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Abstract: Automatic road extraction from remote-sensing imagery plays an important role in many
applications. However, accurate and efficient extraction from very high-resolution (VHR) images
remains difficult because of, for example, increased data size and superfluous details, the spatial
and spectral diversity of road targets, disturbances (e.g., vehicles, shadows of trees, and buildings),
the necessity of finding weak road edges while avoiding noise, and the fast-acquisition requirement
of road information for crisis response. To solve these difficulties, a two-stage method combining
edge information and region characteristics is presented. In the first stage, convolutions are executed
by applying Gabor wavelets in the best scale to detect Gabor features with location and orientation
information. The features are then merged into one response map for connection analysis. In the
second stage, highly complete, connected Gabor features are used as edge constraints to facilitate
stable object segmentation and limit region growing. Finally, segmented objects are evaluated by
some fundamental shape features to eliminate nonroad objects. The results indicate the validity
and superiority of the proposed method to efficiently extract accurate road targets from VHR
remote-sensing images.

Keywords: edge constraints; Gabor features; object segmentation; region growing; road extraction;
shape features

1. Introduction

Since roads are a principal part of modern transportation, managing and updating road
information in the Geographic Information System database is of great concern [1]. Road information is
fundamental geographical information playing an important role in many applications, e.g., serving as
reference for the recognition of other objects and travel recommendation [2], road navigation, geometric
correction of images, and even assisting confidential transmission of color images [3]. Automatic
road extraction is an effective and economic way to obtain road information. However, inaccurate
extraction from automatic analysis is common due to the great complexity of very high-resolution
(VHR) remote-sensing imagery. Some factors that contribute to the difficulty of high-resolution road
extraction are: increased data size and superfluous details with progressively higher resolutions, which
means more noise interference and processing time; shelters, such as vehicles and trees on the roadside
or shadows of artifacts and buildings, although vehicles’ location can be identified by eavesdrops,

ISPRS Int. J. Geo-Inf. 2018, 7, 362; doi:10.3390/ijgi7090362 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi7090362
http://www.mdpi.com/journal/ijgi
http://www.mdpi.com/2220-9964/7/9/362?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2018, 7, 362 2 of 21

it breaks the users’ trajectory privacy [4]; the phenomenon of similar objects possessing varying spectra
while different objects possessing the same [5], which can easily cause wrong segmentation results by
a region-based method; the necessity of finding weak road edges when the spectral representation of
the road surface is similar to the background; and, sometimes, the demand for fast acquisition of road
information when facing a crisis [6].

Over the past decades, various road-information extraction algorithms have been proposed
and can be classified into three types according to Reference [7]: (1) pixel-based; (2) region-based;
and (3) knowledge-based methods. Pixel-based methods detect potential roadside information,
such as lines, edges, and ridges, by exploiting pixel-level information. Region-based methods first
segment images into regions and then track road regions by classification rules. Knowledge-based
methods detect roads by using higher information, e.g., a vison-based system, proposed by Poullis
and You [8], uses Gabor filtering and tensor voting for geospatial-feature classification and then graph
cuts for segmentation and road feature extraction. Methods applying convolutional neural networks
(CNN), such as a road-structure-refined CNN (RSRCNN) approach, are used by combining both
the spatial correlation and geometric information of roads in a CNN framework [9]. Buslaev and
Seferbekov use the fully convolutional neural network of U-Net to extract road networks [10], while a
single patch-based CNN architecture is proposed in Reference [11]. Despite these methods showing
superior results, their inadequacy in keeping weak, tenuous edges could diminish the completeness of
edge information.

Pixel-based edge detection is a fundamental part for some road-extraction works, and typical
methods for line-feature detection [12,13] can present fairly complete edge information. This type of
road-extraction analysis [14–17] is largely accomplished by exploring the spatial characteristics of line
features. Lisini et al. [18] proposed a method that applies adaptive filters, the response of which was
then used to extract linear features and perform connection work. This method depends on different
hard thresholds and data-dependent parameters, thus needing quite a lot of user interaction to optimize
the parameters. In Reference [19], a novel aperiodic directional structure measurement (ADSM) was
used to construct a mask denoting potential road regions; then, the mask was consolidated with canny
edges. The limitation of this method is that considerable errors would occur in road regions with
shade or occlusion, since both the geometric and spectral features were affected in different degrees.
Only taking edge information into account without considering the spectral characteristics of the road
regions can also sometimes make it difficult to distinguish road edges from other objects that possess
similar geometrical-line features.

The most popular region-based methods first segment images into regional objects via typical
segmentation algorithms such as graph cut [20], energy functional analysis [21], the watershed
algorithm [22], or a support vector machine (SVM)-based method [23,24]. For segmented objects,
Shi et al. [7,25] and Lei et al. [26] used shape features to judge the segmented regions of road or nonroad
objects. Applying object-oriented techniques, Kumar et al. adopted a soft fuzzy classifier built on a
set of predefined membership functions to identify road objects [27]. Despite the superiority of this
method, especially in complex urban areas, the segmentation method is computationally expensive.
In References [28,29], regions’ feature vectors having region codes homogeneous to a region are used for
comparison during the retrieval of the images. These methods performed well in some circumstances,
but excluded difficulties when there were disturbances such as shadows and shelters, on the road
surface; when target objects and the backgrounds possess similar spectral representation; and when
illumination of the imagery was extreme darkness or brightness, which could lead to a mixture of the
target object with the backgrounds. These difficulties can easily cause confused segmenting results,
thus leading to a great loss of extraction accuracy.

To solve this, Alshehhi et al. used Gabor energy and morphological features to enhance the
contrast between road and nonroad pixels with a graph-based method for object segmentation [30],
which combines the potential advantage of line-feature analysis and object segmentation. Likewise,
in Reference [31], a self-adaptive mean-shift algorithm was used first to construct edge information,



ISPRS Int. J. Geo-Inf. 2018, 7, 362 3 of 21

and, together with spectral features, roads were then extracted using the SVM algorithm by
integrating spectral and edge information. Fast extraction of road information is sometimes necessary
during emergencies. To obtain road information very quickly, Reference [31] adopted object-based
image analysis with segmentation based on mathematical morphology, which demonstrated the
high road-extraction efficiency of object-based analysis. Although both approaches showed good
performance in the final results, reliable road-extraction results for all situations are still lacking.

Several defects existing in most current road-extraction works are taken into consideration by this
study, which include: (1) individual analysis for marginal and regional characteristics of target objects
without combining the advantages of each; (2) loss of roadside information caused by shelters, shadows,
and the phenomenon of foreign bodies with the same spectrum; (3) inefficient road-object tracking
process; and (4) neglecting the spatial and spectral diversity of road objects. We also summarize some
road characteristics to be studied in the research, including what is given in Reference [1], as well
as some additional characteristics that fit our algorithm: (1) spectral characteristics: road regions
have nearly the same spectral representation without excessive shelters or shadows on the surface;
(2) spatial characteristics: studied roads are long enough to be recognized with nearly parallel road
edges and a moderate degree of crook; and (3) image resolution: submeter level in the range 0.1–0.6 m.

