obtain the delivery OD dataset by extracting and
reorganizing the delivery electric scooter trip data.

In the delivery OD dataset, each record includes the order ID, the departure and arrival time,
the origin and destination location, the delivery trip distance, and the delivery time. The delivery
OD dataset contained 7,480,402 orders. Table 1 shows a small subset of these data for reference, and
Figure 2 shows the location distribution of the food delivery destination points in the study area.

Table 1. A small subset of the delivery origin-destination (OD) dataset. Each row corresponds to an
occupied delivery order.

Order
ID

Departure
Datetime

Departure
lon

Departure
lat

Arrival
Datetime

Arrival
lon

Arrival
lat

Duration
(sec)

Distance
(meter)

166256640 2017-07-29
20:59:48 120.279905 30.305337 2017-07-29

21:19:55 120.28229 30.313441 1206 4187.01

166862850 2017-07-30
13:27:28 120.152728 30.182544 2017-07-30

13:49:26 120.144546 30.161267 1317 4587.01

165838860 2017-07-29
13:57:53 120.32855 30.305576 2017-07-29

14:04:21 120.328559 30.305209 389 1403.50

164347920 2017-07-28
10:18:44 120.382136 30.305377 2017-07-28

10:27:33 120.387719 30.299668 529 1977.62
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As with many large datasets, the delivery OD dataset contains errors. Some errors are easy to
identify such as point coordinates out of the research area or order trips with a negative distance or
time. Table 2 shows the thresholds used in each filter as well as the quantity of orders that violate the
threshold. A trip distance of less than 0 as a negative value was filtered because it is geometrically
impossible, and the orders whose trip distance was more than 20 km were also filtered because of their
low incidence. The orders with a delivery time between 1 min and 90 min were reserved. Figure 3
shows the delivery duration and trip distance distribution of the delivery OD data after filtering.
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Table 2. The error thresholds that are applied to the trip distance and duration of the dataset. The last
column shows the percentage of orders that violate each threshold.

Feature Lower Threshold Upper Threshold Portion of Errors (%)

Trip Distance (meters) 0 20,000.0 0.20
Duration (min) 1 90 0.10
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We also calculated some statistics to understand the characteristics of the dataset. As shown in
Figure 4, we counted the average number of delivery orders of each day in one week and the average
number of delivery orders on an hourly basis in one day for both weekdays and weekends. It was
observed that people ordered more deliveries on weekends than on weekdays. There were two peaks
on each day, one peak from 11:00 to 13:00 and another peak from 17:00 to 20:00, which was similar on
both weekdays and weekends.
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3. Methods

In this section, we aimed to explore the spatially significant areas of urban youth, and determine
the functional types of the extracted areas. The process was divided into the following steps: (1) map
the food delivery destination points into a spatiotemporal cube and divide the research area into
equal grids; (2) calculate the delivery hot value by using the modified Getis-Ord statistic method,
and construct the time series by combining the time pattern with the delivery hot values of each
grid; and (3) cluster the time series of the delivery data with the unsupervised k-means method and
determine the functional types of clusters based on the behavioral characteristics of ordering food
delivery. Finally, the results were verified by office urban planning maps.
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3.1. Spatiotemporal Cube Construction

In this paper, the delivery destination points are the main processing target. As shown in Table 1,
the destination points have longitude–latitude information and the arrival time, which can be mapped
into a three-dimensional Euclidian space. We constructed a spatiotemporal cube model where the
cubes had equal space size and time intervals. Each cube was represented as a three-dimensional array
c = (xc, yc, tc), where xc is the number of cubes in the x dimension, yc is the number of cubes in the y
dimension, and tc is the number of cubes in the time dimension. We set the time size to 1 h and the
spatial size to 0.001 degrees (approximately 95 to 115 m). The research area was also divided into equal
grids, as shown in Figure 5. After data mapping and aggregation, each spatiotemporal cube stored the
count of the destination points in that cube as its attribute.
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3.2. Time Series Construction

3.2.1. Modified Getis-Ord Statistic Method

The well-known Getis-Ord statistic method was used in this paper to calculate the hot value of
each cube. To be a statistically significant hotspot, a feature will have a high value and be surrounded
by other features that also have high values. The method provides a z-score that allows users to
determine where the features with either high or low values are clustered spatially. Formally, based on
the constructed spatiotemporal cube, the Getis-Ord value G∗i of each cube is defined as [37,38]:

