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Abstract: This article aims at testing the possibilities of applying hierarchical spatial autoregressive
models to create land value maps in urbanized areas. The use of HSAR (Hierarchical Spatial
Autoregressive) models for spatial differentiation of prices in the property market supports the
multilevel diagnosis of the structure of this phenomenon, taking into account the effect of spatial
interactions. The article applies a two-level hierarchical spatial autoregressive model, which will
permit the evaluation of interactions and control spatial heterogeneity at two levels of spatial
aggregation (general and detailed). The results of the research include both the evaluation of the
impact of location on prices (taking into account non-spatial factors) and the creation of the average
land price map, taking into consideration the spatial structure of the city. In empirical studies, the
HSAR model was compared with classic LM (Linear Model), HLM (Hierarchical Linear Model), and
SAR (Spatial Autoregressive) models to perform comparative analyses of the results.
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1. Introduction

The urban space zone is a multilayer spatial structure gathering people and products of their
activities in nearby places. Urban space has multiple functions such as economic [1,2], social [3,4],
industrial [5], transport [6], cultural [7], administrative [8], and housing [9,10]. The intensity and the
direction of urbanization processes is determined in large extend by local demographic, economic and
administrative conditions. As a rule, valuation of urban space is strictly related to the basic economic
good, i.e., land. In this meaning, modelling of the spatial distribution of land value, expressed by the
prices of urbanized land intended for housing development, makes a significant element for supporting
a series of decisions in the property management system. The issue of urban space valuation, in the
form of land value map generation, has been a subject of a series of studies [11–16] demonstrating that
the relations between the price and the neighborhood reveal the features of both spatial and non-spatial
relations [17,18].

The methods for developing land value maps are based first of all on relations between the prices
of land and selected reference points in urban space. Liu et al. [19] analyzed development of prices and
values in relation to the distance from CBD (Central Business District), elements of social infrastructure,
schools etc. In a similar manner, Bugs [20] suggests that the value map should be developed on the
basis of distance, e.g., from the city center, main streets, places particularly affecting the value, as well
as areas at risk of flood. As a result of spatial analysis with the use of GIS tools, maps of urban space
valuation are created, which also reflect land value. In a slightly different trend of research in land value
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map development, hedonic maps play a particular role, taking into consideration selected features of
properties, such as price determinants [21–26]. The application of GIS tools and geostatistical methods
to model the area presenting the land value appear particularly interesting [27]. Fik et al. [28] suggest
the use of hedonic models together with surface trends for LVS (location value signature) evaluation.
In a similar vein, Bourassa et al. [29] postulate the application of hedonic models and geostatistical
methods in conjunction. Geostatistical methods can be treated as a natural supplement of the traditional
statistical analysis, taking into account spatial distribution of the phenomenon under analysis.

Both theory and practice indicate that models that do not take into consideration autocorrelation
and spatial heterogeneity can provide inaccurate results [30–32]. In the spatial econometrics
literature, the negative consequences of ignoring the presence of spatial autocorrelation and/or
spatial heterogeneity are well-known, therefore numerous publications postulate the application of
spatial models for market analyses and price prediction [29,33]. Spatial effects can be taken into
account in many ways. They may be taken into account either directly, so that they become part of the
modeling structure, or indirectly, so they are pre-treated prior to build the model. Among the models
that take these effects into account directly, we can indicate, among others, the spatial econometric
model [30,34], spatially switching regression [35], random coefficient models [36], and geographically
weighted regression [37,38].

In recent years, increasingly more attention is given to the synergy between hierarchical and spatial
modelling, which forms the basis for constructing hierarchical spatial models [39–42]. Some studies also
concern the use of hierarchical spatial models in the analysis of the real estate market [42–44]. This paper
presents the results of research on methodological bases for constructing land value maps in Olsztyn,
Poland. The aim of the study was to demonstrate that the two-level hierarchical spatial autoregressive
models can provide a significant alternative for models typically applied for the construction of land
value maps: LM: Linear Model, HLM: Hierarchical Linear Model, and SAR: Spatial Autoregressive
Model. The paper is structured as follows. After the introduction to the research, a description of
hierarchical spatial autoregressive models is given in Section 2 together with an overview of previous
results published in the field and the theoretical basis for the performed research. Section 3 presents the
data description, procedure of applied methodology and a discussion of the obtained results. Section 4
presents the conclusions drawn from this work.