In order to recognize more stable and accurate road objects in remote-sensing imagery from
complex scenes, we present a method using Gabor features as edge constraints to facilitate object
segmentation and region growing. Gabor features are first detected by applying Gabor wavelets with
experimentally determined optimum scale and orientations. Because of shelters, shadows, and the
similarity of the targets’ and backgrounds’ spectral representation, Gabor features obtained on the
roadside sometimes may be discrete; thus, the edges must go through a connection analysis. In the
connection analysis, we first apply a window-based method to extract line features with directional
consistency. Then, the extracted line features of interest are extended and linked to supplement
the completeness of the edge information and they are used as constraints in the segmentation and
region-growing process proposed by this article. Finally, potential road objects from segmentation are
evaluated by some fundamental shape features.

The remainder of this paper is organized as follows. In Section 2, a new method to efficiently
extract accurate road objects is presented. Section 3 shows the results and discusses the superiority of
this method. Finally, conclusions are given in Section 4.

2. Methods

As shown in Figure 1, the two-step automatic road extraction approach is proposed. (1) Edge
features analysis: preprocessed imagery was convolved with Gabor wavelet kernels for its invariance to
illumination, rotation, scale, and translation, and sensibility to line features to detect responsive features.
Then, a window-based method filtered undesired features such as the aforementioned disturbances.
After that, to transform the feature analysis in a line-segment-based manner, screened features were
processed into line segments by a line-segment detection (LSD) algorithm. Adjacent pair segments
were then connected if three criteria were satisfied, which helps supplementing the completeness of line
features; (2) object-analysis: connected Gabor features served as edge constraints for segmentation to
obtain stable segmented objects. Then, by region-growing, road objects were expanded to complement
their missing parts, whereas nonroad objects to highlight nonroad characteristics. Finally, fundamental
shape features, including area, shortest inner diameter, complex rate, length–width ratio of the
bounding rectangle, and the fullness ratio were used to extract potential target objects.
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Figure 1. Flowchart of the proposed method.

2.1. Image Preprocessing

The available color image with R, G, and B bands was divided into three grayscale images.
Inhomogeneous surface features normally show variant spectral representations in response to different
wavelength image sensors. The prominence of the boundary between road and background depends
on the spectral variance. Such grayscale images are favored, highlighting the variance. However, it is
quite difficult to automatically decide which band is more suitable due to the complexity of the scene.
Thus, in this paper, we transformed the color image into a fused grayscale image by using Equation (1):

Gray = 0.229R + 0.587G + 0.114B (1)

Random noise distribution in images is inevitable and is always a fundamental aspect of image
preprocessing. We adopted bilateral filtering because it not only reduces noise in the image but also
protects object edges. After that, we applied a Laplacian operator as a convolution kernel to enhance
the image, which provided more favorable inputs for Gabor feature detection.

2.2. Gabor Feature Detection

The original reason that draws our attention to use Gabor filters was the similarity between
Gabor filters and the receptive field of simple cells in the visual cortex [32]. With favorable properties
that are related to invariance to illumination, rotation, scale, and translation, Gabor filters have been
proven successful top performers in many computer-version and image-processing applications, such
as biometric authentication (e.g., face detection and recognition, iris recognition, and fingerprint
matching) [33]. A Gabor filter is an appropriate linear filter for edge detection and analysis because it
provides scale and direction information. There are discrepancies among road-edge-feature responses
to filters at different scales. By comparing responses at different scales, target road features more
sensitive to the Gabor filter are selected, while recording direction information helps the fundamental
analysis of edge-feature connections.
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The core of the 2D Gabor filter function for texture-feature extraction can be defined in the spatial
domain as follows [34]:

ψ(x, y) = f 2

πγη exp[−( f 2

γ2 x′2 + f 2

η2 y′2) exp(j2π f x′)]

x′ = x cos θ + y sin θ

y′ = −x cos θ + y cos θ

(2)

This is a 2D Fourier basis function multiplied by a Gaussian envelope. In the Gaussian part, f is
the tuning frequency (wavelength) for scaling, γ is the bandwidth along the major axis, and η is the
bandwidth along the axis perpendicular to the major. In the basis function, (x, y) denotes the location
and θ the orientation.

The 2D form in Equation (2), created by Daugman et al. [32] from a 1D Gabor core, is only a
simplified version. Due to the great magnitude of images, the road-extraction system in this study
only takes the real part of the Gabor core into account, since calculation without the imaginary part
causes small discrepancies but results in high efficiency in fast target-feature extraction. It is defined in
Equation (3):

gλ,θ,ϕ,σ,κ(x, y) = exp(− x′2+κ2y′2

2σ2 ) cos(2π x
λ + ϕ)

x′ = x cos θ + y sin θ

y′ = −x cos θ + y cos θ

(3)

where λ = 1/ f is the wavelength, θ is the orientation, ϕ is the phase offset, σ2 is the variance, and
κ = γ/η is the spatial aspect ratio.

Gabor bank or Gabor jet, generally taken as Gabor filters, are similar to Gabor wavelets, which
derive from the “mother wavelet” (Gabor core) by selecting various combinations of different spatial
frequencies and orientations. The mth frequency corresponding to scale information can be defined
from [35]:

fm = k−m fmax, m = 0, . . . , M− 1 (4)

where k denotes the scaling factor and fmax the maximum frequency. The nth orientations are defined as:

θn =
n2π

N
, n = 0, . . . , N − 1 (5)

where N is the total number of orientations. To reduce redundant information caused by the
nonorthogonality of Gabor wavelets, the approach in Reference [35] selects bandwidth γ by filter
spacing k and overlapping p, while bandwidth η by overlap p and N. p = 0.5 has been experimentally
proven to have sufficient “shiftability” [33]. Thus, once k, fmax, M, and N are assigned, Gabor wavelets
are determined. The multiresolution Gabor feature is shown in matrix form:

G =


r(x0, y0; f0, θ0) r(x0, y0; f0, θ1) · · · r(x0, y0; f0, θn−1)

r(x0, y0; f1, θ0) r(x0, y0; f1, θ1) · · · r(x0, y0; f1, θn−1)
...

...
. . .

...
r(x0, y0; fm−1, θ0) r(x0, y0; fm−1, θ1) · · · r(x0, y0; fm−1, θn−1)

 (6)

Due to the diversity and complexity of remote-sensing images, various object features represent a
great amount of discrepancies in different scales [36]. Thus, it is necessary to choose an appropriate
scale range that strongly highlights the target objects. The adjustment of scales is an iterative
and time-consuming process for each image, let alone for a collection of images. However, for
remote-sensing images set where ground features are observed in nearly fixed height and orthographic
view, there are only small variances among the best lower and upper center frequencies of interest. In
view of that, this study only tested scales in the optimum range (f L, f U), which was adopted for all
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images. The scales are defined in Equation (4) once fmax = f U is determined and then Gabor features
adopting different scales are evaluated.