G∗i =

∑n
j=1 wi, ja j − a

∑n
j=1 wi, j

S

√
n
∑n

j=1 w2
i, j−

(∑n
j=1 wi, j

)2
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, (1)
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∑n
j=1 a j

n
and S =

√∑n
j=1 a2

j

n
− a2, (2)
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where n refers to the total number of cubes, and a j is the attribute value of cube c j. wi, j is the spatial
weight between cubes i and j, and is defined as follows:

wi, j =

{
1, if ci and c j are neighbors
0, otherwise

, (3)

Here, we define two cubes as neighbors only if the maximum distance between i and j in any of
the three coordinates (xc, yc, tc) ≤ 1. A cube is also its own neighbor. Then, to simplify the computation
of the Getis-Ord statistic value, we use N(ci) to denote the set of neighboring cubes of ci and

∣∣∣N(ci)
∣∣∣ to

denote the number of such neighboring cubes. Therefore, we obtain the following simplified formula
for the Getis-Ord statistic:

G∗i =

∑
j∈N(c j)

a j − a ·
∣∣∣N(ci)

∣∣∣
S

√
n|N(ci)|−|N(ci)|

2

n−1

, (4)

3.2.2. The Time Series Construction

It is well known that people usually have different behavior patterns on weekdays and on
weekends; thus, we built a 48-h timeline that consisted of 24-h periods on weekdays and weekends.
After the Getis-Ord statistic calculation was performed for all the cubes, a group function was used
to gather the cubes with the same location and time period, and an aggregate function averaged the
Getis-Ord values of the cubes in the same group. Finally, the synthesized time series were obtained as
a linear combination of the 48-h timeline and the statistical value of delivery order quantity. Then, each
grid would have a time series TSk

({
gk

t , t = 1, 2, . . . , 48; k = 1, 2, . . . , n
})

, where n is the total number of
the grids, and gk

t is the hot value of grid k at time period t (1–24 for weekdays and 25–48 for weekends).
As the Getis-Ord statistic method is a common method for hotspot analysis, we also obtained

48 delivery hotspot distribution maps that corresponded to 48 time periods. The delivery hotspot
distribution during typical time periods (i.e., lunch time, dinner time, and midnight) is visualized in
Figure 6.

3.3. Time Series Classification and Identification

The statistical hot values in the time series represent the delivery quality in one region during
one period. That is, when the hot value is higher, more delivery orders are placed in this area, and
low hot values generally represent less delivery orders. To better identify functional areas, the grids
whose hot values were negative in all time periods were removed. To emphasize the characteristics of
the delivery data and weaken the impact of regional factors, the hot values of the time series were
normalized for each grid.

The clustering method k-means was applied to classify the time series. Unsupervised clustering
methods require the number of clusters to be known beforehand. To determine an appropriate value for
K, the ratio between the intra-cluster and inter-cluster distances was introduced as a validity index [39],
which is defined as:

intra− cluster =
1
N

K∑
i=1

∑
x∈Ci

(x− zi)
2, (5)

inter− cluster = min
i, j

(zi − z j)
2, (6)

validity =
intra− cluster
inter− cluster

, (7)

where N is the number of instances; K is the number of clusters; and zi is the centroid of cluster Ci.
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An ideal partition will minimize the intra-cluster distance and maximize the inter-cluster distance;
therefore, the best partition will be the partition that minimizes the validity value. Figure 7 presents the
validity values by using the k-means cluster method to the synthesized time series for K ∈ {2, . . . , 10},
and the minimum validity value was obtained when K = 6.
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Figure 8 represents the cluster results of the time series by using the k-means method with K = 6,
where the plotted curves (each consisting of 48 points) represent the cluster centers (red for weekdays
and blue for weekends). In addition, the maximum and minimum values of each time period in
each class were plotted in a thin color shadow. Figure 9 shows the location distribution of the grids
according to the cluster results.
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Within different land use areas, people may demonstrate different routine activities. This allows
us to determine the social functions of areas based on the customary characteristics of ordering delivery.
The peaks of the cluster curves were concentrated in four dining periods (i.e., at lunch time and dinner
time on weekdays and weekends). By comparing the curves of the cluster centroids, we found that six
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clusters could be divided into two categories based on their similar curve characteristics: one category
contains clusters a–c, and another category contains clusters d–f.

Clusters a–c: This category is characterized by the fact that a significant peak appears during lunch
time on weekdays. Delivery during weekdays is more than delivery during weekends, and delivery
during lunch time is greater than delivery during dinner time both on weekdays and weekends. This
category shows a work-related activity characteristic, and the hypothesis is that the areas included in
this category are used as industrial parks, office buildings, and/or commercial-related areas.

