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Abstract: Asphalt pavement ages and incurs various distresses due to natural and human factors.
Thus, it is crucial to rapidly and accurately extract different types of pavement distress to effectively
monitor road health status. In this study, we explored the feasibility of pavement distress identification
using low-altitude unmanned aerial vehicle light detection and ranging (UAV LiDAR) and random
forest classification (RFC) for a section of an asphalt road that is located in the suburb of Shihezi City in
Xinjiang Province of China. After a spectral and spatial feature analysis of pavement distress, a total of
48 multidimensional and multiscale features were extracted based on the strength of the point cloud
elevations and reflection intensities. Subsequently, we extracted the pavement distresses from the
multifeature dataset by utilizing the RFC method. The overall accuracy of the distress identification
was 92.3%, and the kappa coefficient was 0.902. When compared with the maximum likelihood
classification (MLC) and support vector machine (SVM), the RFC had a higher accuracy, which
confirms its robustness and applicability to multisample and high-dimensional data classification.
Furthermore, the method achieved an overall accuracy of 95.86% with a validation dataset. This result
indicates the validity and stability of our method, which highway maintenance agencies can use to
evaluate road health conditions and implement maintenance.

Keywords: UAV; LiDAR; asphalt pavement distresses; pavement health conditions; multiscale
features; random forest classification

1. Introduction

Highways are a strategic resource in a country and they provide the basis of social development [1].
With the development of China’s economy, highway construction has made great progress. By the
end of 2017, China’s total highway mileage was 4,773,500 km [2]. Many factors (such as temperature,
moisture, weathering, and loads) [3–5] can adversely affect pavement structure and result in a variety
of road distresses, which not only influence the normal use of highways, but also lead to large economic
losses. Therefore, identifying pavement distress is of great significance for road condition monitoring,
road maintenance, and road management [6,7].

Many evaluation indexes (such as the pavement condition index, pavement roughness index,
riding quality index, and pavement structure strength index) have been used to measure pavement
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quality and usage status [8,9]. To obtain these indexes, it is imperative to adopt reliable approaches [10].
Traditional methods utilize measurements that are taken in situ along with visual examinations and
interpretations [11]. These methods can collect detailed pavement surface condition data for various
types of distress and provide accurate and valuable information. However, these methods have
some disadvantages, such as being time consuming [7], expensive [12], labor-intensive [13], and
subjective [14]. As an efficient means of earth observation, remote sensing can obtain the spectral
and spatial information of various road materials to quickly assess the road conditions of large
road networks and improve the efficiency of road condition investigations [15,16]. Therefore, recent
studies [17–20] have demonstrated a growing interest in remote sensing applications for pavement
monitoring and management.

There has been evidence that pavement of different aging stages exhibits distinct spectral
characteristics in reflectance and emissivity [4,21,22]. Asphalt surfaces lose bitumen over time and
through degradation, thus increasing their reflectance values. As a result, pavements of different aging
stages can be identified based on the variations in their reflectance values [19,23]. Moreover, as asphalt
pavement deteriorates, its ability to absorb solar radiation gradually weakens [24]. That is, the thermal
radiation information will change based on the pavement conditions. Therefore, previous research
has focused on obtaining the spectral data of target sections using multispectral or hyperspectral
sensors and then evaluating pavement usage status by comparing and analyzing the spectral features
of asphalt pavement at different ages [25]. For example, Mei et al. analyzed field and laboratory
data with the goal of differentiating asphalted surfaces. Multispectral Infrared and Visible Imaging
Spectrometer (MIVIS) airborne data and multispectral images, such as Quickbird and Ikonos, were
used. The study adopted the Spectral Angle Mapper (SAM) classifier and obtained an overall accuracy
of 95% for Ikonos, 98% for Quickbird and 93% for MIVIS [23]. Pan et al. presented an experimental
study of mapping road pavement conditions from the WorldView-2 based on endmember spectral
mixture analysis. The analysis of the in situ measured spectra of asphalt road pavement showed
that asphalt pavements in different aging conditions exhibit quite different spectral patterns over the
range of 0.35 to 2.5 µm. The assessment of the analysis results showed that the method is capable of
classifying road pavements with an overall accuracy of 81.71% and Kappa coefficient of 0.77, when
the in situ data were used as a reference [25]. However, there are many disadvantages to identifying
asphalt pavement distress using remotely sensed imagery, such as the high cost of data acquisition, the
long data acquisition cycles, and the use of remote sensors that are not sufficiently flexible. In addition,
because of the spectral similarity among different types of pavement distress, it is difficult to obtain
accurate results by only relying on spectral features [25,26].