Considering the necessity of recording strong responses and the precise orientation of road
recognition and connection analysis, N = 16 was set in this study and proved sufficient for highlighting
road features with definite orientation. Gabor features detected in a small range of orientations in
some degree represent a strong correlation. It is dispensable to set N as a quite-large value for high
direction accuracy while causing great loss in efficiency. When N is too large, convolutions applying
these excessive Gabor filters with images would consume unnecessary computational resources. For
each scale, there were 16 response maps corresponding to 16 directions. Specifically, if the phase offset
ϕ = 0, we only considered eight directions in the range of [0, π). Figure 2 shows the Gabor bank in
eight orientations.
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Road features were highlighted in response to Gabor filters by adopting orientations that are
similar to road features. Together with many disturbances, they were selected and assigned a
corresponding orientation label. The circumstance should be considered when there are disturbances
such as vehicles, shadows of buildings and trees, or objects with a nonlinear boundary. Gabor features
extracted from these disturbances normally show weak responses and chaotic directions in a small
region, while Gabor features from edge noises are generally short line segments with bits of pixels.
They can be recognized by setting an area threshold and by judging if the small region has very
different multiorientation Gabor features.

To extract responses of interest or to eliminate these disturbances to a certain extent, we proposed
a window-based method to evaluate the directional consistency of these features in each response
map. The method first defines a window sized a × a, where a is approximately double or triple the
road width, and the size is designed to be just enough to contain road edges in the window. By the
movement of the window in the images, where the moving lengths were set to half the road width, we
extracted features of interest in the window with two rules. The first one was that weak responses
below the threshold should be rejected; the other was that a single-feature area should exceed a certain
number of pixels, since the features in the same response map satisfied the directional consistency. As
shown in Figure 3, disturbed responses to vehicles on road and nonroad objects in Area I and Area II
were largely removed by the proposed method while losing only very few road edges.

When the extraction work was done, these features of interest were then merged into one map. It
is worth mentioning that the method was not merely to extract road edges, but general edge features
with potential possibilities to distinguish targets from backgrounds. When facing a scene where edge
information is not so conspicuous, it is important to choose an appropriate filter threshold to balance
the detection of desired edge features and undesired noises. Figure 4 shows the edge-detection results
by the canny algorithm and the proposed method of an origin image in a rural part of Dingbian County,
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China, with a resolution of 0.4 m, where both the similar spectral representation of dirt roads to the
background and the coverage of sand from the background on the road surface make it difficult to
maintain the balance mentioned above. From the results, we can see that, for road-edge detection, the
proposed method performs better at balancing the detection of “weak edges”, while filtering noises
and edges without directional consistency.
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Figure 4. Edge-detection comparison. (a,d) Original image where edge information is not so
conspicuous; (b,e) result by canny algorithm, lower- and upper-threshold parameters were set to
50 and 100, respectively; (c,f) erged map by eight orientation filter results (λ = 3, ϕ = 0, σ = 1.7,
κ = 0.3 ).

Because of the extreme sensitivity to spectral saltation, Gabor features performed well at retaining
the completeness of line features to some degree. To make further improvements for completeness,
features in the merged response map were first transformed into line segments by LSD analysis [13],
which is convenient to use to link adjacent line segments with location and orientation information.
This method then lengthened each line segment along its direction pixel by pixel within small distance
until the added pixels met “obstacles”, which were pixels in some other line feature or margin of
the image. Then, pairwise line segments in the merged map went through a connection analysis
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considering the following three points: (1) the similarity of two orientations, which is explained by the
included angle; (2) if pair segments are close enough to be connected, the distance measure is simply
defined as the minimum distance of a point on line 1 to a point on line 2; and (3) if the pair segments
are nearly on one straight line, it is determined by calculating the average vertical distance of all points
on line 1 to line 2. As shown in Figure 5, θ is the included angle of line 1 and line 3, distance from
An to B represents the minimum distance of line 1 and line 2, while the mean value of sum of d1, d2,
. . . , and dn determines whether pair line segments are on one straight line. Figure 6 shows how the
connected edge information serves as a constraint for object segmentation.

Figure 5. Sketch map for line segment pair connection.

After the linking process, the merged map was processed with dilation and erosion in a few
iterations to merge line segments that were too close to each other. Finally, the processed map
was skeletonized. By using Gabor features that were well-suited to detecting weak edges and
connecting discrete lines, the problem of mixing target objects and nonroad objects was largely
solved. Features with great completeness were then utilized as edge constraints in segmentation and
the region-growing process.
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2.3. Object Segmentation and Region Growing with Edge Constraints

Much different from pixel-based image segmentation, object segmentation takes into consideration
information including spectrum characteristics, texture, shape, and spatial relation. Other then
content-based methods exploiting both visual and textual information from multimedia [37,38], this
system is mainly concerned with texture and shape characteristics. Initial segmentation is worth
considering in order to extract stable road regions without nonroad pixels. Sometimes in a rural
area, imaging for road regions and backgrounds appears similar because of the extreme illumination
intensity, shadows, and nearly the same spectral characteristics [39]. Especially in road edges bordering
upon backgrounds, it is common for road and nonroad pixels to mix, which easily produces false
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negatives or false positives in subsequent processes for road tracking. Aiming at improving the stability
of segmenting road and other objects, a method based on three-band gray consistency in neighboring
pixels using Gabor features as edge constraints was used.

The multichannel imagery combined with the R, G, and B bands was divided into three grayscale
images. We first assigned an appropriate neighborhood range ∆D according to the spatial resolution of
the imagery set; ∆D determined which neighbor pixels within the range should be taken into account,
as shown in Figure 7. For each pixel Pr,i,j(x, y), where r means R band, i means the pixel in the ith row
of the image, and j pixel in the jth column, the absolute difference in gray values with its neighbor
pixels Pk was assigned to Sr,k, same operations were executed for Pg,i,j(x, y) and Pb,i,j(x, y) to obtain Sg,k
and Sb,k. Sk = Sr,k + Sg,k + Sb,k was used to determine whether there was gray consistency between Pk
and Pi,j(x, y). Only all neighbor pixels within ∆D satisfied gray consistency; with Pi,j(x, y), we ensured
the stability of Pi,j(x, y) belonging to a specific object. Sk, which evaluates pixel stability, was inversely
proportional to the possibility of a pixel belonging to certain objects. In the system, a threshold value
ST was set to judge the stability of a pixel. If Sk were less than ST, the corresponding pixel was labeled
with flag = 1 for its stability. In the other case, the pixel was labeled with flag = 0. Edge constraints were
utilized by judging whether Pi,j(x, y) and its neighbors were of pixels on Gabor features. Once the
judgement was true, Pi,j(x, y) was ascribed to unstable types and labeled with flag = 0. When all pixels
in the image were processed, we assigned gray values of 0 and 1 to Pi,j(x, y) according to its label to
obtain the binary image. Details of the segmenting scheme are shown as Algorithm 1:
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Algorithm 1 Objects Segmentation

Input: Preprocessed color image and Gabor feature map.
Output: Segmented objects map
1 divide color image to R, G, and B grayscale maps
2 foreach Pi, j(x, y) in three maps do
3 if all Pk within range ∆D meet Sk = Sr,k.+ Sg,k + Sb,k < ST then
4 its flagi, j = 1;
5 else
6 flagi, j = 0;
7 end
8 foreach Pi, j(x, y) in Gabor feature map do
9 if gray value of P’i, j(x, y) is greater than 0 then
10 its flagi, j = 0;
11 end

To prove the validity of the proposed segmentation method, we compared the result of this
method with the result of the method of Gaetano et al. [22] using the watershed algorithm, and
Figure 8 shows the results. As we can see, the proposed method can eliminate unstable pixels on the
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margins between different objects, which helps to decrease the error classification of uncertain pixels
but retains high extraction correctness. The proposed method also shows superior performance in
segmentation efficiency and reduces the data size input for road-object tracking.
ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  10 of 22 

 

 

Figure 8. (a) Original map; (b) segmentation results of the method by Gaetano et al. [22]; (c) 

segmentation results of our proposed method. 

