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Abstract: The accurate prediction of bus passenger flow is the key to public transport management
and the smart city. A long short-term memory network, a deep learning method for modeling
sequences, is an efficient way to capture the time dependency of passenger flow. In recent years, an
increasing number of researchers have sought to apply the LSTM model to passenger flow prediction.
However, few of them pay attention to the optimization procedure during model training. In this
article, we propose a hybrid, optimized LSTM network based on Nesterov accelerated adaptive
moment estimation (Nadam) and the stochastic gradient descent algorithm (SGD). This method
trains the model with high efficiency and accuracy, solving the problems of inefficient training and
misconvergence that exist in complex models. We employ a hybrid optimized LSTM network to
predict the actual passenger flow in Qingdao, China and compare the prediction results with those
obtained by non-hybrid LSTM models and conventional methods. In particular, the proposed model
brings about a 4%–20% extra performance improvements compared with those of non-hybrid LSTM
models. We have also tried combinations of other optimization algorithms and applications in
different models, finding that optimizing LSTM by switching Nadam to SGD is the best choice. The
sensitivity of the model to its parameters is also explored, which provides guidance for applying
this model to bus passenger flow data modelling. The good performance of the proposed model in
different temporal and spatial scales shows that it is more robust and effective, which can provide
insightful support and guidance for dynamic bus scheduling and regional coordination scheduling.

Keywords: passenger flow; short-term prediction; long short-term memory network; hybrid
optimization algorithm

1. Introduction

As a kind of dynamic traffic information, short-term bus passenger flow is a key point that both
managers and travelers pay attention to. Based on short-term bus passenger flow, the intelligent
transportation system (ITS) [1] can provide essential reference data for administrators and travelers
to help them make decisions, which will contribute to building a smart city. Therefore, it is of great
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significance to develop an effective framework to model short-term bus passenger flow and make
accurate predictions.

Traditionally, short-term prediction models were mostly derived from statistical and machine
learning (ML) methods, including regression analysis [2], the time-series-based model [3,4], support
vector machine [5], artificial neural network prediction model [6], Bayesian method [7], gradient
boosting method [8], and KNN-based method [9]. However, these traditional models cannot process
datasets in raw format. When constructing an ML-based model, careful engineering and considerable
domain expertise are required to design a feature extractor, which transform raw data into a suitable
internal representation so that the learning sub-system can detect the temporal dependency of the
input. This procedure is called feature engineering [10]. In the big data era, feature engineering has
become much more complicated than ever.

Deep learning (DL) was proposed to solve this problem [11]. A typical DL model can accept
input data in raw format and automatically discover the required features level by level, which greatly
simplifies feature engineering. With the DL-based model, there was a clear improvement of traffic
prediction [12–15]. The LSTM [16] is a special kind of deep recurrent neuron network (RNN), which
dynamically feeds the output of the previous step back into the input layer of the current step in
sequence. This is called a dynamic feedback connection, that is to say, the output is dependent on both
the current input and the previous features. This feedback characteristic makes LSTM particularly
suitable for modeling the dynamic temporal dependency that occurs in a time series. Therefore,
several LSTM-based models were proposed, whose accuracies are better than traditional prediction
methods [17–19], making LSTM be widely used in traffic studies. However, these studies mainly
focused on how to apply the LSTM to traffic forecasting, ignoring the model optimization procedure.

Optimization is a crucial step of deep learning. During the training procedure, the model optimizer
updates and computes the parameters that affect model training and model output to approximate
or reach the optimal value, and attempts to optimize the objective function by following the steepest
descent direction given by the negative of the gradient [20]. Owing to the competitive performance
and the ability to work well despite minimal tuning, an increasing share of deep learning researchers
are training their models with adaptive methods [21], which leads to Adam [22] becoming the default
algorithm used across many deep learning frameworks [23], so as in traffic forecasts. However, despite
the superior training outcomes, adaptive methods have been found to generalize poorly compared to
Stochastic gradient descent (SGD) [24]. They tend to perform well in the initial portion of training but
are outperformed by SGD at later stages of training. When applying the LSTM model to transport
forecast, the poor generalization could lead to larger forecast errors and affect the model stability.

To address this problem, in this paper, we propose a hybrid optimized LSTM network for short-term
bus passenger flow prediction. The hybrid optimized model employs the Nesterov accelerated adaptive
moment estimation (Nadam) [25,26], an extended algorithm for Adam, to optimize the prediction
model at the first stage, which is able to accelerate the training efficiency at the beginning. Then, the
Nadam is replaced by the stochastic gradient descent algorithm (SGD) at the second stage, which
can solve the misconvergence problem in complex model, so as to achieve better generalizations and
avoid overfitting. Compared with previous studies, there are two main contributions of this paper.
Firstly, the proposed hybrid optimized LSTM model for short-term bus passenger flow predicting
integrates the advantages of both the Nadam and SGD algorithms to make the model converge faster
and generalize better, ultimately reducing the prediction error. Secondly, we explore the performance
of the proposed model for both temporal scale and model stability, which provides references to apply
this model. Ultimately, we find that the proposed model is more suitable for short-term passenger
flow prediction.

The remainder of this paper is organized as follows. Section 2 simplifies the problem definition of
short-term passenger flow prediction. The proposed hybrid optimized LSTM network is then explained
in Section 3. The case study that models and predicts the passenger flow of Licang district, Qingdao is
introduced in Section 4. The sensitivity of the new model to the parameters, model performance on
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different kind of temporal scales and exploration of model stability are also discussed in this section.
Lastly, Section 5 summarizes the conclusions of this paper.

2. Data Processing and Problem Definition

As shown in Figure 1, the purpose of this study is to predict future data according to existing
passenger flow data. We intend to construct a transformation that can accurately model the temporal
dependency from historical observations and make accurate predictions.
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Figure 1. Problem definition of short-term passenger flow prediction.

