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Abstract: Landslide risk prevention requires the delineation of landslide-prone areas as accurately
as possible. Therefore, selecting a method or a technique that is capable of providing the highest
landslide prediction capability is highly important. The main objective of this study is to assess and
compare the prediction capability of advanced machine learning methods for landslide susceptibility
mapping in the Mila Basin (Algeria). First, a geospatial database was constructed from various
sources. The database contains 1156 landslide polygons and 16 conditioning factors (altitude, slope,
aspect, topographic wetness index (TWI), landforms, rainfall, lithology, stratigraphy, soil type,
soil texture, landuse, depth to bedrock, bulk density, distance to faults, distance to hydrographic
network, and distance to road networks). Subsequently, the database was randomly resampled into
training sets and validation sets using 5 times repeated 10 k-folds cross-validations. Using the
training and validation sets, five landslide susceptibility models were constructed, assessed,
and compared using Random Forest (RF), Gradient Boosting Machine (GBM), Logistic Regression
(LR), Artificial Neural Network (NNET), and Support Vector Machine (SVM). The prediction
capability of the five landslide models was assessed and compared using the receiver operating
characteristic (ROC) curve, the area under the ROC curves (AUC), overall accuracy (Acc), and kappa
index. Additionally, Wilcoxon signed-rank tests were performed to confirm statistical significance in
the differences among the five machine learning models employed in this study. The result showed
that the GBM model has the highest prediction capability (AUC = 0.8967), followed by the RF model
(AUC = 0.8957), the NNET model (AUC = 0.8882), the SVM model (AUC = 0.8818), and the LR model
(AUC = 0.8575). Therefore, we concluded that GBM and RF are the most suitable for this study area
and should be used to produce landslide susceptibility maps. These maps as a technical framework
are used to develop countermeasures and regulatory policies to minimize landslide damages in the
Mila Basin. This research demonstrated the benefit of selecting the best-advanced machine learning
method for landslide susceptibility assessment.

Keywords: landslide; susceptibility mapping; machine learning; GIS; Algeria

1. Introduction

The severe landslides affecting the Mila Basin (located in the North-East region of Algeria)
have created serious threats not only to the environment and human settlements but also inflicted
economic burdens to local authorities by the non-ending reconditioning and restoration projects.
In addition, these landslides affect the current landscape evolution of the basin; therefore, predicting
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and delineating landslides are crucial tasks to reduce their associated damages. However, landslide
prediction and delineation remain challenging tasks in the basin due to the complex nature
of landslides.

Fortunately, the advancements achieved in machine learning and Geographic Information Systems
(GIS) in the last decade have provided a plethora of quantitative methods and techniques for landslide
modeling. Consequently, various models have been proposed and implemented successfully for
modeling landslides that help in understanding landslide patterns and their triggering mechanism [1].
The literature reviews showed that physical-based models are capable of delivering the highest
prediction accuracy [2]. Nonetheless, for large-scale analysis (similar to this case study), physical-based
models require a fair amount of detailed data information to provide reliable results, which is
unbelievably expensive [3]. As a result, statistical and machine learning models can be considered a
viable option to use. Basically, machine learning methods for landslide are based on the assumption
that “previous, current and future landslide failures do not happen randomly or by chance, but instead, failures
follow patterns and share common geotechnical behaviors under similar conditions of the past and the present” [4].
This requires collecting and preparing an accurate and large database (i.e., a geospatial database of
landslide inventory and conditioning factors) with maximum details available. Then, models based
on these methods are trained and validated using that database and the resulting models are used to
generate landslide occurrence probability grids [2].