Sometimes, the method based on three-band gray consistency in neighboring pixels is not 

enough if there are some nonroad objects such as buildings or an open-pit quarry, which have 

dissimilar spectral characteristics to road objects. The Gabor filter is sensitive to variations of texture 

information and can enhance the contrast between road and nonroad pixels [30]. Once there is 

extreme gray consistency between road objects and backgrounds, it can be solved by using connected 

Gabor features such as the edge constraints previously mentioned. The detailed operations of 

applying edge constraints to assist the segmentation process to acquire stable road objects in this 

system were that, for pixels locating on Gabor features, the gray values were set relatively large so 

that S would be larger than ST. The results show that all feature pixels and their neighbors were 

excluded from potential road objects. Despite the guaranteed stability of extracted pixels, the 

accuracy of road edges decreases. In case of that, a region-growing algorithm was adopted not only 

to improve accuracy but also to amplify shape-feature discrepancies between road and nonroad 

objects. 

Based on segmented stable objects, a region-growing algorithm with edge constraints was 

designed to expand road features, and, to some degree, to highlight the nonroad characteristics of 

other objects. Before the region-growing process, excessively small and large regions obviously not 

belonging to the road part were eliminated from the area threshold. After that, objects were first 

labeled by a seed-filling algorithm with different values one to one, for which every pixel in one object 

was assigned a corresponding value. Then, for each labeled object, an initial pixel on the edge was 

compared with its four connected pixels successively. Only if the gray values of the initial pixel and 

its neighbors met certain similarity in the R, G, and B bands, respectively, was the connected pixel 

incorporated by the object. Once the connected pixel satisfied gray consistency with the initial pixel, 

it became the next initial pixel to be examined to grow or not. Gabor features played a role as edge 

constraints in limiting region growing, and pixels locating on them were not allowed to be 

incorporated. This avoided connection between road objects and backgrounds with gray consistency, 

since Gabor features went through a connection analysis in which the false connecting problem was 

largely solved. 

2.4. Road-Object Tracking by Shape Features 

After the segmentation and region-growing process, segmented objects with stable pixels were 

evaluated by some fundamental shape features. 

2.4.1. Area S 

Figure 8. (a) Original map; (b) segmentation results of the method by Gaetano et al. [22];
(c) segmentation results of our proposed method.

Sometimes, the method based on three-band gray consistency in neighboring pixels is not enough
if there are some nonroad objects such as buildings or an open-pit quarry, which have dissimilar spectral
characteristics to road objects. The Gabor filter is sensitive to variations of texture information and can
enhance the contrast between road and nonroad pixels [30]. Once there is extreme gray consistency
between road objects and backgrounds, it can be solved by using connected Gabor features such as the
edge constraints previously mentioned. The detailed operations of applying edge constraints to assist
the segmentation process to acquire stable road objects in this system were that, for pixels locating on
Gabor features, the gray values were set relatively large so that S would be larger than ST. The results
show that all feature pixels and their neighbors were excluded from potential road objects. Despite
the guaranteed stability of extracted pixels, the accuracy of road edges decreases. In case of that, a
region-growing algorithm was adopted not only to improve accuracy but also to amplify shape-feature
discrepancies between road and nonroad objects.

Based on segmented stable objects, a region-growing algorithm with edge constraints was
designed to expand road features, and, to some degree, to highlight the nonroad characteristics
of other objects. Before the region-growing process, excessively small and large regions obviously
not belonging to the road part were eliminated from the area threshold. After that, objects were first
labeled by a seed-filling algorithm with different values one to one, for which every pixel in one
object was assigned a corresponding value. Then, for each labeled object, an initial pixel on the edge
was compared with its four connected pixels successively. Only if the gray values of the initial pixel
and its neighbors met certain similarity in the R, G, and B bands, respectively, was the connected
pixel incorporated by the object. Once the connected pixel satisfied gray consistency with the initial
pixel, it became the next initial pixel to be examined to grow or not. Gabor features played a role
as edge constraints in limiting region growing, and pixels locating on them were not allowed to be
incorporated. This avoided connection between road objects and backgrounds with gray consistency,
since Gabor features went through a connection analysis in which the false connecting problem was
largely solved.
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2.4. Road-Object Tracking by Shape Features

After the segmentation and region-growing process, segmented objects with stable pixels were
evaluated by some fundamental shape features.

2.4.1. Area S

The area (number of pixels) of the road objects cannot be too small or too large. Based on this
property, an upper limit threshold Su and a lower limit threshold Sl were set to eliminate nontarget
objects. The definition of Su and Sl depends on the spatial resolution of the images. It was common
for a few target objects with pixel numbers out of [Sl, Su] to be excluded. However, the loss seemed
inevitable because of the great difficulty of these parts to be recognized and correlated.

2.4.2. Shortest Inner Diameter D

The value of the shortest inner diameter D was determined by choosing the shortest diameter
calculated from the eight different orientations passing a “center point”. Center points are defined as
the points in an object at least three pixels away from the edge. Suppose the center point is a pixel at
the edge of the object, as shown in Figure 9. When computing the inner diameter with direction along
the direction θ1, the shortest inner diameter could be wrongly assigned 1 pixel width. Since objects
segmented in this study were dealt with by the hole-filling algorithm, no hole appeared inside the
objects. Obviously, the shortest inner diameter of road region is road width.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 22 

 

The area (number of pixels) of the road objects cannot be too small or too large. Based on this 

property, an upper limit threshold Su and a lower limit threshold Sl were set to eliminate nontarget 

objects. The definition of Su and Sl depends on the spatial resolution of the images. It was common 

for a few target objects with pixel numbers out of [Sl, Su] to be excluded. However, the loss seemed 

inevitable because of the great difficulty of these parts to be recognized and correlated. 

2.4.2. Shortest inner diameter D 

The value of the shortest inner diameter D was determined by choosing the shortest diameter 

calculated from the eight different orientations passing a “center point”. Center points are defined as 

the points in an object at least three pixels away from the edge. Suppose the center point is a pixel at 

the edge of the object, as shown in Figure 9. When computing the inner diameter with direction along 

the direction θ1, the shortest inner diameter could be wrongly assigned 1 pixel width. Since objects 

segmented in this study were dealt with by the hole-filling algorithm, no hole appeared inside the 

objects. Obviously, the shortest inner diameter of road region is road width. 

 

Figure 9. Center point at the edge of the object. 

2.4.3. Complex rate C 

Complex rate C describes the complexity of a shape and is defined in Equation (7): 

2 /C P S  (7) 

where P is the perimeter of the object. For example, C equals 12.6 for a circle, while C equals 16 for a 

square. The more complex the shape, the larger the value that C equals. 