Therefore, the prediction problem can be defined as Equation (1):

xt+1 = f (xt−k, xt−k+1, . . . , xt, W) (1)

where xt+1 is the prediction target (passenger flow volume at the t + 1 time interval), f is the prediction
model to be constructed, xt−k, xt−k+1, . . . , xt are the sets of historical observations and W denotes all
parameters to be learned. A transformation f learns the temporal dependency (W) from historical sets
and makes predictions with the new input sets.

3. Short-term Passenger Flow Prediction Based on LSTM

3.1. Principle of LSTM

The long short-term memory (LSTM) network is a kind of recurrent neural network (RNN), whose
detailed structure is shown in Figure 2. The core unit of LSTM is a special memory block where
a memory cell is accessed, written and cleared by an input gate, forget gate and output gate [27].
Through the gates, LSTM can effectively avoid the gradient decay of training recurrent neural network,
which can capture long-term dependencies from the time series data of passenger flow.
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The input gate It, forget gate Ft and output gate Ot are defined as Equations (2)–(4), respectively:

It = σ(Wi
[
h<t−1>, x<t>

]
+ bi) (2)
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Ft = σ(W f
[
h<t−1>, x<t>

]
+ b f ) (3)

Ot = σ(Wo
[
h<t−1>, x<t>

]
+ bo) (4)

where Wi, Wf and Wo are learnable weight parameters, bi, bf and bo are learnable offset parameters,
h<t−1> is the hidden layer from the previous layer, and σ(x) = 1

(1+exp(−x)) . The value field of each
element in the input gate, forget gate and the output gate of LSTM is [0,1]. LSTM saves the candidate
implied state through an identifier called candidate cell c̃<t>. Similarly, it uses tanh with a range of
[−1,1] as the activation function:

c̃t
<t> = tan h(Wc

[
h<t−1>, x<t>

]
+ bc)

c<t> = Ft·c<t−1> + It ·̃c<t> (5)

where Wc is a learnable weight parameter, bc is a learnable offset parameter, and c<t> is the cell state of
LSTM. The transmission of information in the hidden state can be controlled by the input gate, the
forget gate and the output gate. The hidden state is updated as in Equation (6):

ht = Ot·tan h(ct) (6)

When the value of the output gate of LSTM is close to 1, the cell state information will be transferred to
the hidden layer variable; when the value of the output gate is close to 0, the cell state information is
left to itself.

In summary, LSTM is a good way to capture a large interval dependence from time series data
of passenger flow. It has a more complex network structure and stronger information extraction
ability. Applying LSTM into passenger flow prediction can not only extract nonlinear features like
the feedforward neural network, but also effectively capture the time dependency of passenger flow,
which will improve the accuracy of passenger flow prediction.

3.2. A Hybrid Nadam-SGD Optimized Method

3.2.1. SGD Algorithm

Generally speaking, the gradient descent method is known as the batch gradient descent method,
that is, every time the gradient is calculated, all the training samples need to be traversed, and then the
model parameters w are updated by the gradient ∇wLt−1 of the parameters in the loss function L(w).
The model parameters are updated along the negative gradient direction and the update steps are as in
Equation (7):

wt ← wt−1 − α · ∇wLt−1 (7)

where the parameter wt−1 is the value of the previous step and α is the learning rate (learning step size).
The principle of the stochastic gradient descent method is similar to that of batch gradient descent.
The difference is that for each iteration of stochastic gradient descent, only a small sample is randomly
selected to calculate the gradient, and then a parameter update is performed, which improves the
operation efficiency.

3.2.2. Nadam Algorithm

SGD is a typical non-adaptive optimization algorithm. For SGD, there is a disadvantage that it
scales the gradient uniformly in all directions. This may lead to poor performance as well as limited
training speed. To address this problem, recent work has proposed a variety of adaptive methods that
scale the gradient by square roots of some form of the average of the squared values of past gradients.
Examples of such methods include Adam [19], AdaGrad [28] and RMSprop [29]. Therefore, current
research on passenger flow prediction mainly uses adaptive methods as optimization algorithm to
solve these problems. Nadam is a kind of adaptive method, which combines the advantages of the
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other mainstream algorithms. Compared to SGD, Nadam regards gradient descent as a process of
motion and adds inertia into the process of motion. That is, if the current descent trend is found to be
relatively large (the descent process is a steep slope), the inertia can be used to make the descent faster.
Let gt = ∇F(wt) be the gradient of the current parameters of the objective function, and define the
first-order moment mt and second-order moment Vt according to the gradient history as in Equation (8):

mt = φ(g1, g2, . . . , gt)

Vt = ϕ(g1, g2, . . . , gt)
(8)

It accumulates a decaying sum (with decay constant β1) of the previous gradients into a momentum
vector m, and uses that instead of the true gradient.

Furthermore, for parameters that do not change frequently, we hope to update them more
frequently on the occasional samples. For parameters that are frequently updated, we do not want
them to be severely affected by a single sample. We hope to update them slowly so that we can
dynamically adjust the learning rate to complete the parameter update. In order to control the learning
rate, the Nadam algorithm introduces a second-order moment to the algorithm and accumulates a
decaying mean parameterized by β2.

Finally, Nadam adds Nesterov momentum to the algorithm, which puts a stronger constraint
on the learning rate and has a more direct impact on the updating of the gradient. This change sets
Nadam apart from Adam. Experiments show that in most cases the improvement of Nadam over
other algorithms such as Adam is fairly dramatic [25]. The specific implementation process of Nadam
is shown as Algorithm 1.