Clusters d–f: This category representative shows that during weekdays, delivery at dinner time
is greater than delivery at lunch time, especially in cluster d. Delivery during weekends is greater
than delivery during weekdays. These characteristics imply living areas, where people come back
after work on weekdays and stay during weekends, which may include residential communities,
apartments, and/or college dormitories.

Clusters in the same category also exhibited different characteristic strength, with a > b > c
and d > e > f. The factors that contribute to different cluster characteristic strength may include the
following: (1) The number of people in a region varies during different time periods, for example,
in industrial parks, the workers are mainly concentrated during the daytime on weekdays; and (2)
the dining time is short or limited. The peak time of ordering delivery is related to people’s eating
habits. However, white-collar workers may be limited by work arrangements, resulting in a dining
peak. The strong cluster characteristic also indicates that the social function of this area is significant.

3.4. Cluster Results Validation

To validate our hypotheses, we compared the cluster results against office urban planning maps
released by the Hangzhou Planning Bureau, in which the land use types mainly include: residential,
commercial, industrial, educational, and green (Figure 10).
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Figure 10. Office urban planning map for Hangzhou (partial).

As shown in Figure 9, the cluster results are displayed in the form of grids on maps. To understand
how well the clusters were identified as the work and living areas, we evaluated the percentage of
overlap that exists between the grids of the clusters and the official urban planning maps. This way, we
would have an understanding of the accuracy of our approach as well as of the difference between the
results. It should be noted that this verification method is an approximate measure due to the different
granularities of maps or human factors.

Table 3 shows the percentage of overlap between the office planning map (columns) and six cluster
results (rows). Here, the office planning map was divided into the six land use types of residential,
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commercial, industrial, educational, mixed commercial and residential, and other. Commercial
and industrial types refer to work areas on which office buildings and industrial parks are located;
residential type areas are obviously living areas; educational areas are mixed areas in which dormitories
are living type areas, and research institutes are work type areas. We can overlay the cluster grids
with the office planning map to see which land use type the grids belong. Each element in the table
represents the percentage of grids that belong to each land use type in one cluster.

According to our assumptions, clusters a–c represent work areas, while clusters d–f represent
living areas. The commercial and industrial types are the two land use types that occupy the greatest
proportion in clusters a–c, which account for 94.6%, 81.2%, and 66.4% in total, respectively. In cluster
a, the industrial type accounts for 64.9% and was more than twice the proportion of the commercial
type, which means that large-scale industry parks have a stronger industrial aggregation effect.
The residential type obviously occupied the greatest proportion in clusters d–f, which account for
87.2%, 64.7% and 59.0%, respectively. The educational type is the second largest proportion in clusters
e and f, perhaps because a college dormitory area, as a type of living area, is a hotspot for delivery due
to its large student user group.

Table 3. Percentage of overlap between the official planning maps and the cluster results for Hangzhou.

Cluster
Results

Official Planning Map

Residential Commercial Industrial Educational
Mixed

Commercial
and Residential

Other

a 0 29.7% 64.9% 0 2.7% 2.7%
b 8.3% 44.0% 37.3% 1.3% 2.9% 6.2%
c 12.4% 42.6% 23.9% 4.6% 2.7% 13.8%
d 87.2% 2.6% 0 7.7% 2.6% 0
e 64.7% 3.3% 1.2% 25.3% 2.1% 3.3%
f 59.0% 10.1% 3.9% 18.1% 2.2% 6.6%

Overall, according to the distribution of the land use types in each cluster, the work and living
areas extracted by the method of this paper were credible. In addition, it could be discovered that
the recognition accuracy of the regional function type was related to the strength of the cluster
characteristics. That is, when the cluster characteristic strength is stronger, the accuracy of the regional
function type identification is higher.

4. Analysis

4.1. Work Areas

The work areas represent the location distribution of companies, enterprises, and industrial
parks. As Hangzhou is famous for its Internet and data economy, we obtained information on Internet
and e-commerce companies from a recruitment website called lagouwang (https://www.lagou.com) to
compare the extracted work areas of this paper. The dataset included the company ID, company name,
industry field, company scale, and company address, and all company address text were converted to
latitude and longitude coordinates. After filtering out the data that were outside the research area and
that contained errors, we finally had 1005 Internet and e-commerce company items. Figure 11 shows
the location distribution of the companies.