2.4.4. Length–width ratio of bounding rectangle R 

This is defined in Equation (8): 

/
MER MER

R L M  (8) 

where LMER is the length of the bounding rectangle and WMER is the width. A straight-road object 

normally has a relatively large R. 

2.4.5. Fullness ratio F 

This is defined in Equation (9): 

/
MER

F S S  (9) 

where S is the area of the object and SMER is the area of the minimum bounding rectangle of the object. 

Figure 9. Center point at the edge of the object.

2.4.3. Complex Rate C

Complex rate C describes the complexity of a shape and is defined in Equation (7):

C = P2/S (7)

where P is the perimeter of the object. For example, C equals 12.6 for a circle, while C equals 16 for a
square. The more complex the shape, the larger the value that C equals.

2.4.4. Length–Width Ratio of Bounding Rectangle R

This is defined in Equation (8):
R = LMER/MMER (8)

where LMER is the length of the bounding rectangle and WMER is the width. A straight-road object
normally has a relatively large R.
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2.4.5. Fullness Ratio F

This is defined in Equation (9):
F = S/SMER (9)

where S is the area of the object and SMER is the area of the minimum bounding rectangle of the object.
F is useless for straight-road-object detection because most nonroad objects possess a similar F to

the road. Nevertheless, curved-road objects with a relatively large F can be easily distinguished from
these objects, and Figure 10a,b shows, respectively, the straight- and curved-road-object models.

Figure 10. (a) Straight-road-object model; (b) curved-road-object model.

In pursuing efficient shape-feature analysis, the system calculated and analyzed shape features
one by one, from the easiest to the more advanced. Reductive objects eliminated by evaluating more
easily calculated shape features avoided advanced calculation processes. Firstly, the upper and lower
limits of the area were set to eliminate quite a few excessively large and small segmented parts, which
saved processing expenditure for subsequent region-shape analysis. Next, the complex rate C of each
region was evaluated to eliminate nonroad objects by comparing them with the threshold value CT set
by the system. As for the shortest inner diameter D, since it was approximately equal to the road width,
objects with large D were rejected. Straight and curved roads can be quite different in the length–width
ratio of the bounding rectangle and fullness ratio. Generally, R is greater than 3 for straight roads but
remains uncertain for curved roads. Further, F should be a small value for straight roads but relatively
large for curved roads. Thus, the system considered two circumstances in Section 3 to track straight
and curved roads, respectively. After S, C and D were used for nonroad region elimination, R > 3.0
became the criterion for straight-road region extraction, while F < 0.33 was used for curved-road region
extraction. Finally, the straight- and curved-road region extraction results were merged to obtain the
complete road. The details of the road objects tracking scheme are shown as Algorithm 2:

Algorithm 2 Road-Object Tracking

Input: Segmented objects map
Output: Road objects map
1 label each object by seed filling algorithm
2 foreach labeled object do
3 if Sl < S < Su && C > CT && Dl < D < Du then
4 remain the object
5 else
6 reject the object
7 end
8 foreach remanent object do
9 if R > 3 || F < 0.33 then
10 remain the object
11 end
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3. Results

3.1. Datasets

• Panzhihua Road dataset: The dataset consists of over 100 images covering a part of rural region
of Panzhihua City, China. The size of all images is 5001 × 5001 pixels with a spatial resolution of
0.1 m per pixel. These are aerial images collected from a crossing research project. In this work
Figures 11a and 13a were cropped images from this dataset.

• Dingbian Road dataset: The dataset consists of about 200 images acquired from aerial photography,
covering a part of rural region of Dingbian County, China. The size of all images is 2163 × 1532
pixels with spatial resolution of 0.4 m per pixel. The dataset was collected from a crossing research
project. In this work, Figures 13b,c were cropped images from this dataset.

• VPLab Data: This dataset was collected by the QuickBird satellite and was downloaded from
VPLab [40]. The dataset consists of images from urban, suburban, and rural regions. The size of
all images is 512× 512 pixels with a spatial resolution of 0.6 m per pixel. In this work, Figure 12a,e
was from this dataset.
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Figure 11. (a) Original image; (b) preprocessed grayscale map; (c) merged Gabor features in
best scale; (d) connected Gabor features of interest; (e) object segmentation with edge constraints;
(f) region-growing result; (g) road-object tracking by shape features; (h) skeleton extraction.
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(a,e) original image; (b,f) road-vector data from manual acquisition; (c,g) results of the method of
Lei et al.; (d,h) results of proposed method.

3.2. Experiment and Parameter Setting

The studied imagery of this part was of a rural area of Panzhihua City in China, with a spatial
dimension of 2500 × 2500 pixels and a spatial resolution 0.1 m per pixel. The original color image with
the R, G, and B bands is shown in Figure 11a.

The grayscale image was first preprocessed by bilateral filtering to reduce noise while protecting
object edges. Two main parameters for bilateral filtering were the range parameter σr and the spatial
parameter σd. In this study, they were set at 20 and 10, respectively. The results after applying the
Laplacian operator can be seen in Figure 11b.

In this experiment, Gabor wavelets were obtained by choosing 3 scales and 16 orientations (M = 3,
N = 16). Filter spacing k here was set to 1.4 and fmax was set to 0.46 based on the suggestion that
fmax should be lower than 0.5 [33]. p = 0.5 was proven to have sufficient shiftability by Joni-Kristian
Kamarainen [34]. According to Reference [35], γ = 0.8 and η = 2.7 can be calculated. To calculate only
the real part of the Gabor filter, Equation (2) was translated into Equation (3) by unifying the exponents
in the Gaussian part, and the unification σ and κ can be worked out when λ, θ, and ϕ are determined.
We set phase offset ϕ = 0, so only eight orientations in [0, π) were taken into account. Equation (4)
defines the three frequencies f 1 = 0.46, f 2 = 0.33 and f 3 = 0.24, while Equation (5) defines the eight
orientations. To calculate the response map using the real part of the Gabor filter, the relative parameters
in Equation (3) were obtained by unification of the Gaussian part, which is shown in Table 1.

Table 1. Parameter setting for Gabor wavelets.

λ σ θ ϕ κ

λ1 = 2.2 σ1 = 1.2 θn = nπ/8,
n = 0, 1, 2,

. . . , 7
ϕ = 0 κ = 0.3λ2 = 3.0 σ2 = 1.7

λ3 = 4.2 σ3 = 2.4

The Gabor transform is a special case of a short-time Fourier transform (STFT) using a specific
frequency to describe local information, and the Gaussian part can be regarded as a window
function. The size of the window should be neither too wide nor narrow. A wide window function,
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namely, a Gaussian function with large σ, can contain more information of different frequencies in
a local region, which is beneficial for extracting edge features that represent different frequencies.
However, the weights of each frequency may have mutual interference since Gabor wavelets are not
orthogonal-wavelet bases, which can easily cause inaccurate weighting of the specific frequency we
sought to analyze. In a too-narrow window, meanwhile, local information can be mainly described by
bits of frequencies, and these frequencies with large weights may not represent the edge of interest, such
as the mixture part of the road region and backgrounds. Based on the above, we made a compromise
and chose the appropriate scale for edge-feature analysis. Experiments proved that f 1 = 0.33 performs
the best in highlighting potential target edges, and in the following work, we only considered f 1.