In fact, nearly all of the current pavement condition assessment indexes require elevation
information. As an efficient spatial data acquisition method, light detection and ranging (LiDAR) can
provide the three-dimensional spatial information for a road section in a convenient, flexible, and
rapid manner to obtain key information (such as rutting, pothole depths, and road surface roughness)
that is needed to evaluate pavement conditions [27]. Many efforts have contributed to the extraction
and monitoring of pavement distress by using LiDAR point cloud data [28–30]. Among them, [28]
demonstrated the feasibility of using a three-dimensional (3D) laser-based pavement data acquisition
system to conduct automated pavement cracking surveys. The experimental tests were conducted on
actual pavements in Georgia. Based on the experimental results, the 3D laser pavement data are robust
under different lighting conditions and low-intensity contrast conditions and they have the capability
to address different contaminants on a pavement’s surface. [29] introduced a real-time 3D scanning
system for pavement distortion inspections. The system used the simple but robust structured light
method for 3D profile generation. Pavement distortion distress, such as rutting and shoving, can be
reliably detected from 3D transverse profiles, and the real-time measurements and 3D visualization
of these distortions can be output to a pavement management system. [30] explored how LiDAR can
be applied to identify and quantify the severity and coverage of pavement distress to calculate the
required amounts of filling materials. However, vehicle-mounted LiDAR often affects normal traffic
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and incurs high monetary and resource costs. For long road sections, only a sample survey method
can be adopted. In addition, it is difficult to ensure that the sampling is comprehensive for multilane
pavement. Therefore, vehicle-mounted LiDAR cannot quickly, effectively, or regularly obtain the
pavement health conditions of an entire road section.

With the rapid development of unmanned aerial vehicle (UAV) technology, UAV-based remote
sensing has matured and has been widely used in agricultural, geological, and environmental
monitoring [31]. UAV is a flexible platform that can be configured with various remote sensing
sensors, in which digital images are the most commonly used data type. Several methods [25,26,32–35]
that are based on digital image processing and machine learning algorithms have been proposed for
pavement distress detection, using high-resolution images that were acquired from UAV platforms.
For example, Kim utilized a simple UAV system to capture the pavement images and detected cracks
based on the image binarization method [32]. Georgopoulos extracted the flexible pavement cracks
using the digital image processing tools [36]. However, some limited abilities and issues occurred in
these studies. For instance, some of the undamaged regions (such as tire tracks, oil stains, and traffic
lines) intersecting with pavement damage prevent the detection of damages in the images because the
collected images do not have any depth information. Moreover, macroscopic monitoring of pavement
based on image processing methods always requires too many images. In comparison of two sequential
images, the pixel values at the same location have a bias because of the illumination differences that
are caused by the different solar incident angles. Consequently, this will lead to some degree of
difference between the segmentation results of the same target derived from different images [25].
When compared with digital images, LiDAR can directly acquire the 3D spatial information of the
deteriorated pavement to measure the geometric dimensions of the pavement distress and can more
easily monitor the entire pavement. Furthermore, LiDAR is not restricted by the sun angle and can
be implemented during the day and night [7]. Enlightened by these characteristics of LiDAR, the
pavement point cloud data were captured and first attempted to identify the pavement distress in our
study. The objective of this study is to develop a pavement distress identification approach for the
asphalt pavement using LiDAR point cloud data (Figure 1). Specifically, an optimized feature set will
be studied and a random forest classifier will be implemented and compared with other classification
methods to demonstrate the robustness of the RFC in pavement distress classification.
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Figure 1. Research roadmap.

2. Data Acquisition and Preprocessing

2.1. Study Area

The road section that is selected for this study is a section of an asphalt road in the northern suburb
of Shihezi City in Xinjiang Province of China (Figure 2). The pavement has been severely damaged,
and roadbed materials are exposed in some areas and filled with gravel, loess, and grit. There are
several longitudinal cracks and potholes along the moving directions of vehicles. Because of the unique
meteorological, hydrological, and geological characteristics of Shihezi, the subgrade is not sufficiently
stable. A certain degree of distortion appears along the road, and road attachments, such as curbstone
and road signs, are seriously damaged. The areal extent of the pavement distress is fairly large, which
makes it very suitable for data acquisition and analysis using low-altitude UAV and low-density point
cloud data. The area is of great value for the development of an asphalt pavement distress extraction
method that is based on low-altitude UAV LiDAR and the assessment of this method’s feasibility.
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Figure 2. Study Area.

2.2. LiDAR Data Acquisition

We conducted our research using a B1-100 UAV manufactured by Scout and a RIEGL VUX-1LR
laser scanner (Figure 3). The UAV platform was equipped with an INS/GPS flight control system,
with up to 31 kg of payload and two hours of flight endurance. The RIEGL VUX-1LR is a
lightweight and compact airborne laser scanner with an accuracy of 15 mm (http://www.riegl.
com/nc/products/airborne-scanning/produktdetail/product/scanner/49/). The sensor enables
high-speed data acquisition through a near-infrared laser beam and fast line scanning, which results in
high-quality measurements even under poor atmospheric conditions.
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Figure 3. Light detection and ranging (LiDAR) data acquisition system.

We gathered the point cloud data of the asphalt pavement near Dayushu Village in the northern
suburb of Shihezi City on June 23, 2017. It was a sunny and windless day, which was very suitable
for UAV system operation and flight. During this experiment, the UAV’s flight altitude was 30 m,
the view angle of the laser scanner was 55◦, the flight speed was 5 m/s, and the original point cloud
data included approximately 70,000,000 points. The point density of the LiDAR point cloud data was
40/m2. However, the data cannot be directly used for pavement modeling because the original point
cloud data adopted a geocentric coordinate system and it included too much noise. Therefore, the
original data needed to be preprocessed before pavement distress could be extracted.
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2.3. Point Cloud Data Preprocessing

2.3.1. Generating Standard Point Cloud Data

We used the postprocessing software RT Post-Process to convert the point cloud to an LAS format,
which is an industry-standard binary format for storing airborne LiDAR data. The original point
cloud data included the data that were acquired using the laser scanner, the flight path position, and
the altitude data that were recorded by the IMU/GPS (Inertial measurement unit/GPS). The data
preprocessing was divided into two steps. First, the IMU/GPS flight trajectory data were calculated
and clipped. Subsequently, the original point cloud was segmented by using the clipped trajectory data.