We used heat maps to visualize the hotspot regions of the work areas, helping to discover the
distribution pattern and potential characteristics. The heat maps were made with the kernel density
estimation (KDE) method, which calculates the density of the features in a neighborhood around these
features. Before making heat maps, three parameters should be set, namely the output cell size, the
search radius, and the population field. The cell size was set to 0.0001 degrees, and the search radius
was set to 0.005 degrees. The population field value determines the number of times to count the

https://www.lagou.com
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feature, which could be used to weigh some features more heavily than other features or to allow one
point to represent several observations. In this section, the population field was set based on the scale
of the companies and the strength of the cluster results’ characteristics, as shown in Table 4.
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Table 4. The population field set for the kernel density estimation method.

Population Field 1 2 3 4 5 7

Company scale <15 15–50 50–150 150–500 500–2000 >2000
Cluster result Cluster c Cluster b Cluster a

Figure 12 shows the heat maps made from the Internet and e-commerce companies and the
extracted work areas. We discovered that the two heat maps had similar hotspot region distributions.
This shows that a large number of young people were working in the Internet-related industries areas.
There is a mutual driving relationship between industry agglomeration and talent gathering [40].
Regional industrial structure plays an important role in attracting talent or human capital [41], and
the improvement of Internet-related industrial agglomeration level can promote the development of
young labor gathering. The enhancement of the young labor gathering level can also promote the
strengthening of Internet-related industrial agglomeration in the region. From the phenomenon that
the spatial distribution of the delivery customers’ work places is similar to the spatial distribution of
the Internet and e-commerce companies, we can obtain an inference that Hangzhou’s Internet-related
industry has a well-planned structure and good development, which can provide sufficient employment
and development opportunities for young people.
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The layout of urban industrial planning will affect the distribution of work hotspots. As shown in
Figure 13, areas A, B, C, and D are the four high-tech areas planned by the government.

Area A is located in Hangzhou Future Sci-tech City, also called Haichuang Park, which has made
great efforts to cultivate industries such as electronic information, new energy and materials, and so on.
It has a series of new high-tech enterprises such as the Alibaba Taobao Town and Zhejiang Overseas
High-level Talent Innovation Park.

Area B is located in the Xiasha District, which stands for the Hangzhou Economic and Technological
Development Area. Xiasha is also a district of colleges and universities, 14 in total, which provide
a large number of high-quality young talent. Several high-tech industrial parks are located here
including the Hangzhou Singapore Science and Technology Park, Hangzhou Smart Valley Mobile
Internet Pioneer Park, and Hangzhou High-Tech Enterprise Incubation Park.

Area C is located in the Hangzhou Binjiang High-Tech Industrial Development Zone, which has
followed the leadership of the Scientific Outlook on Development and persisted in the “development
of high technology and realization of industrialization”. It has many famous Internet companies such
as NetEase, Hikvision, Alibaba, and Huawei, and has large industrial parks such as the Hangzhou
High-Tech Software Park, Xike Technology Park, and Shangfeng E-Commerce Industrial Park.

Area D is located in Hangzhou Northern New City, whose goal is to become the second largest
Internet innovation center in Hangzhou. The large industrial parks located here include Hangzhou
North Software Park and Paradise e Valley E-commerce Creative Industry Park.

The establishment of high-tech zones in the city, where locations are generally selected in the
peripheral areas of the city, will help the city to gradually change from a single-center form to a
multi-center form and drive the development of related industries by sharing resources and overcoming
external negative effects to thus effectively promote the formation of industrial clusters.

Area E in Figure 13 is the urban downtown area, and most of the traditional and prosperous
business districts are located here such as Wulin, Huanglong, Qianjiang New Town, and QianJiang
Century City. There are many office buildings in these business districts, which have good transportation
and communication conditions and high-quality supporting facilities, thus attracting a large number
of companies to settle here.



ISPRS Int. J. Geo-Inf. 2020, 9, 42 14 of 20ISPRS Int. J. Geo-Inf. 2020, 9, 42 14 of 20 

A

C

B

D

E

 

Figure 13. The distribution of high-tech zones and the downtown area in the heat map. 

4.2. Living Areas 

Like the work areas analysis, we made a heat map to localize the hotspot regions in living areas 
by using the KDE method. The parameters of the method were set as follows: (1) the cell size was set 
to 0.0001 degrees; (2) the search radius was set to 0.005 degrees; and (3) for the population field, the 
clusters d, e, and f were set to 7, 3, and 1, respectively. Figure 14 shows the heat map of the living 
areas. 

 
Figure 14. Heat map of the living areas made by the kernel density estimation (KDE) method. 

Figure 13. The distribution of high-tech zones and the downtown area in the heat map.