2. Theoretical Basic of Conducted Research

Spatial factors (e.g., neighborhood attractiveness) affecting the property market are relatively
difficult to describe with the use of mathematical models [10,45]. Their analytical depiction leads only
to partial explanation of relations affecting the events in the form of, e.g., the occurrence of a transaction
in property in a given location, characterized by a precise set of attributes and price. The specificity of
the property market is the occurrence of spatial relations at the individual and group level.

The individual level is created by point objects of known geographical coordinates (properties)
and the group level can be obtained by classifying properties into territorial units—e.g., housing estates,
districts, cities, communes or regions. Multilevel consideration can also be applied to spatial data
concerning the level of land value, e.g., the value of individual properties (level I), or values of land in
individual zones or sections (level II) and at the level of city districts (level III). Multilevel structure of
real estate market data provided a direct motivation to undertake the subject of applying hierarchical
spatial autoregressive models, (HSAR: Hierarchical Spatial Autoregressive), for the needs of creating
land value maps.

The analysis of market data requires taking into account spatial effects typical for the specificity of
the property market in the form of heterogeneity and spatial dependencies which, in turn, provide
reasons to apply multilevel models. The term of heterogeneity can be applied to all changes in
the distribution of a given phenomenon, of a continuous or discrete nature. The sources of data
heterogeneity can be seen in the absence of spatial stationarity and it is demonstrated by the instability
of relations between phenomena in geographical space and/or their lack of uniformity in spatial
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distribution [30,34,46]. In case of data located geographically, uncontrolled heterogeneity can have a
negative effect in the form of inaccurate conclusions concerning the examined relations. Instability of
structural parameters in the regression model can be a continuous or discrete change. If the value of
the parameter is subject to change along with the change of the object location coordinates, instability
in the form of a continuous change occurs. In such a case, the value of the parameter is functionally
related to the location of the object. This is quite common in the models of hedonic regression of
property prices [47], which make it possible to analyze the relation between the value of the property
and its features.

Another form of spatial heterogeneity is heteroskedasticity of the random factor. Grouping
(clustering) the value of the random factor is most frequently the effect of omitting a significant (one or
many) explaining variable or the result of model specification errors. In the case of spatially located
data, it is difficult to expect the feature distribution in geographical space to be even and regular. It
is also difficult to identify and to quantify all factors responsible for the existing irregularities and
heterogeneities. In effect, models estimated on spatial data quite frequently demonstrate a lack of
homogeneity of the random component [34,48,49].

Spatial interactions for spatially located data can refer to the endogenous variable, the explaining
variables, or to the random component. If these interactions concern the endogenous variable, then
spatial autoregression is involved. This means that the values of this variable from other locations affect
the development of this value in the analyzed location. If interactions concern the random component,
the phenomenon of spatial autocorrelation of the random component of the model occurs. Depending
on the type of spatial interaction, two basic models of spatial regressions are most frequently used:
The spatial lag model and the spatial error model [35,50–52]. Intergroup differentiation, estimated
based on a multilevel model, ignoring the presence of spatial relations, is overestimated. As a result,
this may lead to incorrect conclusions concerning the scale of the heterogeneity of the phenomenon,
while the analyzed process is marked by spatial autocorrelation.

In traditional spatial econometric models, the presence of spatial interactions is understood as the
occurrence of relations between each (or selected) pair of observations i and i’, always forming only
one level of the phenomenon analysis [53]. In multilevel models, the level of observation is one of
possible levels of the analysis. If level II and subsequent were obtained through spatial aggregation of
geographically located data, then spatial interactions can exist either at one or several levels of the
analysis, e.g., the individual or group level, or at the individual and group level at the same time [54–56].
A hierarchical spatial autoregressive model (HSAR) can provide an alternative to previous spatial
interaction methods, making it possible to analyze complex forms of heterogeneity. The tools explored
so far, based on spatial modelling of the property market are directed mainly towards identification and
interpretation of interactions between objects. Spatial dependencies were considered at an individual
level, typically without taking into account intergroup effects, understood as connections between
random group means [56].