The point cloud data that were selected for the experiment were between 346 s and 376 s, with a
total length of approximately 150 m. As shown in Figure 4, the UAV flight direction was relatively
stable during this time period (indicated by the double arrow). As mentioned in Section 2.2, the UAV’s
flight altitude was set to 30 m during the flight. The format of the clipped point cloud data was set as
LAS and the coordinate system was set as WGS84.
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2.3.2. Point Cloud Filtering

During the data acquisition process, laser pulses could penetrate the leaves of vegetation or the
glass of vehicles to form multiple reflection echoes. Therefore, it was necessary to conduct point cloud
filtering to restore the reasonable distribution of the point cloud in space.

The point cloud filtering process was divided into three steps to eliminate outliers, noise, and
redundant data. First, we utilized the classification tool of the RT Post-Process software to collect
outliers from the point cloud visualization, and we removed them from the standard point cloud
data. Most of these outliers resulted from the reflection and scattering of air dust on the laser and the
reflection effect of water bodies on the laser. Therefore, their elevation values were lower or higher than
elevations of their neighborhoods. Subsequently, it was necessary to filter the noise near vegetation
and vehicles that formed because of multiple reflections. Here, we adopted a statistically based point
cloud filtering algorithm to eliminate the noise points [37]. The algorithm assumes that the data are
generated by a stochastic process, and typically, a closed-form probability distribution is fit to the
data. Any data instance that is unlikely to be generated from the estimated stochastic process is then
reported as noise [37]. Finally, there was a large amount of redundant data that needed to be eliminated
from both sides of the road, including that of cultivated land, crops, and vegetation. The redundant
data could be removed by elevation and scanning angle filtration. According to the measured data,
the elevation of the selected road section was between 340 m and 343 m. Moreover, the scanning angle
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range was calculated at approximately 25◦. Therefore, the filtering parameters of elevation (Ali) and
scanning angle (θ) were as follows:

339.5 < Ali < 343.5 (1)

− 25 < θ < 25. (2)

After the completion of point cloud filtering, the point cloud data could be used for feature extraction
and classification (Figure 5).
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We obtained the pavement point cloud for a length of approximately 150 m. To verify the
effectiveness and stability of our method, the point cloud was divided into two parts: experimental
data and validation data. The experimental data were approximately 90 m, including approximately
900,000 laser pulse points, and this road section was more seriously damaged. The validation data
were approximately 45 m, including approximately 400,000 laser pulse points, and they were used to
validate the applicability and stability of the method for different road sections with various conditions.

3. Multi-Dimensional and Multi-Scale Feature Extraction

3.1. Elevation Feature

Many factors (including the volatilization of light components, light aging, temperature changes,
humidity changes, and vehicle load) can result in asphalt pavement aging and they can cause a variety
of pavement distress, such as cracks, potholes, subsidence, and rutting [38]. Different types of asphalt
pavement distress have an obvious difference in elevation. Here, we provide a qualitative analysis
based on the triangulated irregular network (TIN) model of the selected road to elaborate the elevation
difference of various types of pavement distress. As Figure 6 shows, there are several cracks and
potholes in the road section. The elevation of cracks and potholes is lower than that of undamaged
pavement, while the elevation variation in subsidence areas is less than that in potholes. This difference
is because asphalt mixtures on the subgrade are worn away in potholes, and the roadbed is exposed.
Although subsidence is also obvious, the asphalt mixture layer is not completely lost. Potholes are often
filled with other materials and, thus, do not show the typical spectral features that are different from
undamaged pavement. However, the spatial features (circular or oval-shaped) of potholes are unique
and obvious. Therefore, the elevation feature is of great importance for the subsequent pavement
distress classification.
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3.2. Multi-Scale Statistical Features of Elevation

Pavement distresses are often isolated point groups or singular points at a certain measurement
scale. It is necessary to establish a microscale model near these points to effectively extract features.
For different types of pavement distress, the optimal measurement scale that is required for feature
extraction is different. As a result, to obtain comprehensive and accurate features of pavement distress,
we need to extract and analyze the features of pavement distress at multiple scales. To construct
multiscale pavement point cloud features, we need to construct a hierarchy structure on the pavement
point cloud data to achieve the transfer of feature information between different scales. The most
commonly used method is to convert point cloud data into high-resolution images and to construct
multiscale image features using a pixel-based scale transformation method. The pixel-based scale
transformation approach is simple and easy to use. However, it cannot effectively utilize the spatial
neighborhood information that is contained in the original point cloud. Therefore, we extracted the
multiscale statistical features directly from the different neighborhood scales using the original point
cloud rather than an intermedium, which avoids the loss of information.

To define reasonable measurement scales, we collected the geometric parameters of several types
of typical pavement distress in the selected road (Table 1). By measuring the geometric parameters,
we found that the geometric parameters of the potholes and subsidence were excessively large and
that the average geometric scale was 50 cm. Although the width of some longitudinal cracks and
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transverse cracks is approximately 1~3 cm, these cracks cannot be expressed in the low-density point
cloud data because the minimum interval of the data is approximately 5 cm. When considering the
limitation in data quality, slight distress is not a priority in this study. In the vertical direction, the
elevational precision was between 5 mm and 10 mm; thus, the elevational variation in severe types of
distress, such as potholes, can be extracted. Therefore, to extract multiscale statistical features that are
more consistent with the target pavement, the multiscale parameters were set as reported in Table 2.