Algorithm 1 Nadam algorithm

gt ← ∇t−1 f (wt−1 − α·β1·mt−1)

ĝt ←
gt

1−
∏t

i=1(β1)i

mt ← β1 ·mt−1 + (1− β1) · gt

m̂t ←
mt

1−
∏t+1

i=1 (β1)i

Vt ← β2 ·Vt−1 + (1− β2)g2
t

V̂t ←
Vt

1−βt
2

m̃t ←
(
1− (β1)t+1

)
ĝt + (β1)t+1m̂t

wt+1 ← wt − α ·
m̃t√
V̂t+ε

3.2.3. Switching Nadam to SGD

Adaptive gradient methods have been used in many applications owing to their competitive
performance and the ability to work well despite minimal tuning. However, adaptive methods often
display faster progress in the initial portion of the training, but their performance quickly plateaus on
the unseen data (development/test set) [21]. Moreover, while these algorithms have been successfully
employed in several practical applications, they have also been observed to not converge in some other
settings. It has been typically observed that in these settings some minibatches provide large gradients
but only quite rarely, and while these large gradients are quite informative, their influence dies out
rather quickly due to the exponential averaging, thus leading to poor convergence [30].

To maximize the advantages of various algorithms, this paper proposes a combinatorial
optimization method based on Nadam (an adaptive algorithm that integrates the advantages of
other algorithms) and SGD (a typical algorithm of non-adaptive methods). Through experiments, it
is found that the loss of SGD algorithm drops very slowly in the early stage of model training. On
the contrary, the loss of Nadam algorithm decreases rapidly in the early stage of model training, and
then falls into shock in the later stage, making it difficult to obtain the optimal value. Therefore, as
shown in Figure 3, we use the Nadam algorithm to optimize the prediction model at the first stage,
which improves the training efficiency at the beginning. When the Nadam algorithm starts to show
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weaknesses in the later stage, we switch to the SGD algorithm to continue the training. Here, we set a
threshold q as the maximum that we can tolerate in Nadam fluctuations, and use it to determine when
to switch Nadam to SGD.
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3.3. Hybrid Optimized LSTM Model for Short-Term Passenger Flow Prediction

The general framework of the proposed model is shown in Figure 4. As illustrated in Figure 4a,
there is a set of historical observations of passenger flow. The red dot indicates the passenger flow at
target time to be predicted. We use green dots to reflect the passenger flow at historical time, and feed
them in sequentially into the LSTM models in Figure 4b to capture the dynamic temporal dependency
occurring in time-series. Finally, as Figure 4c shows, the loss is calculated, and the whole model
is trained by back-propagation. The proposed hybrid optimized algorithm optimizes the objective
function. In the following section, the main modules of the hybrid optimized LSTM model are detailed.

3.3.1. Transform the Time Series of Passenger Flow into Supervised Learning

The statistics of passenger flow need to be converted into a standard data format in order to build
a supervised learning model. In addition, the deep learning model is sensitive to input data, so the
training sample needs to be processed before establishing the prediction model in this paper, which
mainly includes sliding window processing, normalization and one-hot encoding processing to the
discrete variable. The sample data format obtained is as in Equation (9):

∼

X =



x1 x2 · · · xk−1 xk
xp+1 xp+2 · · · xp+k−1 xp+k
· · · · · · · · · · · · · · ·

x(n−2)p+1 x(n−2)p+2 · · · x(n−2)p+k−1 x(n−2)p+k
x(n−1)p+1 x(n−1)p+2 · · · x(n−1)p+k−1 x(n−1)p+k


(9)

where n = T−k
p + 1, T is the length of original time series, k, p are the adjustable sliding window

parameters and the new data sample size obtained is (n−1)k. The passenger flow information of the last
column in the data sample is the value of the sample label. In addition to the historical passenger flow,
we also take the date type (working day or non-working day) as a variable. Therefore, the original
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passenger flow time series in this paper is a two-dimensional dataset—that is, each element in the
formula is a vector, xi = [xi,1, xi,2, · · ·, xi,m], where m is the characteristic dimension.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 7 of 24 
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3.3.2. Input Datasets

The input is a three-dimensional matrix with dimensions [batch_size, time_step, feature_size], in
which batch_size refers to the number of batch samples that input model training at a time, time_step
refers to the input sequence length of each sample (i.e., the number of elements in each line of sample
after sliding window processing and is shown in Figure 4 as j), and feature_size refers to the characteristic
dimension of each element. Here, feature_size is fixed based on the extracted features, while batch_size
and time_step can be adjusted dynamically to get the best model effect. The objective of the study is to
predict the passenger flow in a single period, so the output of the model is a vector, with dimension
[batch_size,1].

3.3.3. Capturing Temporal Dependency by LSTM

Existing studies [10,31] have shown that deep LSTM architectures with several hidden layers
can build up progressively higher level of representations of sequence data and work more effective.
As shown in Figure 4b, the short-term passenger flow prediction model consists of three stacked
LSTM networks. Two Batch_Normalization layers and three Dropout layers are added to improve the
training speed and the robustness as well as to prevent overfitting. In addition, we use two dense
layers to fully connect the neurons in the upper layer and realize the nonlinear combination of features.
The activation functions given in dense layers are linear and relu respectively.

3.3.4. Model Training

To train the hybrid optimized LSTM model, the mean-square error (MSE) is used as the loss
function. As shown in Equation (10), yi is the ground truth,

∼
yi is the prediction value and n is the

number of values to be predicted. All samples are divided into three sub-datasets: a training set, a
validating set and a testing set. The training set is fed into the model in batches. For each batch, the
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value of the loss function is calculated after forward propagation. Then, the loss is back-propagated
layer-by-layer and an optimizer updates all trainable parameters according to the loss. The hybrid
optimized algorithm proposed above is applied as the optimizer. By minimizing the loss, all trainable
parameters are trained.