Machine learning (ML) is one of the most effective methods for solving non-linear geo-spatial
problems like landslides susceptibility, using either regression or classification. In fact, ML has
proven to be ideal for addressing large-scale analysis problems where theoretical knowledge about
the problem is still incomplete [5]. After all, ML methods do require a significant number of
conditioning factors to obtain reliable results. In the literature, several studies have been able to
implement and compare machine learning models in landslide susceptibility modeling such as
Artificial Neural Networks (NNET) [1,6,7]; Support Vector Machines (SVM) [1,6,8–10]; Decision Trees
(DT) [3,11]; Logistic Regression (LR) [1,8,11]; and ensemble methods such as Boosted Trees (BT) [11,12],
and Random Forest (RF) [3,8,11]. Despite the availability of some research concerning machine learning
techniques and methods, no solid agreement about which method or technique is the most suitable
for a landslide-prone area prediction has been identified [13]. Nevertheless, there’s “No free lunch”
(NFL) (according to Wolpert [14], NFL can be explained as: “any two algorithms are equivalent when
their performance is averaged across all possible problems”) when it comes to machine learning in general
and the spatial prediction of landslides in particular due to the high level of uncertainty behind
the process. In fact, no single or particular model can be depicted as the most suitable for all case
scenarios. Selecting the most suitable method for landslide spatial prediction depends essentially on
the underlined scientific goal for the case study [15]. Additionally, the prediction accuracy of landslide
modeling is influenced not only by the quality of the landslide inventories and the influencing
factors, but also the fundamental quality of the machine learning algorithm used [2]. Therefore,
exploring and experimenting with new methods and techniques for spatially predicting this hazard is
highly necessary.

The main goal of this study is to investigate and compare five machine learning algorithms,
Random Forest (RF), Gradient Boosting Machine (GBM), Logistic Regression (LR), Artificial Neural
Network (NNET), and Support Vector Machine (SVM) for landslide susceptibility mapping at
the Mila Basin (Algeria). Additionally, this study aims to implement a meta-modeling approach
using Sequential Model-Based Optimization (SMBO) for models that configure hyperparameters.
Unlike similar studies [1,3,5–12,16], this approach supports automated expensive hyperparameter
optimization in order to provide a useful framework with a reproducible and unbiased optimization
process. Moreover, it is important to note that the Mila Basin has suffered (and still) from various
landslide disaster problems during the last five years; however, no significant attempt has been
conducted to understand the phenomenon.
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2. Study Area and Data

2.1. Description of the Study Area

The Mila Basin is situated in the northeastern part of Algeria between longitudes of 5◦55′15.44′ ′ E
and 6◦49′42.19′ ′ E and latitudes of 36◦36′39.01′ ′ N and 36◦11′6.82” N and covers an area of 2760 km2

distributed mostly over the central parts of the Mila and Constantine provinces. Geographically,
the study area is fully surrounded by mountainous ranges that belong to different paleogeographic
domains and make up the basin substratum, such as M’Cid Aicha and Sidi Driss from the North;
Djebel Ossmane and Grouz by the South; Djebel Akhal, Chettaba and Kheneg from the East; and Djebel
Boucherf and Oukissene by the West (Figure 1). The elevation of the basin varies from 60 m to 1550 m.

The basin is characterized by asymmetrical elongated geometrical form drained by a dense and
hierarchical hydrographic network in generally S-N direction [17]. The local climate is semi-arid
with a mild winter surrounded by sub-humid fresh climate typical for a mountainous landscape [18].
Annual mean precipitation is around 600 mm/year, in which the precipitation is mainly in the short
wet season (usually between October and February). The dry season is long, lasting from March to
September. Land use is mostly for bare lands, cereals crops or wild herbs. This low-density vegetation
is good for the agriculture industry but encourages land degradation and instabilities by soil erosions.
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Substratum series formulates both the lower base and the substratum of the basin whereas the 
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The local geology consists of different lithostratigraphic units and can be grouped into two groups
(called ‘series’): (1) Substratum series and (2) Post-nappes series [19] (Figure 2). The Substratum
series formulates both the lower base and the substratum of the basin whereas the Post-nappes
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series formulates a cover on the top, which has slightly affected by recent tectonic deformations
(Table 1). The study area shows a tectonic complexity due to some severe conjugation of folds,
faults, and thrusts of different ages and styles. Two general systems of lineaments exist: (1) Diagonal
system of NE-SW and NW-SE and (2) Vertical system (also known as “Alpine phase”) of N-S and E-W
orientations. The Diagonal lineament system during the late Eocene-Lutetian was directly responsible
for creating some important structures (i.e., folds and horst-graben). These structures formulate a
base for depositing detritus materials during the Neogene. On the other hand, the Vertical lineament
system belongs to a recent compression phase that is responsible for the current morpho-structure of
the study area [19].
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Table 1. The outcropping geological formations in the study area.