Table 1. Geometric parameters of several types of typical pavement distress in the selected road.

Types of Distress Length/Width/Depth Grade Thumbnail Photo

Pothole 6 m/30 cm/5 cm Depth > 15 mm; Severe
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transverse cracks is approximately 1~3 cm, these cracks cannot be expressed in the low-density point 
cloud data because the minimum interval of the data is approximately 5 cm. When considering the 
limitation in data quality, slight distress is not a priority in this study. In the vertical direction, the 
elevational precision was between 5 mm and 10 mm; thus, the elevational variation in severe types of 
distress, such as potholes, can be extracted. Therefore, to extract multiscale statistical features that are 
more consistent with the target pavement, the multiscale parameters were set as reported in Table 2. 
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neighborhood information that is contained in the original point cloud. Therefore, we extracted the 
multiscale statistical features directly from the different neighborhood scales using the original point 
cloud rather than an intermedium, which avoids the loss of information. 

To define reasonable measurement scales, we collected the geometric parameters of several types 
of typical pavement distress in the selected road (Table 1). By measuring the geometric parameters, 
we found that the geometric parameters of the potholes and subsidence were excessively large and 
that the average geometric scale was 50 cm. Although the width of some longitudinal cracks and 
transverse cracks is approximately 1~3 cm, these cracks cannot be expressed in the low-density point 
cloud data because the minimum interval of the data is approximately 5 cm. When considering the 
limitation in data quality, slight distress is not a priority in this study. In the vertical direction, the 
elevational precision was between 5 mm and 10 mm; thus, the elevational variation in severe types of 
distress, such as potholes, can be extracted. Therefore, to extract multiscale statistical features that are 
more consistent with the target pavement, the multiscale parameters were set as reported in Table 2. 
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neighborhood information that is contained in the original point cloud. Therefore, we extracted the 
multiscale statistical features directly from the different neighborhood scales using the original point 
cloud rather than an intermedium, which avoids the loss of information. 

To define reasonable measurement scales, we collected the geometric parameters of several types 
of typical pavement distress in the selected road (Table 1). By measuring the geometric parameters, 
we found that the geometric parameters of the potholes and subsidence were excessively large and 
that the average geometric scale was 50 cm. Although the width of some longitudinal cracks and 
transverse cracks is approximately 1~3 cm, these cracks cannot be expressed in the low-density point 
cloud data because the minimum interval of the data is approximately 5 cm. When considering the 
limitation in data quality, slight distress is not a priority in this study. In the vertical direction, the 
elevational precision was between 5 mm and 10 mm; thus, the elevational variation in severe types of 
distress, such as potholes, can be extracted. Therefore, to extract multiscale statistical features that are 
more consistent with the target pavement, the multiscale parameters were set as reported in Table 2. 
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neighborhood information that is contained in the original point cloud. Therefore, we extracted the 
multiscale statistical features directly from the different neighborhood scales using the original point 
cloud rather than an intermedium, which avoids the loss of information. 

To define reasonable measurement scales, we collected the geometric parameters of several types 
of typical pavement distress in the selected road (Table 1). By measuring the geometric parameters, 
we found that the geometric parameters of the potholes and subsidence were excessively large and 
that the average geometric scale was 50 cm. Although the width of some longitudinal cracks and 
transverse cracks is approximately 1~3 cm, these cracks cannot be expressed in the low-density point 
cloud data because the minimum interval of the data is approximately 5 cm. When considering the 
limitation in data quality, slight distress is not a priority in this study. In the vertical direction, the 
elevational precision was between 5 mm and 10 mm; thus, the elevational variation in severe types of 
distress, such as potholes, can be extracted. Therefore, to extract multiscale statistical features that are 
more consistent with the target pavement, the multiscale parameters were set as reported in Table 2. 
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neighborhood information that is contained in the original point cloud. Therefore, we extracted the 
multiscale statistical features directly from the different neighborhood scales using the original point 
cloud rather than an intermedium, which avoids the loss of information. 

To define reasonable measurement scales, we collected the geometric parameters of several types 
of typical pavement distress in the selected road (Table 1). By measuring the geometric parameters, 
we found that the geometric parameters of the potholes and subsidence were excessively large and 
that the average geometric scale was 50 cm. Although the width of some longitudinal cracks and 
transverse cracks is approximately 1~3 cm, these cracks cannot be expressed in the low-density point 
cloud data because the minimum interval of the data is approximately 5 cm. When considering the 
limitation in data quality, slight distress is not a priority in this study. In the vertical direction, the 
elevational precision was between 5 mm and 10 mm; thus, the elevational variation in severe types of 
distress, such as potholes, can be extracted. Therefore, to extract multiscale statistical features that are 
more consistent with the target pavement, the multiscale parameters were set as reported in Table 2. 
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neighborhood information that is contained in the original point cloud. Therefore, we extracted the 
multiscale statistical features directly from the different neighborhood scales using the original point 
cloud rather than an intermedium, which avoids the loss of information. 