MSE =
1
n

n∑
i=1

(
∼
yi − yi)

2
(10)

4. Case Study

4.1. Experimental Data and Environment

The proposed hybrid optimized LSTM model was validated by predicting passenger flow through
different stations (30 stations such as Licun Park and Shengli Bridge, etc.) in March 2016 in Licang
district of Qingdao. A total of 93,000 passenger flow samples including working days (Monday to
Friday) and non-working days (Saturday and Sunday) were collected. The location of study area and
average daily passenger flow distribution are shown as Figure 5.
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The data used in this study were provided by Qingdao Public Transportation Group, which
includes smart card data (SCD), bus arrival and departure records for each station and schedule table of
drivers. The SCD data covered most transactions of Qingdao citizens for 1–31 March 2016, containing
about 1.2 million records each day. Bus arrival and departure data covered around 5300 buses on the
core roads of Qingdao. The schedule table of drivers recorded the relationship between buses and
drivers. The format of the dataset is shown in Tables 1–3, through which we can extract the passenger
flow volume of each line and each station.

Table 1. Data structure of SCD.

Field Name Description

CARDID Unique number for each card.
ACTTIME Detail time of the transaction.

DWNLINEID Line name of this transaction.
DRIVERID Driver’s ID number.

CARDTYPE Type of smart card.
PRICE Price of trip.
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Table 2. Data structure of bus arrival and departure records.

Field Name Description

BUSID Unique number of bus.
ROUTEID Line name of this bus.

STATIONNAME Name of the station.
STATIONSEQNUM Station number of this line.

ISARRLFT Arriving or departing.
DATETIME Detailed time of the action.

Table 3. Data structure of schedule table.

Field Name Description

BUSID Unique number of bus.
ROUTENAME Line name of this bus.

DRIVERID Number of drivers on this bus.

The passenger volume of bus boarding referred to the number of people getting on the bus within
a fixed period in the target area. Since the SCD did not record the boarding station of each transaction,
we matched the SCD record with bus arrival and departure records through the schedule table to
establish the corresponding relationship. Then, by comparing the transaction time with the bus arrival
and departure time, the boarding passenger volume of each station can be calculated. The specific
statistical process is shown in Figure 6. Corresponding to the human activities, we took 05:30 to 22:00
as the target time period. Since the bus departure interval in Qingdao is 10 min, we made time slices
with 10 min as the interval. There are 100 time slices in a day.
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Figure 6. Flowchart of passenger flow statistics.

We visualized the passenger flow of each station in Licang district with a comparison chart. As
shown in Figure 7, the peaks and fluctuations of passenger flow are quite different in different stations.
Among them, the passenger flow of Licun Park is significantly higher than that of other regions, and
the peak period lasts for a relatively long time.
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Figure 7. A comparison diagram of passenger flow distribution at key regional stations.

Taking “Licun Park” as an example, we drew the time series plot of passenger flow for the first
week of March 2016. From Figure 8, we can see that there is a difference between working days and
non-working days in terms of passenger flow.
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To validate the effectiveness of the proposed hybrid optimized LSTM algorithm, the data from the
last five days (27–31 March 2016) are selected for testing purposes. Similar to most supervised learning
systems [10], in order to tune the hyperparameters, the remaining data are divided into a training set
and a validation set in the proportion of 9:1. External factors consist of holidays.

The model was implemented in Python 3.5, using Keras [32] and TensorFlow [33] as the deep
learning packages. All experiments were run on a GPU platform, NVIDIA GeForce GTX 1050 with
4GB of GPU memory.

4.2. Parameter Setting

Tuning parameters is an essential part of most deep-learning-based models [34,35]. In order to
capture a complete period of bus passenger flow, we set the time_step to 100, making it equal to the
total number of time slices in a day. By experimenting with different combinations of hyperparameters,
we find that the LSTM model has the best effect when it contains 256,128 and 16 neurons respectively.
Conventionally, we stopped the training procedure if the loss of the validation dataset does not decrease
after five loops [35]. Hence, in this study, we used q = 5 as the threshold of the hybrid model. Moreover,
we train our models by minimizing the mean square error for 100 epochs with a batch size of 64. For
the Nadam part, we use a learning rate of 0.002, and for the SGD part, we use a learning rate of 0.05.
We use a step decay as the learning rate scheduler and set the drop to 0.9 for both the Nadam part and
the SGD part.
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4.3. Evaluation Metric

The mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean
squared error (RMSE) are selected as the evaluation metrics. The smaller the value, the more
accurate the prediction results are, and the better the model performance. Definitions are shown in
Equations (11)–(13):

MAE(
∼
y, y) =

n∑
i=1

∣∣∣∣∼yi − yi

∣∣∣∣
n

(11)

MAPE(
∼
y, y) =

100
n

n∑
i=1

∣∣∣∣∼yi − yi

∣∣∣∣
yi

(12)

RMSE(
∼
y, y) =

√√
1
n

n∑
i=1

(
∼
yi − yi)

2
(13)

where
∼
y is the predicted value sequence of passenger flow, y is the ground truth sequence of passenger

flow, and n is the total number of samples.

4.4. Verification and Analysis of Prediction Results

4.4.1. Experimental Results and Analysis

To examine the feasibility of the hybrid optimized LSTM model for short-term passenger flow
prediction, the hybrid optimized LSTM model is compared with five baselines. To make a fair
comparison, Naïve [36–38], autoregressive integrated moving average model (ARIMA) [39], support
vector regression (SVR) and five LSTM models with a non-hybrid optimization algorithm (LSTM with
SGD algorithm, LSTM with Adagrad algorithm, LSTM with RMSProp algorithm, LSTM with the
Adam algorithm and LSTM with Nadam algorithm) are selected as benchmarks. Taking Licun Park as
an example, experimental results are shown in Table 4.

Table 4. Model comparison.

Model Description MAE MAPE (%) RMSE

Naïve One of the simplest forecasting
benchmark models. 32.890 33.187 43.952

ARIMA Widely used statistical model for time
series forecasting. 30.273 43.042 39.544

SVR
SVM-based model for prediction.

A typical representation of machine
learning methods.