An additional problem related to the price level analysis is related to limiting the space to be
evaluated and drawing conclusions concerning broader spatial systems based on a limited area,
situated in the direct neighborhood of the examined area. The evaluation of the place through the
prism of the nearest neighbor is more evident when a larger spatial structure is subject to evaluation.
In practice, this can mean that the level of property value will be the resultant of partial evaluations
attributed to spatial units, e.g., a district, a housing estate, etc., and it will therefore reflect the intuitively
understood spatial hierarchy. Due to this fact, the multilevel approach seems to be an adequate method
for modelling the area representing the land value. This results from the possibility of controlling
heterogeneity at several levels of spatial aggregation at the same time, without the need to introduce
ten to twenty binary variables, and consequently, without the results in the form of reduction of the
degree of freedom, just like in fixed effect models [57]. Therefore, the land value level, its differentiation
between territorial units occupying a higher position in spatial hierarchy, modelled as random effect
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variation, is subject to adjustment for diversification observed between territorial units occupying a
lower position in this hierarchy.

An additional advantage of multilevel analysis is the possibility to introduce context variables,
i.e., those for which the available data are only accessible for levels of aggregation higher than the
level at which the explained variable is considered. However, this is also possible using the traditional
OLS-estimator but in that case we can expect biased results [58]. Therefore, the level of land value
analyzed at the individual level, can be successfully explained not only with variables characterizing
the given unit, but also variables reflecting the features of the environment.

The above arguments justify the attempt to apply hierarchical spatial autoregressive models both
for analysis of spatial diversification of prices in the property market and for creating land value
maps. Linking all above-mentioned aspects concerning research on the level of prices and land value
encourages the search for such models that will allow the control of both the multilevel structure
of the phenomenon and spatial interactions. Those requirements can be satisfied by HSAR models,
the structure of which is predestined to simultaneous identification of both types of spatial effects.
Taking into account heterogeneity and spatial interactions using the HSAR model can therefore be
an extension of analysis and statistical modelling in property market studies. Therefore, the main
aim of this study is to present the concept and principles of spatial analyses using hierarchical spatial
autoregressive models as a substantive basis for developing land value maps. Additionally, it identifies
the possibilities for applying HSAR class models in research concerning the development of land value
maps (price prediction).

The basic model used in spatial econometrics is the spatial autoregressive model (SAR), used for
explaining processes characterized by spatial autocorrelation. In multilevel modelling, the highest
role is played by the traditional hierarchical (multilevel) model (HLM) with random effects for a
higher level, which can be also applied to explain processes characterized by spatial heterogeneity [58].
Including both hierarchy and spatial heterogeneity in one model provides a basis for spatial multilevel
modelling [39,40,42]. The class of HSAR models was described in detail by, e.g., References [42,56].
Those models extend the typical SAR model to include the hierarchical data structure.

Many spatial data sets demonstrate a hierarchical structure, e.g., the property situated in a district
located in the urban area [59]. According to the literature on multilevel modelling, individual objects
being the subject of the measurement create a lower level, while objects aggregated in the form of, e.g.,
regions, belong to a higher level [58]. The main assumption of multilevel modelling is the existence of
differences between the objects at the higher level and intergroup relations at the lower level. This
means correlating the features of objects allocated to the lower level due to the effect of the same
factors affecting the given region. This can be formulated as vertical group dependence. However
horizontal dependence cannot be modelled using classical multilevel modelling. This is the type of
relationship related to spatial econometric modelling of single level spatial data sets, and results from
the interaction or penetration of spatial units due to the geographic proximity. If a spatial data set
of a hierarchical structure is involved, we can expect both types of relations: vertical and horizontal.
The former, concerning dependencies at the higher level, is related to regional (context) effects, while
the latter concerns dependencies of the spatial autocorrelation type. In principle, we can distinguish
between spatial interaction (at lower levels) and spatial heterogeneity (at the regional level). Group
dependencies in the hierarchical spatial model mean that the allocation of objects to groups should
have a geographical nature, while traditional hierarchical models usually do not consider spatial
hierarchy [56].