To define reasonable measurement scales, we collected the geometric parameters of several types 
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We can extract various microscopic features near a pavement distress at a microscopic scale
and express the variation trend in the entire pavement at a macroscopic scale. According to the
aforementioned ideas, a multiscale roughness index and Gaussian curvature were calculated.

(1) Roughness index
The roughness index is widely used in feature extraction using a LiDAR point cloud [39,40].

The traditional roughness index is defined as the ratio of the digital surface model (DSM) surface area to
the digital elevation model (DEM) surface area. However, this definition is subject to quadratic accuracy
loss during the process of generating DSM/DEM and calculating the surface area of DSM/DEM.
To reduce the accuracy loss, we adopted the following definition: the roughness index of a point is
equal to the distance between the point and a plane, which is the optimal fitting plane of the point
and its neighboring points in a particular neighborhood (Figure 7). The error constraint of the optimal
fitting plane is based on the least squares estimation method. The expression of the roughness index is
as follows:

Roughnessi = distance
(
(xi, yi,zi), Zscalej

= a0·x + b0·y + c0

)
(3)

where (xi, yi,zi) is the spatial coordinate of the ith laser pulse point and Zscalej
is the optimal fitting

plane of the ith laser pulse point and its surrounding points at the jth scale.
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As shown in Figure 8, the microstructure of pavement distress is well expressed at the microscopic
scales. As the elevation varies, the roughness index at the edge of a pavement distress is much greater
than that in other regions. At a small measurement scale, the asphalt mixture in the middle of potholes
is completely lost, and the roughness index is relatively low due to the absence of filler. At a large
measurement scale, although the middle of potholes is relatively flat, the roughness index is still high,
and the features of pavement distress are expressed. At several large measurement scales (Figure 9),
some undamaged pavement areas also have higher roughness indexes because of their closeness to
seriously damaged regions, which indicates the sensitivity of the roughness index to the neighborhood
statistics and it is also an early warning for the risk of pavement distress. While considering that
the optimal measurement scale that is required for feature extraction is different for various types of
distress, the construction of multiscale roughness indexes is a promising approach to comprehensively
and accurately represent the features of pavement distress.

RETRACTED
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area of the potholes is relatively even and it shows the characteristics of a plane; thus, the Gaussian 
curvature is very small and it is similar to the roughness index. However, unlike the roughness index, 
which is easily influenced by neighborhood elevation at the macroscopic scale, the Gaussian curvature 
can be used to extract the distribution of pothole distress at a large measurement scale (Figure 11), 
even when the distress is serious or the area is large. At a large measurement scale, potholes with 
heavier damage can be effectively extracted. Meanwhile, adjacent undamaged pavement does not 
exhibit a large curvature. Therefore, by constructing and analyzing the multiscale Gaussian curvature 
of pavement in three-dimensional space, different types of distress can be effectively extracted. 

Figure 9. Distribution of the roughness index on macroscopic scales.

(2) Gaussian curvature
The occurrence of pavement distress is a process of the gradual erosion of undamaged

pavement. The elevational variation in pavement reflects the characteristics of the gradient at a
certain measurement scale. Therefore, we adopted Gaussian curvature to extract pavement distress.
According to Gauss’s Theorema Egregium [41], the Gaussian curvature is independent of its embedding
position in space. Therefore, the use of Gaussian curvature can avoid the influence of the spatial
position variation in fitting the quadratic surface in the curvature calculation when the measurement
scale changes.

As shown in Figure 10, the asphalt mixture in the subsidence distress is not completely lost.
The surface of these regions is very near a spherical or cylindrical surface, which has an effective
expression on the distribution diagram of the Gaussian curvature at microscopic scales. The middle
area of the potholes is relatively even and it shows the characteristics of a plane; thus, the Gaussian
curvature is very small and it is similar to the roughness index. However, unlike the roughness index,
which is easily influenced by neighborhood elevation at the macroscopic scale, the Gaussian curvature
can be used to extract the distribution of pothole distress at a large measurement scale (Figure 11),
even when the distress is serious or the area is large. At a large measurement scale, potholes with
heavier damage can be effectively extracted. Meanwhile, adjacent undamaged pavement does not
exhibit a large curvature. Therefore, by constructing and analyzing the multiscale Gaussian curvature
of pavement in three-dimensional space, different types of distress can be effectively extracted.RETRACTED
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3.3. Reflection Intensity Feature

Reflection intensity has a linear relationship with spectral reflectivity. We can construct a reflection
intensity image with the reflection intensity attribute of the point cloud. Thus, different types of
pavement distress can be extracted based on their reflection intensity feature. In this study, the
elevational variation in the selected road section is quite small and it shows a continuous surface at
the macroscopic scale and a cliff feature at the microscopic scale. Therefore, we adopted the inverse
distance weighted method, which is frequently used and it is known to be stable in point cloud
interpolation [42]. The interpolated image has a pixel size of 5 cm, as shown in Figure 12.
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Figure 12 shows that pavement distresses in the selected road are very serious. There are many
circular potholes and several longitudinal cracks along the road. There are some regions with low
reflection intensity on both sides of the road, which result from the decrease in the reflection intensity
in the near-infrared band due to the absorption of rainwater. Because of rainwater filling, the reflection
intensity and elevation are affected by the absorption of laser energy and the refraction of water, which
cause some errors in distress extraction.
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3.4. Object-Oriented Geometric Features