Unit Period Epoch Description

Post-nappes

Quaternary Alluvium, colluvium, scree, detritus deposits and slopes formations
like terraces

Neogene
Predominantly detritus composed of clay, marl, limestone,
conglomerates, sandstone, sand, lacustral limestone and evaporitic
formations

Substratum

Paleogene
Eocene Limestone, cherty limestone, and platted marls

Paleocene Opaque to somber marls

Cretaceous

Upper and
Mid-Upper
Cretaceous

Marl dominance (variation are ranging from different horizons of
gray marly limestone, alternating marl, and limestone, blueish marl,
massive bars of limestone, to alternating marl, cherty limestone,
and thin micritic limestone all surmounted by grey marls with
conglomerate interbeds)

Lower Cretaceous Mainly marly limestone and neritic limestone

Jurassic Mostly thick carbonate formations (dolostone, limestone, and
cherty limestone)

Triassic Evaporitic and clayey deposits
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2.2. Data Used

A key step to successful landslide modeling is preparing an accurate database that serves as the
input dataset. For the landslide susceptibility assessment, collecting and constructing a landslide
inventory map would be obviously the first and foremost step. In addition to the inventory, selecting
landslide related variables to implement is very important [20]. A literature review shows that
landslide factors were selected depending on the study case, the scale of the analysis, and data
availability [21]. Therefore, a multi-sources geospatial database that includes an inventory map and
landslide conditioning factors was constructed.

In this research, the geospatial database was developed and processed in the QGIS, Saga and
R software. The database consists of information layers derived from multiple geo-environmental
sources (geology, topography, precipitation, landuse, and so forth).

2.2.1. Landslide Inventory Map

In this study, a detailed and reliable landslide inventory map from 1985 to 2017 (Figure 1) for
circular and planar failures (both shallow and deep landslides) was constructed using two main
sources: (1) historical records provided publicly by the local municipality-hauls (Constantine and Mila)
with 531 landslide polygons, and (2) using the Google Earth Pro® software. 47 landslide polygons
were detected and mapped (from 2000 to 2017). On the other hand, the non-landslide samples were
extracted by random sampling a unique 578 sample site (equal to the total number of landslide
samples) from public stability maps available at DUC (Direction d’Urbanisme et Construction) using
PAW (Plan d’Amenagement de Wilya) and PDAU (Plan Directeur d’Amenagement et d’Urbanisme).
Extensive field inspections and Google Earth Pro software were performed to verify the landslide and
non-landslide samples (Figure 3).

The mapped landslides are both shallow (depth < 5 m) and deep-seated (depth > 5 m). They
mainly occur in the Neogene complex and central middle part of the basin (Figure 2) and are
characterized by different volumes ranging from 182 m3 to 620,000 m3. According to the survey
campaigns achieved by local authorities (2003–2017), the slopes in the study area fail under the
conjunction of both predisposition factors (i.e., geology, lithology geomorphology, and faults) and
triggering factors (i.e., intense and persistent meteorological events, human activities, and so forth),
resulting in landslides of different sizes and types. Reports suggest that the long and persistent
periods of intense to moderate rainfall are the main culprit in triggering and/or reactivating existent
deep-seated landslides due to the high amount of water infiltrating underground. On the contrary,
short and intense to moderate rainstorms/precipitations indirectly affect slope stability by intensive
erosive processes [19,22].
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Figure 3. Landslide examples (Source: Mila and Constantine municipalities, Location: see Figure 1):
(a) RN 79a, (Type: Deep-Rotational landslide; Date: October 2011); (b) Sibari (Type: Shallow-Planar
landslide; Date: February 2008); (c) Mila (Type: Deep-Rotational landslide; Date: September 2013);
(d) Grarem (Type: Planar landslide; Date: June 2015); (e,f) Mila (Type: Deep-Rotational landslide;
Date: October 2017); (g,h) Didouche Mourad (Type: Deep-Rotational landslide; Date Left: August 2003,
Date Right: September 2005).