The response-intensity threshold and area threshold for extracting features of interest were
set to 30 and 25, respectively, while the window width was set to double the road width. The
eight obtained response maps and their corresponding eight orientations were merged into one map
(Figure 11c), from which we can see that a mass of disturbed Gabor features has been eliminated. In the
features-connection process, the included angle, minimum distance measure, and average vertical
distance were set to 0.17 rad (10π/180), 50, and 5, respectively. The results after connection analysis
are shown in Figure 11d, from which we can see that the target objects and disturbed backgrounds are
largely differentiated by the connected Gabor features.

The connected Gabor features then served as edge constraints in the segmenting process. To
further guarantee the accuracy of the segmentation result, the system adopted a method based on
three-band gray consistency in the neighboring pixels. Sk = Sr,k + Sg,k + Sb,k, previously presented in
Section 2, determined the stability of a pixel belonging to a specific object. In this experiment, ∆D was
assigned 3, while ST was assigned 10; the segmented binary image is shown in Figure 11e. From the
result, it can be seen that the segmentation based on three-band gray consistency in neighboring pixels
using Gabor features as edge constraints does provide a stable and accurate segmenting result.

The purpose of applying region-growing is to expand road regions and highlight the nonroad
characteristics of other objects. Before region-growing, the upper limit area threshold Su = 50,000 and
lower limit area threshold Sl = 1000 were set to eliminate disturbed regions, and then holes in each
were filled. The way to judge if an outside pixel incorporated by the object meets homogeneity is the
way to judge the stability of a pixel in the segmentation process. ∆x and ∆y were both assigned with 1,
namely, 8 × 3 pixels contributing to the determinant value. The threshold was assigned to 16 × 3, and
the region-growing result is shown in Figure 11f.

In the work of road tracking by fundamental shape features, objects with a small area were first
eliminated by the upper limit threshold Su and the lower limit threshold Sl in the previous paragraph.
The remainder of the considered shape features is shown in Table 2, the final merged road-tracking
result is shown in Figure 11g, and the skeleton is shown in Figure 11h.

Table 2. Shape-feature threshold setting for road tracking.

Road Shape Area S Shortest Inner
Diameter D

Complex Rate
C

Length–Width Ratio of
Bounding Rectangle R

Fullness Ratio
F

Straight Line 1000–50,000 30–50 100 3.5 -
Curve Line 1000–50,000 30–50 100 - 0.33

3.3. Comparison and Discussion

To evaluate the performance of the proposed method, we compared the extracted result with
road-vector data from manual acquisition. The completeness, correctness, and redundancy of the
result based on our experiment are defined in Equation (10):

Completeness = TP
TP+FN

Correctness = TP
TP+FP

Quality = TP
TP+FN+FP

(10)
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where TP, FN, and FP denote true positive, false negative, and false positive, respectively. Specifically,
completeness is the ratio of the length of correctly extracted roads to the length of road-vector data
from manual acquisition. Correctness represents the ratio of correctly extracted roads to the length of
all extracted roads. Quality corresponds to the ratio of the length of correctly extracted roads to the
length of total roads from the extracted result and manual acquisition.

We implemented the method proposed by Lei et al. [26] to prove the superiority of this method in
an urban area. The test satellite images were downloaded from VPLab [40]. Figure 12a,e shows the two
original images in the urban area. Figure 12b,f shows road-vector data from manual acquisition. The
result obtained by the algorithm of Lei et al. is shown in Figure 12c,g, and the result by the proposed
method is shown in Figure 12d,h. Table 3 shows the performance of the two methods.

Table 3. Performance of the two road-extraction methods.

Method
Image I Image II

Completeness Correctness Quality Completeness Correctness Quality

Lei et al. [26] 0.9 0.71 0.66 0.89 0.86 0.77
-proposed 0.92 0.79 0.74 0.94 0.96 0.91

As is shown in Table 3, the two methods both performed well in terms of completeness. Methods
based on region analysis are effective in dealing with scenes where the road surface has spectral
consistency, like Images I and II. However, the method of Lei et al. showed relatively poor performance
for correctness and quality, and the causative faults suggest similar spectral representation of the
targets and backgrounds and an incomplete road-tracking mean. The proposed method applies edge
constraints to obtain a more stable segmentation result and uses additional, well-behaved shape
features to track road objects. The final results indicate the validity.

To further prove the superiority of the method, we chose three test images in consideration of the
problems discussed in Section 2, such as shadows or shelters of trees and buildings, similar spectral
representation of target objects to the backgrounds, and disturbances or shelters on the road surface.
Figure 13a is an original aerial image of a rural part of Panzhihua City, China, with a spatial dimension
of 2500 × 2500 pixels and a spatial resolution 0.1 m per pixel, while Figure 13b,c shows the original
aerial images of rural parts of Dingbian County, China, with a spatial dimension of 1500 × 1500 pixels
and a spatial resolution 0.4 m per pixel. We compared the proposed method with the methods of
Zang et al. [19] and Lei et al. [26], and Table 4 shows the performance.

Table 4. Performance of the three road-extraction methods.

Evaluation
Zang et al. [19] Lei et al. [26] Proposed

Image I

Completeness 0.89 0.97 0.97
Correctness 0.47 0.86 0.97

Quality 0.44 0.84 0.95

Image II

Completeness 0.75 0.82 0.89
Correctness 0.43 0.69 0.97

Quality 0.38 0.6 0.87

Image III

Completeness 0.8 0.7 0.77
Correctness 0.47 0.92 0.96

Quality 0.42 0.66 0.75
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We can see that the method of Zang et al. performed well in terms of completeness in Images I and
III, which proves the validity of combining canny edge and edge mask constructed by ADSM. However,
in Image II, where the road edge is not so conspicuous, the Zang et al. method was not quite complete
on account of its weakness in detecting weak edges. The method of Lei et al. performed well when
the road surface had spectral consistency, such as the scenes in Images I and II, but lost completeness
when the road surface was sheltered. The proposed algorithm returned better results. This can be
ascribed to the properties of Gabor filters being sensitive to variations of texture information, allowing
them to detect relatively weak edges, and the connection analysis for detected Gabor features also



ISPRS Int. J. Geo-Inf. 2018, 7, 362 18 of 21

complements the completeness of edge information. The information was used as edge constraints for
spectral segmentation.

In terms of correctness and quality, the method of Zang et al. performed quite poorly on account
of, on the one hand, its inability to distinguish interferential edges that possess roadlike spatial
characteristics from road regions, and, on the other hand, the superfluous information in VHR imagery.
The method of Lei et al. showed better correctness and quality in VHR imagery because more pixels
on the road surface were available for spectral analysis. However, this method relies too much on
spectral information, resulting in false positives and negatives when targets and backgrounds possess
similar spectral representations. The proposed method, however, could exploit the superiority of both
the spectral and edge characteristics and could separate some roadside artifacts or shadows of trees
and buildings from road regions to obtain more stable segmentation results. The final results proved
its validity.