The proposed model adds a spatial autoregressive element to the classical model of regression in
the form of a spatially lagged element Wy, where y is vector n of observation of the explained variable,
and W is a spatial weight matrix. Of course, the model can also be estimated without this component.
In such case, the Wy element can be omitted and the model obtained in this situation would be equal to
the HLM model (Hierarchical Linear Model) [60], although HSAR fits a simultaneous autoregressive
(SAR) spatial random effect rather than a conditional autoregressive (CAR) spatial random effect.
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Examples of the application of hierarchical spatial models were described, among others, by
Dong and Harris [56], Páez and Scott [51], and Bivand et al. [57], who analyzed the market in a
similar manner, with some covariates observed for each individual-level observation and some others
observed only at the aggregated, district level. They estimated, among others, district level spatial
random effects. Additionally, in the context of property market analyses, the hierarchical aspect of data
was analyzed, e.g., by Chasco and Le Gallo [61] and Brunauer et al. [62]. In this case, the hierarchical
spatial autoregressive model can be applied as it allows for spatially correlated random effects and
spatial dependence among individuals.

The general formula of the HSAR model can be presented as follows [56,63]:

Y = %WY + βX + ∆θ+ ε
θ = λMθ+ u

ε ∼ N
(
0,σ2

ε

)
, u ∼ N

(
0,σ2

u

) (1)

where:

Y—is an N × 1 vector of dependent variable,
%, λ—parameters of spatial interactions,
W—spatial weight matrix at the individual level,
β—parameter vector,
X—matrix of explained variables,
∆—matrix demonstrating the classification of entities i to objects j,
θ—vector of random effects for absolute term,
u—vector of random group effects,
ε—vector of a random component,
M– spatial weight matrix at the group level.

If % = 0 and λ = 0, the model obtained will correspond to the two-level HLM model with a random
absolute term. In order to estimate model parameters, Bayesian methods can be used, with a properly
determined likelihood function. This function is described by the following equation [56]:

L
(
Y
∣∣∣%, λ,β, θ,σ2

u,σ2
ε

)
=

(
2πσ2

ε

)−N
2
∣∣∣IN − %W

∣∣∣ exp
(
−

e′e
2σ2

ε

)
e = Y− ρWY−Xβ− ∆θ

(2)

Statistical inference concerning a given parameter is based on the posterior distribution of this
parameter. The Bayesian paradigm assumes as a basic principle that posterior distribution θ* = {%, λ, β,
θ, σu

2, σε2} is proportional to the product of the data and prior distributions [34]. For the k-element
vector of β parameters, we consider the multidimensional normal distribution with the expected value
Mβ and diagonal matrix of variance-covariance matrix Tβ. Therefore, the posterior distribution of β
parameters will be as follows [56,63]:

P
(
β
∣∣∣Y, %, λ, θ,σ2

u,σ2
ε

)
∼ N

(
Mβ, Tβ

)
Tβ =

[(
σ2
ε

)−1
X′X + T−1

0

]−1

Mβ = Tβ
[(
σ2
ε

)−1
X′(Y − %WY− ∆θ) + T−1

0 M0

] (3)
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Posterior distribution of the θ random effects will have the following form:

P
(
θ
∣∣∣Y, %, λ,β,σ2

u,σ2
ε

)
∼ N(Mθ, Tθ)

Tθ =
[(
σ2
ε

)−1
∆′∆ +

(
σ2

u

)−1(
IJ − λM

)′(
IJ − λM

)]−1

Mθ = Tθ
[(
σ2
ε

)−1
∆′(Y − %WY−Xβ)

] (4)

Posterior distribution of random component σε can be presented in the following way:

P
(
σ2
ε

∣∣∣Y, %, λ,β, θ,σ2
u

)
∼ IG(aε, bε)

aε = N
2 + a0, bε = e′e

2 + b0, e = Y− ρWY−Xβ− ∆θ
(5)

where IG(aε, bε) stands for reverse distribution gamma with the shape parameter aε and scale
parameter bε. Posterior distribution of random effect variance σu

2 will have the following form:

P
(
σ2

u

∣∣∣Y, %, λ,β, θ,σ2
ε

)
∼ IG(cu, du)

cu = J
2 + c0, du =

θ′(IJ−λM)
′

(IJ−λM)θ
2 + d0

(6)

Knowing posterior distributions, random sampling is performed. To generate random sampling,
Markov Chain Monte Carlo (MCMC) methods are used. Sample determination with the MCMC
method makes it possible to use, e.g., Gibbs sampling [64].