2.2.2. Landslide Conditioning Factors

Despite the fact that there are no clear guidelines about the proper factors to use for such a kind
of analysis [23], 16 conditioning factors (Figure 4) were selected for this case study based on (1) field
survey observations; (2) survey campaign reports achieved by local authorities; (3) the most commonly
used factors in the literature for landslide susceptibility analysis [1,3,9]; (4) geo-environmental factors
of the study area that may directly or indirectly affect landslides, and can be used as predisposing
factors [24]; and (5) the scale of the analysis and data availability for the case study [21].

The Digital elevation model (DEM) for the study area with a resolution of 30 m was derived
from the NASA Shuttle Radar Topography Mission Global (SRTMGL1) Version 3 (http://www2.jpl.
nasa.gov/srtm). Using the DEM, five geomorphometric factors were extracted: Altitude (Figure 4A),
Slopes (Figure 4B), Aspects (Figure 4C), Topographic Wetness Index (TWI) (Figure 4D), and Landforms
(Figure 4E). On the other hand, 7 geological maps at a scale of 1:50,000 scale provided by ASGA
(L’Agence du Service Géologique de l’Algérie) were used to derive the lithology map (Figure 4G),
stratigraphy map (Figure 4H), and the distance to the faults map (Figure 4N). The rainfall map
(Figure 4F) was generated using the annual mean precipitation at 7 meteorological stations during
the period of 1985 to 2017 using the Inverse Distance Weighed method. The precipitation data were

http://www2.jpl.nasa.gov/srtm
http://www2.jpl.nasa.gov/srtm
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provided by ANRH (L’Agence Nationale des Ressources Hydrauliques) and ONM (Office National de
Meteo). The remaining factors; Bulk Density (Figure 4M), Depth to Bedrock (Figure 4L), Distance to
Hydrographic Network (Figure 4O), Distance to roads (Figure 4P), Soil texture (Figure 4J), Landuse
(Figure 4K), and Soil types (Figure 4I)—were provided by the Mila and Constantine municipalities.

Detailed classes of all the used factors are shown in Table 2. The reclassification process (the class
intervals and the total number of classes) of the continuous factors (altitude, slopes, rainfall, and so
forth) was performed automatically using the Geometrical Intervals reclassification method due to
the non-uniform distribution of the data in those factors. On the other hand, the categorical factors
(Lithology, Stratigraphy, and so forth) remained unmodified.

Table 2. The spatial relationship between the landslide conditioning factors and landslides by
frequency ratio.

Conditioning Factors Class Class Percentage (%) Landslide Percentage (%)

Altitude (m)

60–326.047 8.786 19.550
326.047–597.105 36.055 48.789
597.105–813.952 28.967 18.512
813.952–1003.694 18.637 7.785

1003.694–1722 7.555 5.363

Slopes (◦)

0–5.543 26.667 21.107
5.543–11.394 39.877 37.889

11.394–18.16987664 23.325 28.374
18.169–27.101 8.299 10.900
27.101–78.530 1.831 1.730

Aspects

Flat 0.757 1.038
1st Quadrant (0◦ to 90◦) 23.709 26.298

2nd Quadrant (90◦ to 180◦) 28.195 25.260
3rd Quadrant (180◦ to 270◦) 22.593 21.453
4th Quadrant (270◦ to 360◦) 24.746 25.952