4.2. Living Areas

Like the work areas analysis, we made a heat map to localize the hotspot regions in living areas
by using the KDE method. The parameters of the method were set as follows: (1) the cell size was set
to 0.0001 degrees; (2) the search radius was set to 0.005 degrees; and (3) for the population field, the
clusters d, e, and f were set to 7, 3, and 1, respectively. Figure 14 shows the heat map of the living areas.
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Transportation is one of the important factors that affect the choice of residential location, which
is related to commuting time. The subway, as a form of public transportation, has become a major way
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for commuting, especially in large cities. Hangzhou has opened subway lines Nos. 1, 2, and 4. We
used the subway stations as centers to create buffer zones with a buffer range of 1.5 km and overlay the
buffer zones with the heat map of the living areas; the result is shown in Figure 15. From the results
of the buffer analysis, it is clear that the living areas are mainly distributed along the subway lines.
Statistically, the grids that represent living areas within the buffer zones account for 81.24% of the total.
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It is easy to find that there are four hotspot regions of living areas in the heat map, as shown
in Figure 16e. In contrast with online maps such as Google Maps, a large number of residential
communities and apartments appear in the hotspot regions, as shown in Figure 16a–d. In addition,
we found that urban villages, which are also called chengzhongcun in Chinese, also appeared in all
hotspot regions. Urban villages are formed when expanding modern urban districts encroach on rural
settlements and became transitional neighborhoods under rapid urbanization [1,42].

Hangzhou has a huge job market for Internet-related industries, which has attracted a large
number of young talent in recent years and produces a growing demand for housing, especially for
low-rent housing. We added the center points of the grids from clusters d and e to the hotspot region
A, which were identified as living areas and had more significant functional characteristics. As shown
in Figure 17, although residential communities and apartments were densely distributed in area A, the
locations of the cluster grids were mostly concentrated in the urban village areas. It shows that the
urban villages have become one of the residential choices for many young people, which provides
low-rent housing and low-cost living spaces. However, the population of urban villages has strong
mobility and instability [43], and there are many private rental housing accommodations in urban
villages that are not registered in the local house lease management office, which will make it difficult
to monitor the floating population in urban villages. Thus, the method of this paper provides a new
way to discover urban villages in cities, which will help to find the hotspot areas of floating populations
and promote urban youth population management.
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5. Conclusions

In this paper, food delivery data, as a new data source, were introduced into urban computing,
and we proposed a time-series-based clustering method to discover the geographical distribution
of urban youth. The synthetic time series of food delivery were constructed by combining the
weekdays–weekends 48-h timeline with delivery hot values that were calculated by using the modified
Getis-Ord statistic method to utilize the characteristics of the delivery data. Then, an unsupervised
k-means clustering method was adopted to classify the time series into six classes, and based on the
behavioral characteristics of ordering food delivery that differ between job and housing areas, the six
classes were identified as two functional types (i.e., work areas and living areas). The identification
result was verified by comparing it with the office urban planning map, and the accuracy of the
identified work areas was 66.4–94.6%, while the accuracy of the identified living areas was 59–87.2%.

Focusing on the urban youth population, especially white-collar workers, the work and living
areas were further analyzed by comparing them with the industrial structure and residential layout
in Hangzhou. Heat maps were made with the kernel density estimation method to localize hotspot
regions in the work and living areas, with the main findings as follows:

1. The spatial distribution of the delivery customers’ work places was similar to the spatial
distribution of the Internet and e-commerce companies of Hangzhou. This shows that a large
number of young people are working in the Internet-related industries areas planned by the
government, and there exists a symbiotic relationship between Hangzhou’s Internet-related
industrial agglomeration and young labor gathering. The establishment of high-tech zones has
effectively attracted young people, and the young labor gathering also promotes the development
of the Internet-related industry. There is a mutual driving relationship between Hangzhou’s
Internet-related industry agglomeration and young labor gathering.

2. Transportation and living costs are the two important factors that affect the choice of residential
location for young people. The hotspot living areas of urban youth are mostly located within
1.5 km from the subway stations, and the subway is becoming one of the most important modes
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for commuting. Urban villages have become one of the residential choices for many young
people, which provide low-rent housing and low-cost living spaces.

In addition, the findings of this paper can not only improve the view of the current state of the
city’s industrial development, but can also promote floating population management by discovering
and monitoring the key areas such as urban villages.

In future studies, machine learning methods can be introduced to improve the classification
method for food delivery data, and thus, the identified functional types can be divided into more
land use categories. By comparing multi-year food delivery data, we can discover changes in the
distribution of work and living areas to track the urbanization process.
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