For the % parameter, the posterior distribution of which cannot be approximated with any of the
known distributions, the application of Gibbs sampling is not possible. Therefore, to determine the
sample, the method of reverse distribution function was used. This method can be brought down to
making numerical integration of the distribution of density, which can be expressed as [56]:

Log f (ρ) = log
∣∣∣IN − %W

∣∣∣+ S(ρ)′S(ρ)

2σ2
ε

+ C (7)

where C is a constant, while:
S(ρ) = e0 − %ed − eu

e0 = Y −X
[
(X′X)−1X′Y

]
ed = WY−X

[
(X′X)−1X′WY

]
eu = ∆θ−X

[
(X′X)−1X′∆θ

] (8)

In a similar way, the distribution of the parameter of spatial interactions at the group level can
be determined:

Log f (λ) = log
∣∣∣IJ − λM

∣∣∣+ θ′
(
IJ − λM

)′(
IJ − λM

)
θ

2σ2
u

(9)

Detailed principles of model estimation are presented, e.g., in References [56,63].

3. Data Description

The conducted research concerns the market of undeveloped land properties, intended for
residential development, situated in the city of Olsztyn in the Northeastern region of Poland.
Approximately 180,000 inhabitants in an area of almost 90 km2 currently inhabit the city. The
varied spatial structure of the city, numerous lakes and forests, as well as a quite strong planning
intervention have resulted in significant spatial heterogeneity of property prices. Transaction data used
for the analyses originate from the register of prices and values of real estate properties, held by the City
Hall in Olsztyn. Overall, 520 data entries concerning undeveloped land property transactions, carried
out in 2010–2017, were used for analyses. A similar number of transactions were assumed in many
research carried out so far concerning, e.g., mass valuation (e.g., References [65–67]. The logarithm
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of the price per 1m2 was assumed as an explained variable. The assumption of the logarithm was
dictated by a relatively large span of prices and a distribution demonstrating strong right-skewness.
Each of the sold properties was additionally described in the form of a set of eleven features forming
explaining variables, as presented in Table 1.

Table 1. Description of variables.

Symbol Description

lnprice logarithm of unit price of land in PLN/m2

date sale date [number of months]
right property right [ownership or perpetual usufruct—dummy variable]
lnarea logarithm of property area

type prevailing type of development [compact multi-family urban development, scattered
detached houses—dummy variable]

lnlake logarithm of distance from lake
lnforest logarithm of distance from forest
densdev density of development [based on a kernel function with a range of 1 km]
densroad density of main roads [based on a kernel function with a range of 1 km]
lncentr logarithm of distance from the center,
lnbus logarithm of distance from public transport stop
utility utilities network [continuous variable from 0—no utilities, to 1—full utilities network].

Variables were selected in such a manner as to ensure that they reflect spatial conditions and
location values to the highest extent. Due to the fact that the relations between explaining variables
and the explained variable are non-linear, for area and distance from characteristic places, these values
are presented as logarithms. The general numerical characteristics of variables are presented in Table 2
and the Appendix A.

Table 2. General characteristics of variables assumed for analyses.

Variable Min Max Mean Median Std. Dev.

lnprice 4.055 6.783 5.431 5.420 0.507
date 0.000 96.000 43.262 44.000 27.181
right 0.000 1.000 0.879 1.000 0.327

lnarea 1.431 11.550 6.443 6.665 1.570
type 0.000 1.000 0.221 0.000 0.415

lnlake 2.303 8.577 6.995 7.394 1.171
lnforest 0.000 7.847 6.333 6.722 1.422
densdev 2.429 1515.110 387.088 324.610 276.969
densroad 0.000 7.226 1.455 0.947 1.538

lncentr 5.646 8.842 8.187 8.387 0.559
lnbus 0.000 7.097 5.391 5.410 0.757
utility 0.000 1.000 0.916 1.000 0.193

The prices in the property market, after a turbulent period of growth in the previous decade in
2006–2007, just like in other cities of Poland, demonstrated relative stabilization and even a slight
decrease in the examined period. Preliminary studies demonstrated that no need adjustments due to
the passage of time (Figure 1).