The reflection intensity image reflects spectral features in the midinfrared band. In addition to
the obvious difference with undamaged pavement in the spectrum, pavement distresses also have
unique geometric features that can be calculated to compensate for the deficiency in the spectral
information. Here, object-oriented segmentation of the reflection intensity image was performed to
extract the geometric features of the pavement distress. We adopted the intensity segmentation
algorithm that was provided by ENVI/IDL, which is based on pixel brightness and is best for
segmenting images with subtle gradients. By adjusting the scale threshold of the segmentation
and merging, a good segmentation result was obtained when the parameters of the segmentation
scale and merging scale were set to 10 and 15, respectively. The segmentation results are presented in
Figure 13. The segmentation result indicates that areas with severe distress are basically divided into a
complete region, while areas with better pavement conditions are divided into many small patches
because of the aging of undamaged pavement.
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We extracted the geometric features of the segmentation results using the Feature Extraction
module provided by ENVI/IDL, including the regional features and shape features. The regional
features included the area, perimeter, extensibility, and main direction, which were used to describe the
regional attributes. These attributes were influenced by the segmentation parameters, but the features
of different types of objects could be expressed in a satisfactory segmentation result. The shape features
included the shape factor, compactness, circularity, and rectangularity. These features were primarily
used to evaluate the specific geometrical morphology of an object’s boundary. Some types of distress
often have significant changes in the regional features but they have a relatively stable distribution in
the contours, which increases the accuracy of the distress extraction.

Figure 14 shows the distribution of four regional features. According to the segmentation result,
the polygonal patches in the damaged areas are relatively large. Correspondingly, the area and
perimeter features are also large. Most of the pavement distress is distributed along the north-south
direction; thus, their extensibility is generally higher than that of undamaged pavement. The main
direction reflects the principal direction of the deformed objects. In undamaged pavement, the main
direction is randomly distributed because of the fragmentized segmentation result, while the main
direction in the damaged regions is consistent.
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Shape factors are dimensionless quantities that are used in image analysis and numerically
describe the shape of a polygon, independent of its size. The dimensionless quantities are utilized
to represent the degree of deviation from a circle. Compactness is adopted to measure the degree
of tightness for a polygonal boundary and the circle is the best compact shape. Circularity is used
to measure the circular feature of a polygon, where the value of a standard circle is 1. Similarly,
rectangularity is a measure of the rectangular feature, where the value of a rectangle is 1. These four
features are calculated to measure the shape of the polygons (Figure 15). Some typical distresses, such
as potholes, subsidence, and upheaval, have very recognizable geometrical shapes. The calculations
of these shape features play an important role in pavement distress extraction and different types of
distress distinctions.
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4. Asphalt Pavement Distress Classification Using Random Forest

4.1. Principles of Random Forest Classification

In this study, we extracted a total of 48 features for pavement distress classification, including
an elevation feature, multiscale statistical features, a reflection intensity feature, and object-oriented
geometric features. Since these features have a certain degree of correlation, traditional classification
methods that are based on probability and statistics have difficulties in such a situation. Therefore, RFC,
which has a strong ability to reduce the correlation between the trees and the generalization error [43],
was used. RFC has high classification accuracy and robustness and it has excellent applicability to
multisample and high-dimensional data classification [44].

RFC is an ensemble classification that refers to a new approach that uses not just one, but rather
many decision trees. Each decision tree is generated according to the training set and a random
vector, θk, in which the random vectors that are used to generate each decision tree are independently
identically distributed. The final decision tree set is the RFC model {h(X, θk), k = 1,2, . . . ,K}, where X is
an input vector [45]. Each single decision tree h(X, θk) has a vote to select the classification result of
input vector X. After K-round training, a classification model sequence {h1(X), h2(X), . . . ,hK(X)} can
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be obtained according to the training set, and the RFC model is developed. The classification result of
the sample set is determined by a simple vote, as follows:

H(x)= max
Y

k

∑
i=1

I(hi(x) = Y) (4)

where H(x) is the RFC model, hi(x) is a single decision tree, X is the input vector, Y is the target vector
(or classification target), and I(·) is the indicator function.

4.2. Asphalt Pavement Distress Classification

4.2.1. Classification System

According to the classification criterion described in the Technical Specifications for Maintenance
of Highway Asphalt Pavement [38] and the classification feasibility with the acquired point cloud with
an interval of 5 cm, the classification system established in this study focuses on extracting severe
pavement distresses (Table 3). On the one hand, the data quality in this research does not allow for
the extraction of slight pavement distresses. On the other hand, severe distress is indicative of the
fact that the pavement has entered into the latter phase of aging. Once this type of distress appears,
the pavement has lost its normal function as a platform for vehicles to drive on and it needs urgent
maintenance. Therefore, we established a classification system mainly for severe pavement distresses.
Because of the similarity between subsidence, rutting, and cracks, they are regarded as the same type
of distress in the classification.

Table 3. Classification of typical asphalt pavement distress.