28.472 44.945 37.174

LSTMSGD A LSTM model with SGD algorithm. 26.476 28.514 35.264

LSTMAdagrad
A LSTM model with
Adagrad algorithm. 26.351 26.162 36.825

LSTMRMSProp
A LSTM model with
RMSProp algorithm. 26.357 26.288 36.031

LSTMAdam A LSTM model with Adam algorithm. 26.209 26.636 35.901

LSTMNadam
A LSTM model with
Nadam algorithm. 25.858 25.063 35.745

LSTMHybrid
A LSTM model with hybrid algorithm

proposed in this paper. 24.320 24.002 32.994
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As shown in Table 4, the proposed LSTMHybrid model outperforms the other eight benchmarks
in MAE, MAPE, and RMSE, which means its prediction accuracy was best. To further examine the
prediction performance in a more intuitive way, we first draw the predicted passenger flow of Naïve,
ARIMA, SVR and the proposed LSTMHybrid model from 27 to 31 March 2016 in Figure 9.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 24 

 

Table 4. Model comparison. 

Model Description MAE MAPE (%) RMSE 

Naïve 
One of the simplest forecasting 

benchmark models. 
32.890 33.187 43.952 

ARIMA 
Widely used statistical model for 

time series forecasting. 
30.273 43.042 39.544 

SVR 

SVM-based model for prediction. A 

typical representation of machine 

learning methods. 

28.472 44.945 37.174 

LSTMSGD 
A LSTM model with SGD 

algorithm. 
26.476 28.514 35.264 

LSTMAdagrad 
A LSTM model with Adagrad 

algorithm. 
26.351 26.162 36.825 

LSTMRMSProp 
A LSTM model with RMSProp 

algorithm. 
26.357 26.288 36.031 

LSTMAdam 
A LSTM model with Adam 

algorithm. 
26.209 26.636 35.901 

LSTMNadam 
A LSTM model with Nadam 

algorithm. 
25.858 25.063 35.745 

LSTMHybrid 
A LSTM model with hybrid 

algorithm proposed in this paper. 
24.320 24.002 32.994 

As shown in Table 4, the proposed LSTMHybrid model outperforms the other eight benchmarks in 

MAE, MAPE, and RMSE, which means its prediction accuracy was best. To further examine the 

prediction performance in a more intuitive way, we first draw the predicted passenger flow of Naïve, 

ARIMA, SVR and the proposed LSTMHybrid model from 27 to 31st March 2016 in Figure 9. 

The Naïve model assumes that the passenger flow does not change with systematic trends within 

the observed time interval and uses the previous observation as the prediction in the next time step. 

As one may expect, Naïve is the worst performing model. It can be seen from Figure 9 that compared 

with the ground truths, the predicted results of the Naïve model are always at a delay, which makes 

it worse than other models. 

Compared with ARIMA, the LSTMHybrid model has a 19.66% relative reduction in MAE, a 44.23% 

relative reduction in MAPE and a 16.56% relative reduction in RMSE. This is mainly because ARIMA 

can only capture linear relationship in the time series, but not nonlinear relationship. As shown in 

Figure 9, ARIMA captures the general trend of passenger flow, but the fitting degree is not accurate. 

Mismatches are common in many time slices. 

Compared with SVR, the LSTMHybrid model has a 14.58% relative reduction in MAE, a 46.59% 

relative reduction in MAPE and a 16.56% relative reduction in RMSE. The performance of SVR can 

also be seen in Figure 9. 

 

Figure 9. Prediction results and ground truths in Licun Park for Naïve, ARIMA, SVR and LSTMHybrid 

model. 

Figure 9. Prediction results and ground truths in Licun Park for Naïve, ARIMA, SVR and
LSTMHybrid model.

The Naïve model assumes that the passenger flow does not change with systematic trends within
the observed time interval and uses the previous observation as the prediction in the next time step.
As one may expect, Naïve is the worst performing model. It can be seen from Figure 9 that compared
with the ground truths, the predicted results of the Naïve model are always at a delay, which makes it
worse than other models.

Compared with ARIMA, the LSTMHybrid model has a 19.66% relative reduction in MAE, a 44.23%
relative reduction in MAPE and a 16.56% relative reduction in RMSE. This is mainly because ARIMA
can only capture linear relationship in the time series, but not nonlinear relationship. As shown in
Figure 9, ARIMA captures the general trend of passenger flow, but the fitting degree is not accurate.
Mismatches are common in many time slices.

Compared with SVR, the LSTMHybrid model has a 14.58% relative reduction in MAE, a 46.59%
relative reduction in MAPE and a 16.56% relative reduction in RMSE. The performance of SVR can
also be seen in Figure 9.

Next, we compare the LSTMHybrid model with the other five LSTM models. The learning rate is
chosen from the discrete range between [0.5, 0.2, 0.05, 0.01] for SGD and [0.002, 0.001, 0.0005, 0.0001] for
adaptive learning methods and then exponentially decayed or step decayed every 10 steps with a base
ranging between [0.1, 0.3, 0.5, 0.7, 0.9]. To determine the optimal configuration, the grid search method
is used to find the best parameter settings by changing one of the parameters while keeping the others
unchanged for each algorithm. Finally, the best results of each algorithm are exhibited in Table 4.

Compared with the LSTMSGD model, the LSTMHybrid model has an 8.14% relative reduction in
MAE, a 15.82% relative reduction in MAPE, and a 6.50% relative reduction in RMSE. As shown in
Figure 10, for the LSTMSGD model, the loss of the model decreases very slowly in the early stage, which
makes the model have a poor convergence level within the same iteration number, so it takes more
time to reach a better level.
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Through parameters tuning, the errors of LSTMAdagrad, LSTMRMSProp, LSTMAdam and LSTMNadam

are very close, but they are still much higher than that of LSTMHybrid. This is mainly due to the
inability of a single optimizer to combine the advantages of multiple optimizers. It is worth noting
that LSTMNadam performs a bit better than the other three models. This maybe because it contains
Nesterov’s accelerated gradient, which is general superior to classical momentum.