All observations assumed for analyses were grouped into two hierarchy levels. The first level
refers to transactions and their attributes, while the second level concerns the location of the property
in planning zones resulting from the division of the area into functional zones (Figure 2).

This division results, first of all, from planning documents (a study of conditions and directions
for land development and a local zoning plan), as well as from natural conditions. The area in each
distinguished zone is relatively uniform in terms of environment, the type of use and prevailing
development. The administrative division was not used for the analysis due to the fact that, in this
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case, boundaries are imposed by formal considerations and not by market conditions. Therefore, an
assumption was made that the adopted division into zones, which reflects location values, should also
indicate areas that are relatively uniform in terms of prices and the factors affecting them. According
to the assumptions made, this should result in a higher homogeneity of prices for properties situated
in the same zone and at the same time, higher heterogeneity of properties situated in various zones.
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4. Results and Discussion

This study was aimed not only at identification of spatial effects in the analysis of prices in the
property market [56], but first of all at indicating the possibilities of applying the HSAR model to
develop a land value map. Unquestionably, the use of the hierarchical data structure can contribute
to improving the quality of obtained models [68]. The additional inclusion of spatial autocorrelation
in the property market [31] makes it possible to construct a hierarchical spatial model, of not only a
diagnostic [56], but also a predictive nature.

During the research period, apart from the HSAR model, three other models were constructed
based on the same data set (LM: Linear Model, HLM: Hierarchical Linear Model, and SAR: Spatial
Autoregressive Model), which made it possible to carry out a simple comparative analysis. Those
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models were then used to develop land value maps based on price prediction and residue analysis.
The R environment with the packages HSAR, lme4, sp, spdep (among others) was used for
statistical computing.

A classical multiple regression model (LM) provided a point of reference for further research and
allowed a simple analysis of relations between assumed variables and the transaction price. Another
model (SAR) was built based on the spatial autocorrelation phenomena. Detailed principles concerning
the construction and testing of spatial autoregressive models are provided, among others, by [35]
and [52]. A key issue can be, in this case, proper determination of the spatial weight matrix, reflecting
mutual relations between objects located in space. During the studies, an assumption was made
that mutual interaction between events in the property market (land prices) exponentially decreases
along with the distance [56], while the range of similarity estimated on the basis of the variogram was
about 2,500 m. The estimated range confirms the results of previous analyses, e.g., References [69,70].
However, the threshold distance should also result from the spatial location of the transaction, and
its values must be selected in such a way so as to ensure that each object is spatially related to other
objects through the weight matrix. Therefore, the weight matrix was determined as [56]:

Wij = exp

−
(
d2

ij

)
d2

, if dij ≤ d; 0, otherwise (10)

where d is the threshold value established based on data at 2500 m. This matrix was then standardized
with rows. Based on the Lagrange multiplier test [35], it was established that the proper model in this
case would be the spatial lag model. In a subsequent model (HLM), fixed effects related to explained
variables and random effects for the second hierarchy level were taken into account [71], without taking
into consideration spatial dependencies. The identifier of property location in a given zone played the
role of the second level hierarchy variable. The HSAR model assumes that the spatial weight matrix for
the first level is the same as in the SAR model, while the weight matrix for the second level is based on
the common threshold criterion (contiguity) of distinguished zones. The problem in this case was the
emergence of islands, which means that some of the distinguished zones do not have any neighbour
and therefore, a zero row occurs in the weight matrix. However, it means that the random effects for
those zones in the HLM and HSAR model will be the same. The results of parameter estimation for
individual models are presented in Tables 3 and 4.

Table 3. Results of estimation for LM and HLM models.