Types of Distress Grade Description Indicator

Potholes
Slight Shallow hole, small area (<0.1 m2) depth ≤ 15 mm
Severe Deep hole, large area (>0.1 m2) depth > 15 mm

Subsidence
Slight Small deformation depth ≤ 15 mm
Severe Large deformation depth > 15 mm

Rutting Slight Shallow, no obvious discomfort in driving depth ≤ 15 mm
Severe Deep, clearly bumpy in driving depth > 15 mm

Cracks
Slight Fewer branches width ≤ 5 cm
Severe More branches width > 5 cm

4.2.2. Implementation and Results of RFC

In Section 3, a total of 48 features were extracted, including point cloud elevation, reflection
intensity, a multiscale roughness index, a multiscale Gaussian curvature, and several object-oriented
geometric features. The multiple features of the dataset are listed in Table 4.

Table 4. The multiple features of the dataset.

Feature Category Feature Description Measurement Scale Number of Features

Attributes of the Original
Point Cloud

Elevation Reflection
intensity 2

Statistical Features of
Elevation

Roughness index Microscopic scale 16
Macroscopic scale 3

Gaussian curvature
Microscopic scale 16
Macroscopic scale 3

Geometric Features
Regional features 4

Shape features 4

According to the classification system proposed in 4.2.1, RFC was adopted to classify the acquired
multiscale and multidimensional dataset. The training samples are reported in Table 5.
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Table 5. Training samples.

Category Color Number of Pixels Number of Polygons

Potholes Red 951 39
Subsidence Green 2001 22

Undamaged pavement Blue 4736 25

During the classification process, we used the cross-validation method to classify the training
samples (Figure 16). The training samples were randomly sampled according to a ratio of 4:1, in which
80% of the training data were used for the classification model training and the remaining 20% were
used as the validation set for accuracy validation. The cross-validation method can not only validate
the classification accuracy, but also demonstrate the stability of the classification method. A total of five
experiments were conducted in the classification process. The RFC model that was used during the
experiments contained 200 decision trees, and each of these trees had nine features and a maximum
tree height of 10. The RFC only used a subset of features to build each individual decision tree. This is
advantageous because each decision tree can make a more accurate classification decision based only
on effective features, reducing the error that is associated with the structural risk of including the
entire feature vector in the analysis. Simply put, each decision tree is a classification “specialist” of
the feature domain that is used in it. For a feature used to differentiate a class type, a nonspecialist
decision tree adopts a nearly random way of voting, in which the number of the specialist decision
trees is sufficient to make an accurate classification when all the decision trees meet a certain number.
The training accuracy and testing accuracy are shown in Table 6.
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Table 6. Statistics of classification accuracy.

Number of
Experiments

Training Accuracy (%) Testing Accuracy (%)

Potholes Subsidence Undamaged
Pavement Potholes Subsidence Undamaged

Pavement

1 98.21 98.75 100 95.35 97.53 98.62

2 99.12 100 100 96.56 98.71 98.89

3 97.47 98.43 100 95.86 95.34 98.30

4 99.95 98.56 100 94.10 95.79 98.55

5 98.88 99.20 100 93.32 94.27 98.71

The experimental results show that the method has high classification accuracy and that the
accuracy is stable. The aforementioned results not only reflect the validity of the pavement distress
extraction model but also indicate the applicability and robustness of the RFC method. In addition, the
method has a high training accuracy, while the testing accuracy does not show a significant decline,
which indicates a strong robustness to overfitting.
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4.2.3. Accuracy Assessment

To further verify the classification accuracy, we analyzed the classification results with the visual
interpretation results as a reference (Table 7).

Table 7. Accuracy assessment with the visual interpretation results as a reference.

Category Commission Error
(%)

Omission Error
(%)

Producer’s Accuracy
(%)

User’s Accuracy
(%)

Potholes 15.72 20.12 79.88 84.28

Subsidence 31.07 12.47 87.53 68.93

Undamaged
pavement 1.52 6.07 93.93 98.48

Overall Accuracy: 92.30%; Kappa Coefficient: 0.9023

According to Table 7, the overall accuracy is 92.3%. The classification accuracy decreased relative
to the cross-validation but it remained greater than 90%. The main classification error of pothole
distress originated from omission error, that is, some of the potholes were misclassified as subsidence.
When comparing the classification results with the visual interpretation results, it is apparent that
some potholes were misclassified as subsidence. The misclassified regions were mainly at the edge of
potholes, which is a transitional area of damaged pavement and undamaged pavement (Figure 17c).
In these regions, the roughness index and Gaussian curvature were influenced by the surrounding
undamaged pavement, and the eigenvalues were not obvious, which resulted in a certain degree
of misclassification. In addition to the classification errors in the transitional area, the classification
accuracy in the other regions was very high, and the distress distribution could be accurately extracted,
which provides a reference for highway maintenance agencies to evaluate road conditions and perform
further maintenance.