Taking Nadam as a representative of the adaptive algorithms, we find that compared with the
LSTMNadam model, the LSTMHybrid model has a 5.94% relative reduction in MAE, a 4.23% relative
reduction in MAPE, and a 7.69% relative reduction in RMSE. Figure 10 exhibits that the convergence
speed of LSTMNadam model is obviously better than LSTMSGD, but it oscillates violently even though
we reduce its learning rate every 10 epochs, which makes it difficult to find the optimal solution of
the algorithm. In addition, the generalization and out-of-sample behavior of the LSTMNadam model
remain poorly understood.

The MAE, MAPE and RMSE of the LSTMHybrid model are 24.320, 24.002%, and 32.994, respectively,
which are the lowest among all models. As shown in Figure 10, by switching Nadam to SGD when
the former is oscillating, the LSTMHybrid model keeps the error at a low level and continues training,
achieving better prediction accuracy.

To sum up, the LSTMHybrid model proposed in this paper combines the advantages of Nadam
and SGD. At the early stage, it utilizes Nadam to make the error decrease rapidly. When Nadam shows
weakness, the LSTMHybrid model automatically switches to SGD to continue training. The LSTMHybrid

model enables the model to have a faster convergence rate and smaller final training error, which makes
the training of short-term prediction of bus passenger flow based on LSTM efficient and accurate. The
training process of the LSTMSGD, the LSTMNadam, and the LSTMHybrid models with different learning
rates is shown in Figure 10. The lrNadam and lrSGD are used to represent the value of learning rate in
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Nadam and SGD, respectively. The changes of different learning rates of SGD (from 0.01 to 0.5) are
too small, so it is difficult to distinguish their error lines. The error lines of different learning rates of
Nadam (0.002, 0.001, 0.0005 and 0.0001) show similar convergent tendencies. When lrNadam is 0.002
and lrSGD is 0.05, the model obtains the best prediction accuracy (RMSE is 32.99). Thus, the better
performance of the proposed model is due to the hybrid strategy, not the various learning rates.

Moreover, when drawing the training loss and validation loss of the LSTMSGD, the LSTMNadam

and the LSTMHybrid models with the best parameters (lrNadam = 0.002, lrSGD = 0.05) (Figure 11), it can
be seen that during the same iterations, the LSTMNadam model appears to be overfitting in the later
stage. The LSTMHybid model avoids overfitting very well.
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To further examine the prediction performance in a more intuitive way, the predicted passenger
flow of LSTM models is drawn in Figure 12. LSTM models with two traditional optimized algorithms
(SGD and Nadam) are selected to compare with the LSTMHybrid model and ground truths. Through the
figure, the detailed prediction results can be visualized: the LSTMHybrid model fits the ground truths
better, while the LSTMSGD model over smooths the curve, making the results worse. The LSTMNadam

model fits the curve well, but still fails to fit the peak.
Several useful findings can be summarized based on the above algorithm result analysis:

1. Non-adaptive methods over smooth the curve, which results from their slow descent and falling
into a local optimal.

2. Adaptive methods fit the curve, but they do not fit the peak well. These phenomena result from
violent oscillation.

3. The hybrid method combines the advantages of those two methods, taking advantages of adaptive
methods to fit the curve and utilizing non-adaptive methods to train in detail, and thus achieving
satisfying results.
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4.4.2. Switching Other Adaptive Methods to SGD

In Section 4.4.1, we compared the performance of the LSTMHybrid model with five other traditional
LSTM models, finding that the model accuracy has been greatly improved by switching Nadam to
SGD. In this section, we try to switch other adaptive algorithms (Adagrad, RMSProp, Adam) to SGD
to explore whether we should use Nadam in the first stage. The experimental results are shown in
Table 5.

Table 5. Model comparison of using other adaptive algorithms at the first stage.

Model Description MAE MAPE (%) RMSE

LSTMAdagrad-SGD
A LSTM model with algorithm

switching Adagrad to SGD. 25.131 27.615 33.653

LSTMRMSProp-SGD
A LSTM model with algorithm

switching RMSProp to SGD. 25.087 28.340 33.986

LSTMAdam-SGD
A LSTM model with algorithm

switching Adam to SGD. 24.843 29.094 33.310

LSTMHybrid
A LSTM model with hybrid algorithm

proposed in this paper. 24.320 24.002 32.994

Comparing Table 5 with Table 4, we find that the hybrid algorithms are better than the single
algorithms in RMSE and MAE, and slightly improves in MAPE. For example, compared with the
LSTMAdagrad model, the LSTMAdagrad-SGD model has a 4.63% relative reduction in MAE and an
8.61% relative reduction in RMSE, but a 5.55% relative increase in MAPE. From these results we
find that compared with single algorithms, the hybrid algorithms are effective at passenger flow
prediction. When drawing the training process of the LSTMAdagrad-SGD, the LSTMRMSProp-SGD and
the LSTMAdam-SGD models compared with the LSTM model with a single optimization algorithm
(Figure 13), we see that similar to the LSTMHybrid model, the losses of those three models all decline
rapidly in the first stage and then decline steadily in the second stage.
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When comparing the LSTMAdagrad-SGD, the LSTMRMSProp-SGD and the LSTMAdam-SGD models
with the LSTMHybrid model, it is easily seen that the LSTMHybrid model outperforms the other three
models in either RMSE, MAPE or MAE. This is mainly because Nesterov’s accelerated gradient in
Nadam makes the loss of LSTMHybrid decrease at a better level in the first stage and promotes the
fine-tuning of SGD in the second stage.

4.4.3. Application of the Hybrid Algorithm on Different Models

In this section, we apply the hybrid algorithm to the SimpleRNN and GRU models. To make a fair
comparison, five SimpleRNN/GRU models with non-hybrid optimization algorithm (SGD, Adagrad,
RMSProp, Adam and Nadam) are selected as benchmarks. The model results are shown in Table 6.

Table 6. Model comparison of RNN and GRU.