LM HLM

Variable β SE β SE

intercept 6.439 * 0.526 7.827 * 0.750
date 2.3e-04 7.5e-04 −3.9e-04 6.8e-04
right 0.241 * 0.065 0.291 * 0.063

lnarea −0.012 0.014 −0.020 * 0.014
type 0.030 0.061 −0.062 0.067

lnlake 0.048 * 0.021 0.062 * 0.032
lnforest −0.012 0.017 0.023 0.021
densdev 7.7e-05 1.1e-04 −1.1e-04 1.4e-04
densroad 0.036 * 0.016 0.016 0.021

lncentr −0.160 * 0.057 −0.281 * 0.079
lnbus −0.125 * 0.028 −0.175 * 0.031
utility 0.544 * 0.115 0.271 * 0.180

logLik −313.477 −315.573
AIC 652.953 631.153

SEresid 0.447 0.382

SE—standard error, SEresid—standard error of residuals, *—statistically significant at 95% credible level.
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Table 4. Results of estimation for SAR and HSAR models.

SAR HSAR

Variable β SE β SE

intercept 3.139 * 1.081 7.348 * 1.805
date −3.0e-04 7.3e-04 −3.0e-04 6.8e-04
right 0.238 * 0.064 0.288 * 0.064

lnarea −0.012 0.014 −0.020* 0.014
type 0.016 0.060 −0.090 0.073

lnlake 0.034 0.021 0.067 * 0.035
lnforest −0.009 0.017 0.019 0.022
densdev 2.8e-05 0.016 −1.3e-04 1.5e-04
densroad 0.022 * 0.016 2.5e-03 0.024

lncentr −0.097 0.062 −0.305 * 0.105
lnbus −0.136 * 0.028 −0.180 * 0.031
utility 0.521 * 0.112 0.278 * 0.184

logLik −308.539 −1048.294
AIC 617.078 2087.616

SEresid 0.437 0.361
% 0.551 0.119
λ NA 0.383

SE—standard error, SEresid—standard error of residuals, *—statistically significant at 95% credible level,
NA—not applicable.

In the LM model, apart from the constant, six variables were proven to be statistically significant
at a significance level of p < 0.05. The most significant variables were property right, distance
from public transport stops and utilities network. Statistically insignificant variables included,
among others, plot area and transaction date. The HLM model indicates four statistically significant
variables. A comparison of both models indicates a slightly better fit of the HLM model. This is
indicated by, among others, AIC. The residual standard deviation SEresid also proves the fact that
the hierarchical model slightly better explains the price variability. In the SAR model, four variables
proved statistically significant (property right, density of main roads, distance from public transport
stops and utility network).

The coefficient of spatial autocorrelation % amounted to 0.551, which justifies application of a model
using the spatial relations. In the HSAR model, six variables, as well as the constant for the model,
is significant at the significance level of p < 0.05. Relatively high value AIC in HSAR model results
from the effective number of parameters, which strongly depends on the variance of the group-level
parameters [71]. In addition, a different method (Bayesian approach) was used to estimate the HSAR
model, which may hinder the unambiguous interpretation of the common information criterion for
all analysed models [64]. Therefore, when assessing the models, the criterion of minimizing errors
was directed first of all. The value of the residual standard deviation was 0.361, which means that the
average relative fit error is about 6.6% of the average transaction price logarithm. The value of spatial
autocorrelation coefficient % is lower than in the SAR model, while autocorrelation specified for the
second level in the hierarchy was 0.383, which proves moderate spatial dependency. The distribution
of random effects for individual zones for the HLM and HSAR models is presented in Figures 3 and 4.
The distribution of random effects for both hierarchical models is very similar, which results from
moderate spatial autocorrelation of prices at the level of zones. While those effects differ insignificantly,
after converting logarithms into prices, it turns out that they can have a quite significant effect on the
final land value map.
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Figure 3. Diagnostics of random elements of HLM (a) and HSAR (b) models (the chart presents random
effects for individual zones, in the ascending order, specifying the confidence intervals for those effects).
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Land value maps were generated by overlaying subsequent raster layers resulting from model
coefficients, interpolated component %Wy (for SAR and HSAR models), random effects (for HLM and
HSAR models) and the layer constructed based on the interpolation of residuals according to the
scheme presented in Figure 5.
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Determination of a referential layer consisted in generating a raster, whose value corresponded to
the model values created as a result of the sum of properly multiplied layers of explaining variables. It
should be observed that seven variables among those assumed for the analyses can be referred to each
point in the area under analysis. The beginning of 2018 was assumed as a date of study, ownership
was assumed as the type of property rights and the assumed area was 1000 m2. In order to obtain the
map of values, after overlaying individual layers, the obtained values in the form of logarithms were
converted directly into the value in PLN. The value estimated on the basis of the LM model results
from simple prediction, while the map generated on the basis of the SAR model required additional
interpolation of the spatial lag (%Wy). Value maps developed on the basis of LM and SAR models are
schematically presented in Figure 6.
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Figure 6. Land value maps developed on the basis of LM (a) and SAR (b) models.