In terms of extraction efficiency, Table 5 lists the processing time for the three algorithms. Normally,
for an image size of 5001 × 5001, the method of Zang et al. requires 2–10 min to process, the method
of Lei et al. takes less than 1 min, and the proposed method takes about 50–80 s. Compared to
the Lei et al. method, in which the extra time is mainly consumed by edge-feature analysis, the
proposed method has proven to be efficient in accurate road-object extraction when processing VHR
remote-sensing images.

Table 5. Time consumption of the three methods.

Method Implementation
Environment

Running Time for
Image I

Running Time for
Image II

Running Time for
Image III

Zang et al. [19] 2.6 GHz Intel Core
i7-6700HQ CPU 271 s 335 s 339 s

Lei et al. 2.6 GHz Intel Core
i7-6700HQ CPU 38 s 47 s 56 s

Proposed 2.6 GHz Intel Core
i7-6700HQ CPU 49 s 62 s 71 s

4. Conclusions

It is common to find nontarget objects mixed up with road regions due to the great complexity
of VHR images. In this paper, a method to efficiently extract accurate road regions from VHR
remote-sensing imagery was proposed. To exploit both spatial and spectral information, the method
used connected Gabor features as edge constraints for subsequent object segmenting and the
region-growing process. Edge constraints with favorable completeness proved to be valid in helping to
separate road objects from numerous disturbances. The segmenting results demonstrate the superiority
of this method to quickly acquire stable segmented objects while abandoning superfluous pixels with
confused uncertainty under the principle of putting quality before quantity. In such VHR images,
there are sufficient pixels with great stability for road-object tracking, in which road-object extraction
by shape features performs well at keeping false negatives while eliminating false positives. Despite
the outstanding performance of this method, further studies are needed to realize higher extraction
efficiency with high extraction accuracy. The limitations of the method can be ascribed to the following:

• Lacking rigorous determination of thresholds in Gabor detection and region segmentation.

For various complex scenes, there are discrepancies in the responses of road edges to Gabor filters
that cause difficulties for the automatic decision of the response threshold. Despite, in most cases,
an approximately precise threshold ST in region segmentation being enough to obtain the desired
segmentation result, this sometimes causes severe loss of road information when ST is relatively too
small, and undesirable error extraction when ST is too large.
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• Nonautomatic determination of optimum scales range.

In this study, the optimum scale range was determined subjectively by experimentally checking
Gabor feature-detection results. A systematic method to automatically determine optimum scale
ranges that could highlight objects of interest is needed. The determination of the scale can be affected
by the resolution of the imagery set and the type of road.

• Unsatisfactory performance in connecting winding Gabor features.

Our method for Gabor features connection is line-segment based. For curved-road parts that are
missing much edge information, it is difficult to complement the edge by simply using the connection
stratagem of this article. Further studies for recognizing and fitting curved roads are necessary.

Author Contributions: L.C. developed the methodology and the system. Ideas, considerations and discussion
of the work were supervised by Q.Z. X.X. provided technique support and contributed to the paper writing.
H.H. contributed to the experimental study and gave some novel ideas. And H.Z. contributed to the revision of
the paper.

Funding: This research was funded by National Natural Science Foundation of China under Grant Nos. 41631174
and No. 41701466.

References

1. Fortier, A.; Ziou, D.; Armenakis, C.; Wang, S. Survey of Work on Road Extraction in Aerial and Satellite Images;
Technical Report; Center for Topographic Information Geomatics: Ontario, ON, Canada, 1999.

2. Memon, I.; Chen, L.; Majid, A.; Lv, M.; Hussain, I.; Chen, G. Travel recommendation using geo-tagged photos
in social media for tourist. Wirel. Pers. Commun. 2015, 80, 1347–1362. [CrossRef]

3. Shifa, A.; Afgan, M.S.; Asghar, M.N.; Fleury, M.; Memon, I.; Abdullah, S.; Rasheed, N. Joint crypto-stego
scheme for enhanced image protection with nearest-centroid clustering. IEEE Access 2018, 6, 16189–16206.
[CrossRef]

4. Memon, I.; Chen, L.; Arain, Q.A.; Memon, H.; Chen, G. Pseudonym changing strategy with multiple mix
zones for trajectory privacy protection in road networks. Int. J. Commun. Syst. 2018, 31, e3437. [CrossRef]

5. Gao, L.; Shi, W.; Miao, Z.; Lv, Z. Method based on edge constraint and fast marching for road centerline
extraction from very high-resolution remote sensing images. Remote Sens. 2018, 10, 900. [CrossRef]

6. Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raskar, R.
Deepglobe 2018: A challenge to parse the earth through satellite images. arXiv 2018, arXiv:1805.06561.

7. Shi, W.; Miao, Z.; Debayle, J. An integrated method for urban main-road centerline extraction from optical
remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3359–3372. [CrossRef]

8. Poullis, C.; You, S. Delineation and geometric modeling of road networks. ISPRS J. Photogramm. Remote Sens.
2010, 65, 165–181. [CrossRef]

9. Wei, Y.; Wang, Z.; Xu, M. Road structure refined cnn for road extraction in aerial image. IEEE Geosci. Remote
Sens. Lett. 2017, 14, 709–713. [CrossRef]

10. Buslaev, A.; Seferbekov, S.S.; Iglovikov, V.I.; Shvets, A.A. Fully convolutional network for automatic road
extraction from satellite imagery. arXiv 2018, arXiv:1806.05182.

11. Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Dalla Mura, M. Simultaneous extraction of roads and buildings in
remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130,
139–149. [CrossRef]

12. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698.
[CrossRef]

13. Von Gioi, R.G.; Jakubowicz, J.; Morel, J.-M.; Randall, G. Lsd: A fast line segment detector with a false
detection control. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 722–732. [CrossRef] [PubMed]

14. Zang, Y.; Wang, C.; Yu, Y.; Luo, L.; Yang, K.; Li, J. Joint enhancing filtering for road network extraction.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 1511–1525. [CrossRef]

15. Kaur, S.; Baghla, S. Automatic road detection of satellite images using improved edge detection. Int. J.
Comput. Technol. 2013, 10, 1546–1552. [CrossRef]

http://dx.doi.org/10.1007/s11277-014-2082-7
http://dx.doi.org/10.1109/ACCESS.2018.2815037
http://dx.doi.org/10.1002/dac.3437
http://dx.doi.org/10.3390/rs10060900
http://dx.doi.org/10.1109/TGRS.2013.2272593
http://dx.doi.org/10.1016/j.isprsjprs.2009.10.004
http://dx.doi.org/10.1109/LGRS.2017.2672734
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.002
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.2008.300
http://www.ncbi.nlm.nih.gov/pubmed/20224126
http://dx.doi.org/10.1109/TGRS.2016.2626378
http://dx.doi.org/10.24297/ijct.v10i4.3255


ISPRS Int. J. Geo-Inf. 2018, 7, 362 20 of 21

16. Liu, W.; Zhang, Z.; Chen, X.; Li, S.; Zhou, Y. Dictionary learning-based hough transform for road detection in
multispectral image. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2330–2334. [CrossRef]

17. Shao, Y.; Guo, B.; Hu, X.; Di, L. Application of a fast linear feature detector to road extraction from remotely
sensed imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 626–631. [CrossRef]

18. Lisini, G.; Tison, C.; Cherifi, D.; Tupin, F.; Gamba, P. Improving Road Network Extraction in High-Resolution
sar Images by Data Fusion. Presented at CEOS SAR Workshop, Ulm, Germany, 27–28 May 2004.