Model Description MAE MAPE (%) RMSE

SimpleRNNSGD
A SimpleRNN model with

SGD algorithm. 29.330 37.799 38.566

SimpleRNNAdagrad
A SimpleRNN model with

Adagrad algorithm. 27.333 30.311 37.173

SimpleRNNRMSProp
A SimpleRNN model with

RMSProp algorithm. 27.975 31.782 37.592

SimpleRNNAdam
A SimpleRNN model with

Adam algorithm. 27.237 28.161 36.313

SimpleRNNNadam
A SimpleRNN model with

Nadam algorithm. 27.441 37.957 36.261

SimpleRNNHybrid
A SimpleRNN model with the

proposed hybrid algorithm. 27.239 28.030 35.932

GRUSGD A GRU model SGD algorithm. 27.900 27.802 38.651

GRUAdagrad A GRU model Adagrad algorithm. 26.487 26.046 35.985

GRURMSProp A GRU model RMSProp algorithm. 26.492 28.279 36.029

GRUAdam A GRU model Adam algorithm. 25.593 29.143 34.973

GRUNadam A GRU model Nadam algorithm. 25.232 26.162 34.755

GRUHybrid
A GRU model with the proposed

hybrid algorithm. 25.125 25.804 33.904

LSTMHybrid
A LSTM model with the proposed

hybrid algorithm. 24.320 24.002 32.994

In terms of prediction accuracy, SimpleRNNHybrid outperforms SimpleRNNSGD, SimpleRNNAdagrad,
SimpleRNNRMSProp, SimpleRNNAdam and SimpleRNNNadam for short-term traffic flow prediction,
GRUHybrid outperforms GRUSGD, GRUAdagrad, GRURMSProp, GRUAdam and GRUNadam. This validates
the general strategy of switching Nadam to SGD. In addition, compared to the optimal baselines in
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SimpleRNN (SimpleRNNHybrid), the LSTMHybrid model has a 10.71% relative reduction in MAE, a
14.37% relative reduction in MAPE, and an 8.18% relative reduction in RMSE. This is mainly because
the input gate, forget gate and output gate can effectively retain important features to ensure that they
will not be lost during long-term propagation, so as to capture long-term dependencies in data. The
error of GRUHybrid is close to that of LSTMHybrid. However, LSTMHybrid is better in terms of those
three indicators, which proves that LSTMHybrid is more suitable for this case.

4.4.4. Temporal Analysis

In the previous section, we compared the performance of the LSTMHybrid model with LSTMSGD

and LSTMNadam as a whole. In this section, we extend the analysis to different kinds of temporal scales.
As shown in Figure 8, the passenger flow on working days and non-working days has different

variations. Table 7 shows the performance of each model on working days and non-working days,
through which we find that the LSTMHybrid model outperforms the other two LSTM models with
traditional algorithms on both working days and non-working days.

Table 7. Comparison results of working days and non-working days.

Data Model MAE MAPE (%) RMSE

Working day
LSTMSGD 23.696 24.898 31.079

LSTMNadam 22.341 20.679 31.039
LSTMHybrid 21.686 20.433 29.194

Non-working day
LSTMSGD 26.927 26.225 35.419

LSTMNadam 24.759 25.501 33.428
LSTMHybrid 23.178 23.693 32.041

On working days, the LSTMHybrid model has an 8.48% relative reduction in MAE, a 17.93% relative
reduction in MAPE and a 6.07% relative reduction in RMSE compared with the LSTMSGD model.
For the LSTMNadam model, the LSTMHybrid model has a 2.93% relative reduction in MAE, a 1.19%
relative reduction in MAPE, and a 5.94% relative reduction in RMSE. The predicted passenger flow on
a working day (27 March 2016) is drawn in Figure 14a, through which we can see that the LSTMHybrid

model fits each peak of the curve, showing good robustness.
On non-working days, the errors of all three models have increased, which is mainly caused by

the small number of training samples. However, the LSTMHybrid model still outperforms the other two
models. Compared with the LSTMSGD model, the LSTMHybrid model has a 13.92% relative reduction in
MAE, a 9.65% relative reduction in MAPE, and a 9.54% relative reduction in RMSE. For the LSTMNadam

model, the LSTMHybrid model has a 6.39% relative reduction in MAE, a 7.09% relative reduction in
MAPE, and a 4.15% relative reduction in RMSE. The predicted passenger flow on a non-working day
(29 March 2016) is drawn in Figure 14b.

4.5. Tuning Parameters

4.5.1. Value of Learning Rates

Firstly, the sensitivity of the model to the value of learning rates is explored. To test the lrNadam,
lrSGD is fixed at 0.05, and lrNadam is changed between 0.002, 0.001, 0.0005, and 0.0001. Correspondingly,
for lrSGD, lrNadam is fixed at 0.002, and lrSGD is changed between 0.5, 0.2, 0.1, 0.05, and 0.01. Only the
minimum RMSE is recorded.
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The results are shown in Figure 15. The Nadam part is more sensitive to the learning rate than
the SGD part. When lrNadam is 0.002 and lrSGD is 0.05, the model obtains the best prediction accuracy
(RMSE is 32.99).
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4.5.2. Choice of Learning Rate Scheduler

To find the best learning rate scheduler for the model, another two experiments are conducted.
We experiment with step decay and exponential decay, whose roles are defined as in Equations (14)
and (15):

lrstep_decay = initial_lr ∗ drop[(1+epoch)/epochs_drop] (14)

where lrstep_decay represents the learning rate of step decay, intial_lr represents the initial learning rate,
drop is the parameter we need to adjust, epoch represents the number of epochs in the training process,
and epoch_drop represents how many epochs we update lrstep_decay (here we use epochs_drop = 10).

lrexp onential_decay = initial_lr ∗ e(−k∗epoch) (15)

where lrexponential_decay represents the learning rate of exponential decay, k is the parameter we need to
adjust and the epoch represents the number of epochs in the training process.