The distribution of values in both models is similar. Relatively high values prevail in the centre,
decreasing when moving towards the city boundaries. Due to the fact that the developed maps are
only of a demonstrative nature, water and forest areas were not excluded, although they should not be
subject to the analysis.

For the HLM and HSAR models, random effects for zones also have to be taken into account.
Therefore, the prediction of values was carried out as the first step, based on the fixed effects of the
model and the mean value was then estimated for each of the zones, taking into account random
effects. For the zones with no transactions, a zero value of random effect was assumed in the HLM
model, while in the HSAR model, this value was obtained through interpolation. The obtained maps
are schematically presented in Figures 7 and 8.

Differences in the estimation of land value obtained based on HLM and HSAR models are small
and result from the assumption made with reference to spatial autocorrelation both at the first level
(transactions) and the second level (zones). The similarity results first of all from the assumptions
made concerning the effect of assumed factors on transaction prices.

The use of hierarchical spatial models can be an alternative or addition to the previously used
methods for the development of land value maps. Geostatistics methods are commonly used in the
development of such maps, which usually give satisfactory results [72,73]. However, it should be
emphasized that hierarchical models can be particularly useful especially when we want to take into
account the spatial hierarchy (e.g., division into districts or functional zones), which assumes rapid
changes in value in space. Similar conclusions are drawn by, among others, Arribas et al. [68] used
hierarchical models for price analysis in Alicante and Dong and Harris [42] who conducted research
in Beijing.
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5. Conclusions

The effect of value-forming factors on property prices can be modelled both with the use of classic
regression models, as well as with models taking into account the spatial heterogeneity of prices and
the hierarchical structure of market data. The study demonstrated that hierarchical models (HLM and
HSAR) show a better fit to data than models not taking into account spatial hierarchy. This is proved,
among others, by the value of the residual standard deviation. In the HSAR model, additionally taking
spatial autocorrelation into account, a slightly lower level of SEresid errors was also found compared to
the HLM model. Hierarchical spatial models, HSAR, take into account both micro-scale spatial effects
and the context resulting from the location of specific observations at subsequent levels in the spatial
hierarchy. Therefore, they carry greater informational content compared to classic models.

A significant effect of the research presented is the demonstration that HSAR models can be both
diagnostic (identification of spatial effects) and predictive models (development of land value maps).
Maps created with application of the HSAR model assume the constant nature of changes in land value
inside the zone and discrete changes at the zone boundary. This corresponds to the actual situation, in
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which the urban space develops at the same time under the influence of strong planning intervention
and the market demand for land, as determined by environmental values.

While the tradition of multilayer modelling has a long history, the role of this class of models
still seems underestimated in spatial econometrics [70]. The studies conducted demonstrate that
such models can be broadly applied in spatial management, in those places where phenomena of an
economic nature are explicitly attributed to a specific location in space.
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73. Cellmer, R.; Źróbek, S. The Cokriging Method in the Process of Developing Land Value Maps. In Proceedings
of the 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 22–25 June 2017. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2009.12.003
http://dx.doi.org/10.3846/1648715X.2015.1134702
http://dx.doi.org/10.1093/biostatistics/2.1.31
http://dx.doi.org/10.1007/s11222-013-9416-2
http://dx.doi.org/10.1080/10824000409480654
http://dx.doi.org/10.1109/BGC.Geomatics.2017.14
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theoretical Basic of Conducted Research 
	Data Description 
	Results and Discussion 
	Conclusions 
	
	References