4.3. Comparison of Different Classification Methods

In this section, we compare the classification results of RFC with maximum likelihood classification
(MLC) and support vector machine (SVM) to illustrate that our choice of RFC as the classification
method is reasonable. We used the same multifeature dataset and training samples in MLC, and model
training was conducted using the cross-validation method for a total of five times. The average training
accuracy and testing accuracy were 95.31% and 86.13%, respectively. We selected the classification
model with the highest accuracy to extract pavement distresses. The classification result is shown
in Figure 17a. The result shows that the commission error of potholes was very serious and a large
number of subsidence distresses were misclassified as potholes. This is because the MLC method did
not effectively utilize multiscale elevational features and neighborhood statistical features. The same
dataset and training samples were used in SVM. We chose a radial basis function as the kernel
function, and the penalty factor was 100. The model was trained five times, and the average training
accuracy and testing accuracy was 98.95% and 94.83%, respectively. The classification model with
the highest accuracy was selected to extract pavement distress, and the result is shown in Figure 17b.
As Figure 17b shows, the visual effect of the classification result obtained by SVM was greatly
improved when compared with that of MLC. SVM was superior to the MLC method in addressing
high-dimensional data, and the testing accuracy was improved from 86.13% to 94.83%. However, it
was found that the two types of pavement distress were relatively large in the SVM classification and
that undamaged pavement within a certain range of the distress was also misclassified as potholes
or subsidence. Because of the correlations between the multiscale roughness index and Gaussian
curvature, the multidimensional features restricted one another when a superplane was established in
the multidimensional space, which limited the expression of the object-oriented features and resulted
in commission errors at the edge of the pavement distress.
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The classification results that were obtained with MLC and SVM were compared with the results
of RFC (Figure 17). Simultaneously, the artificial visual interpretation results were used to verify the
classification results. A comparison of the different methods is shown in Table 8.

Table 8. Comparison of different methods.

Classification Method MLC (%) SVM (%) RFC (%)

Overall Accuracy 79.35% 87.88% 92.30
Kappa Coefficient 0.7762 0.8651 0.9023

The comparative results show that the RFC classification stood out with the highest classification
accuracy (Table 8), indicating its effectiveness in handling high-dimensional data classification.
The difference between the simulation accuracy and the actual validation accuracy of the RF
classification is approximately 5% smaller than that of MLC and SVM. This means that the RF
classification has the stronger generalization capacity in the training process, while the other two tend
to over fit their model to the training data. This has further proved that the RFC’s strategy of decision
making based on the combined voting outperformed the MLC and SVM classifiers. A part of the
decision trees in the classification model can effectively employ object-oriented features to determine
the exact boundary of pavement distress, while the other part of the decision trees can vote for the
specific type of distress with spectral features and multiscale elevational features. Therefore, the RFC
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method obtained the most reasonable classification result in asphalt pavement distress classification
and the overall accuracy of this method was also the highest.

4.4. Application and Validation

In this section, we applied the method proposed in this paper to the validation data to verify its
stability. The acquisition and preprocessing of the validation data were the same as the experimental
data. A multifeature dataset that included 48 features was extracted according to the elevation and
reflection intensity of the original point cloud. The RFC method was adopted to conduct pavement
distress classification. The classification results are shown in Figure 18.
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We utilized independent testing samples to verify the accuracy of the classification results, which
is shown in Table 9.

Table 9. Classification accuracy of the validation data.

Category Commission Error
(%)

Omission Error
(%)

Producer’s Accuracy
(%)

User’s Accuracy
(%)

Potholes 1.59 0.32 99.68 98.41

Subsidence 8.10 5.76 94.24 91.90

Undamaged
pavement 2.13 7.41 92.59 97.87

Overall Accuracy: 95.86%; Kappa Coefficient: 0.9389

According to the classification results and the accuracy validation table, the pavement distress
classification method achieved a high accuracy when it was applied to the validation data. The overall
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accuracy was 95.86% and the Kappa coefficient was 0.9389. The classification accuracy of potholes was
nearly 99%, while there was a certain degree of commission error in extracting subsidence distress.
Combined with the reflection intensity image of the validation data, the damaged regions at the edge
of subsidence areas were misclassified as subsidence distress. In these regions, the roughness index
and Gaussian curvature were influenced by the surrounding pavement, and the eigenvalues were not
obvious, which resulted in a certain degree of misclassification. However, the overall accuracy of the
classification results was still high. Therefore, by using distress classification and the results analysis of
the validation data, it is evident that our method was reliable and stable.

5. Conclusions

This research has demonstrated the application of random forest classification in identifying
pavement distress, based on the use of UAV LiDAR point cloud data. To address the difficulties
in distress classification using the conventional method, an effective set of features were found,
including the spectral and spatial ones that could be derived from the LiDAR point cloud. A case
study was conducted to classify the pavement distress in North Xinjiang, China based on the analysis
of the elevations and intensities of the point cloud data. The random forest classification model was
successfully developed with 48 features (e.g., elevation, intensity, roughness, curvature, geometric),
and a satisfactory classification with an accuracy of 92.3% was achieved. It was found that the overall
accuracy of the RFC was 5–10% greater than that of the MLC and SVM classifiers. The incorporation
of spectral, elevation, and geometrical features extracted from the UAV LiDAR point cloud into the
random forest classification can produce better a delineation of the potholes and subsidence from
the undamaged pavement. In conclusion, the flexible UAV platform, configured with a laser scanner,
provides a valuable tool for monitoring of the asphalt pavement condition.

In future work, more UAV LiDAR point cloud data of different road areas and segments could
be used to further evaluate the performance of the method for the identification of potholes and
subsidence. Because of the spatial resolution limitation, the UAV LiDAR point cloud that was used
in this paper still cannot detect slight distress. Therefore, higher resolution point cloud should
be obtained to further increase the accuracy of pavement condition evaluation. In addition, other
remote sensing data, including multispectral images by UAV, also have a great potential for pavement
condition monitoring. A more accurate classification of pavement distress may be achieved through
comprehensive analysis of a high-density point cloud and multispectral remote sensing images.
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