Drop and k are changed between 0.1, 0.3, 0.5, 0.7 and 0.9. The other parameters are unchanged.
The results are shown in Figure 16. We find that using step decay is better than exponential decay in
passenger flow prediction. When drop is 0.9, the model obtains the best prediction accuracy (RMSE
is 32.99).
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4.6. Model Stability

In this section, we apply the LSTMHybrid model to different stations, including Weike Square,
Shengli Bridge, Li Village and Cangkou Park. The performance of the method is also evaluated by
comparing MAE, MAPE and RMSE. Table 8 shows the comparison of various methods in different
stations. The results show that the LSTMHybrid model outperforms the other algorithms in MAE and
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RMSE, whether at Weike Square, Shengli Bridge, Li Village or Cangkou Park, but improves only a little
in MAPE. MAE is the basic method to measure the model. The lowest MAE proves that the LSTMHybrid

model has good prediction performance. RMSE can amplify values with large deviation, and the
lowest RMSE proves that the LSTMHybrid model has the best stability. Lower MAE and RMSE with
higher MAPE indicates that the error mainly comes from the low values, not the peak values. MAPE
of the LSTMHybrid model ranks second among the three models, which proves that the LSTMHybrid

model can better predict the peak value. It is worth noting that the MAPEs of the four stations (Weike
Square, Shengli Bridge, Li Village and Cangkou Park) have increased compared with that in Licun Park
no matter which model is used, which is mainly caused by the low passenger flow in these stations.

Table 8. Comparison results of different stations.

Station Model MAE MAPE (%) RMSE

Licun Park
LSTMSGD 28.375 29.861 37.848

LSTMNadam 25.975 28.957 35.750
LSTMHybrid 24.628 26.751 33.188

Weike Square
LSTMSGD 18.922 38.588 24.593

LSTMNadam 19.284 32.508 25.345
LSTMHybrid 18.133 36.689 23.703

Shengli Bridge
LSTMSGD 15.494 32.439 20.713

LSTMNadam 15.550 32.190 21.152
LSTMHybrid 14.913 32.817 19.804

Li Village
LSTMSGD 16.216 45.162 20.460

LSTMNadam 15.638 41.586 19.767
LSTMHybrid 14.978 42.317 19.106

Cangkou Park
LSTMSGD 15.683 48.854 21.032

LSTMNadam 16.024 66.485 21.638
LSTMHybrid 15.309 49.665 20.482

Furthermore, when it comes to passenger flow, both management and travelers pay more attention
to peak passenger flow. Although the MAPE of the LSTMHybrid model is not the lowest, its accurate
prediction of the peak value and low MAE together with RMSE, give the LSTMHybrid model the best
fitting effect on the ground truths. The predicted passenger flow of different LSTM models at various
stations is drawn in Figure 17. From Figure 17a, we see that in the forecast of Weike Square, the
LSTMSGD model and LSTMNadam model cannot well adapt to the change in passenger flow, while the
LSTMHybrid model can well fit the change over time (i.e., the pink circle in Figure 17a). From Figure 17b,
we see that for Shengli Bridge, the traditional methods predict the passenger flow to be higher than
the ground truths, which will mislead the management (i.e., the pink circle in Figure 17b). On the
contrary, as shown in Figure 17c, for Li Village, the traditional methods predict a lower passenger flow
than the ground truths, which may not provide effective guidance for vehicle scheduling. However,
the LSTMHybrid model performs well (i.e., the pink circle in Figure 17c). Figure 17d shows that the
LSTMHybrid model performs well when the data are not very regular such as the passenger flow of
Cangkou Park. What is more, the LSTMHybrid model performs well on a variety of kinds of data,
showing good stability.
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Combining the results of the above stations, it is not difficult to find that the hybrid optimized
LSTM model has better performance than the other LSTM models with traditional optimization
algorithms. The LSTMHybrid model not only has a lower error level, but is also more suitable for traffic
passenger traffic prediction.

5. Conclusions

The precise prediction of passenger flow can provide essential references for both public transport
management and travelers and contribute to building a smart city. This paper presents a hybrid
optimized LSTM network to predict short term passenger flow, which can capture the advantages
of the traditional optimization algorithms as well as effectively avoid the disadvantages. To validate
the effectiveness of the proposed hybrid model, one-month passenger flow data in Qingdao are
collected. The first 26 days’ data is utilized for training, and the remainder are used to test the algorithm
performance. In addition, Naïve, ARIMA, SVR, and five traditional optimized LSTM network are
compared with the hybrid optimized LSTM network. Experiments on switching other adaptive
algorithms to SGD and applying the proposed hybrid algorithm to SimpleRNN and GRU are also
conducted. Through the experiments, several useful findings can be generated in this study:

1. The LSTM model outperforms statistical and machine learning methods in terms of accuracy and
stability, as it can effectively capture the nonlinear relationship and time dependency.

2. The hybrid optimized LSTM model can utilize the advantages of Nadam and SGD, making the
model convergence faster and ultimately reducing the training error, which makes the training
based on short-term prediction of bus passenger flow efficient and accurate in a variety of
temporal scales.

3. Other hybrid algorithms that switch adaptive optimized algorithms to SGD are also more accurate
than single models, but switching Nadam to SGD works best. When the hybrid algorithm is
applied to other deep learning models (SimpleRNN and GRU), its accuracy is better than that of
a single one. Due to the ability to capture time dependence over a long time, LSTMHybrid works
the best.

4. The hybrid model shows good stability at different stations. In areas with high passenger flow, the
hybrid model is superior to the traditional models in either MAE, MAPE or RMSE. In areas with
low passenger flow, the hybrid model shows great advantages when assessing peak passenger
flow and is more adaptable to changes in bus passenger flow.
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In the future, the applicability of the hybrid optimized algorithm to multi-step prediction models,
such as the Sequence2Sequence model and other prediction models, will be explored. We will also
seek more data to test the future optimized model.
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