19. Zang, Y.; Wang, C.; Cao, L.; Yu, Y.; Li, J. Road network extraction via aperiodic directional structure
measurement. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3322–3335. [CrossRef]

20. Yuan, J.; Tang, S.; Wang, F.; Zhang, H. A robust road segmentation method based on graph cut with
learnable neighboring link weights. In Proceedings of the 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 1644–1649.

21. Akram, K.M.; Elahi, M.M.L.; Amin, M.A. Multiple level set region based single line road extraction.
In Proceedings of the 2013 International Conference on Machine Learning and Cybernetics, Tianjin, China,
14–17 July 2013; pp. 1201–1206.

22. Gaetano, R.; Masi, G.; Poggi, G.; Verdoliva, L.; Scarpa, G. Marker-controlled watershed-based segmentation
of multiresolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2987–3004. [CrossRef]

23. Song, M.; Civco, D. Road extraction using svm and image segmentation. Photogramm. Eng. Remote Sens.
2004, 70, 1365–1371. [CrossRef]

24. Maboudi, M.; Amini, J.; Hahn, M.; Saati, M. Object-based road extraction from satellite images using ant
colony optimization. Int. J. Remote Sens. 2017, 38, 179–198. [CrossRef]

25. Shi, W.; Miao, Z.; Wang, Q.; Zhang, H. Spectral-spatial classification and shape features for urban road
centerline extraction. IEEE Geosci. Remote Sens. Lett. 2014, 11, 788–792.

26. Xiaoqi, L.; Weixing, W.; Jun, L. A method of road extraction from high-resolution remote sensing images
based on shape features. Acta Geod. Cartogr. Sin. 2016, 38, 457–465.

27. Kumar, M.; Singh, R.; Raju, P.; Krishnamurthy, Y. Road network extraction from high resolution multispectral
satellite imagery based on object oriented techniques. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
2014, 2, 107. [CrossRef]

28. Memon, M.H.; Li, J.-P.; Memon, I.; Arain, Q.A. Geo matching regions: Multiple regions of interests using
content based image retrieval based on relative locations. Multimed. Tools Appl. 2017, 76, 15377–15411.
[CrossRef]

29. Memon, M.H.; Li, J.-P.; Memon, I.; Shaikh, R.A.; Mangi, F.A. Efficient object identification and multiple
regions of interest using cbir based on relative locations and matching regions. In Proceedings of the 2015
12th International Computer Conference on Wavelet Active Media Technology and Information Processing
(ICCWAMTIP), Chengdu, China, 18–20 December 2015; pp. 247–250.

30. Alshehhi, R.; Marpu, P.R. Hierarchical graph-based segmentation for extracting road networks from
high-resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2017, 126, 245–260. [CrossRef]

31. Zhao, W.; Luo, L.; Guo, Z.; Yue, J.; Yu, X.; Liu, H.; Wei, J. Road extraction in remote sensing images based on
spectral and edge analysis. Guang Pu Xue Yu Guang Pu Fen Xi= Guang Pu 2015, 35, 2814–2819. [PubMed]

32. Daugman, J.G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by
two-dimensional visual cortical filters. JOSA A 1985, 2, 1160–1169. [CrossRef]

33. Kamarainen, J.-K.; Kyrki, V.; Kalviainen, H. Invariance properties of gabor filter-based features-overview
and applications. IEEE Trans. Image Process. 2006, 15, 1088–1099. [CrossRef] [PubMed]

34. Kamarainen, J.-K. Gabor features in image analysis. In Proceedings of the 2012 3rd International Conference
on Image Processing Theory, Tools and Applications (IPTA), Istanbul, Turkey, 15–18 October 2012; pp. 13–14.

35. Ilonen, J.; Kamarainen, J.-K.; Kalviainen, H. Fast extraction of multi-resolution gabor features. In Proceedings
of the 14th International Conference on Image Analysis and Processing (ICIAP 2007), Modena, Italy, 10–14
September 2007; pp. 481–486.

36. Sghaier, M.O.; Lepage, R. Road extraction from very high resolution remote sensing optical images based on
texture analysis and beamlet transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1946–1958.
[CrossRef]

37. Shaikh, R.A.; Deep, S.; Li, J.-P.; Kumar, K.; Khan, A.; Memon, I. Contemporary integration of content based
image retrieval. In Proceedings of the 2014 11th International Computer Conference on Wavelet Actiev Media
Technology and Information Processing(ICCWAMTIP), Chengdu, China, 19–21 December 2014; pp. 301–304.

http://dx.doi.org/10.1109/LGRS.2017.2764042
http://dx.doi.org/10.1109/JSTARS.2010.2094181
http://dx.doi.org/10.1109/TGRS.2016.2514602
http://dx.doi.org/10.1109/TGRS.2014.2367129
http://dx.doi.org/10.14358/PERS.70.12.1365
http://dx.doi.org/10.1080/01431161.2016.1264026
http://dx.doi.org/10.5194/isprsannals-II-8-107-2014
http://dx.doi.org/10.1007/s11042-016-3834-z
http://dx.doi.org/10.1016/j.isprsjprs.2017.02.008
http://www.ncbi.nlm.nih.gov/pubmed/26904824
http://dx.doi.org/10.1364/JOSAA.2.001160
http://dx.doi.org/10.1109/TIP.2005.864174
http://www.ncbi.nlm.nih.gov/pubmed/16671290
http://dx.doi.org/10.1109/JSTARS.2015.2449296


ISPRS Int. J. Geo-Inf. 2018, 7, 362 21 of 21

38. Memon, M.H.; Khan, A.; Li, J.-P.; Shaikh, R.A.; Memon, I.; Deep, S. Content based image retrieval based on
geo-location driven image tagging on the social web. In Proceedings of the 2014 11th International Computer
Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP), Chengdu,
China, 19–21 December 2014; pp. 280–283.

39. Liu, J.; Qin, Q.; Li, J.; Li, Y. Rural road extraction from high-resolution remote sensing images based on
geometric feature inference. ISPRS Int. J. Geo Inf. 2017, 6, 314. [CrossRef]

40. VPLab Data. Available online: http://www.cse.iitm.ac.in/~vplab/satellite.html (accessed on 16 April 2017).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/ijgi6100314
http://www.cse.iitm.ac.in/~vplab/satellite.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Image Preprocessing 
	Gabor Feature Detection 
	Object Segmentation and Region Growing with Edge Constraints 
	Road-Object Tracking by Shape Features 
	Area S 
	Shortest Inner Diameter D 
	Complex Rate C 
	Length–Width Ratio of Bounding Rectangle R 
	Fullness Ratio F 


	Results 
	Datasets 
	Experiment and Parameter Setting 
	Comparison and Discussion 

	Conclusions 
	References