Topographic Wetness
Index (TWI)

0.034–3.550 8.521 3.979
3.550–5.481 50.807 21.280
5.481–8.997 31.076 67.647

8.997–15.402 9.597 7.093

Landforms

Steep slope, fine texture, high convexity 6.920 2.422
Steep slope, coarse texture, high convexity 25.290 32.007

Steep slope, fine texture, low convexity 41.067 40.830
Steep slope, coarse texture, low convexity 26.723 24.740
Gentle slope, fine texture, high convexity 22.043 19.031

Gentle slope, coarse texture, high convexity 33.809 34.429
Gentle slope, fine texture, low convexity 39.618 42.907

Gentle slope, coarse texture, low convexity 4.460 3.633

Rainfall (mm/Year)

403–593.263 0.070 0.000
593.263–711.030 3.353 5.190
711.030–901.294 50.109 48.097
901.294–1208.684 44.909 45.156

Lithology

Alluvium 1.629 1.557
Claystone 13.055 16.090

Colluvium-Detritus Deposits-Scree 16.184 16.263
Limestone 5.846 6.920

Marl 10.668 13.668
Neogene Complex 3.173 4.152

Sandstone 24.293 11.592

Stratigraphy

Quaternary 2.225 1.730
Neogene 24.557 29.585

Paleogene 30.166 22.318
Upper Cretaceous 61.891 61.246

Upper-Mid Cretaceous 7.943 16.436
Lower Cretaceous 10.793 18.858
Triassic-Jurassic 34.420 21.626
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Table 2. Cont.

Conditioning Factors Class Class Percentage (%) Landslide Percentage (%)

Soil type

Calcisols 25.679 27.163
Cambisols 17.017 26.125
Luvisols 12.090 6.228
Leptosols 25.701 40.311
Podzols 30.189 28.893
Regosols 32.091 24.740
Vertisols 12.019 6.055

Soil Texture (Texture)

Clay 5.331 7.439
Sandy Clay 4.057 2.941
Clay Loam 9.438 7.612

Silty Clay Loam 8.220 7.612
Sandy Clay Loam 9.545 7.785

Landuse

Water Bodies 56.050 59.862
Artificial Surfaces 7.359 6.747

Forests 19.011 25.433
Grasslands 1.692 1.384
CropLand 59.084 60.035
Bareland 0.796 1.730

Depth to Bedrock (cm)
(DepthBR)

49–574.750 19.417 11.419
574.7502397–761.629 9.797 1.211

761.6293378–1287.379 15.499 19.723
1287.379578–2766.481 50.172 58.651

2766.481936–7479 13.075 8.997

Bulk Density (Kg/m3)
(Bdensity)

1209–1394.941 5.218 5.882
1394.941–1463.333 3.775 2.249
1463.333–1521.039 2.464 3.287

1521.039–1754 1.472 3.979

Distance to Faults (m)
(FDist)

0–581 13.958 17.993
581–4784.550 7.565 6.920
4784.550–8192 4.753 6.228

Distance to
Hydrographic

Network (m) (WDist)

0–300 26.129 23.702
300–750 46.124 41.176

750–1500 10.521 14.014
1500–3000 56.840 61.419
3000–5856 12.376 6.401

Distance to Roads
networks (m) (RDist)

0–908.103 7.572 4.498
908.103–2612.509 8.614 9.862

2612.509–5811.481 2.624 2.768
5811.481–11957 1.453 1.038

Geomorphometric factors such as altitude, slopes, and aspects are frequently used in landslide
susceptibility analysis due to the crucial effect of terrain types on slope instability either directly or
indirectly by (1) increasing or reducing the shear strength; (2) controlling the microclimatic parameters
such as exposure to sunlight, wind, rainfall intensity, and the slope material properties; and (3)
controlling the landscape forms [12,25]. Furthermore, factors such as landforms and TWI are highly
influential to landslide occurrences. The former specifically derive a classification for the landscape
based on three-part geometric signature (i.e., slopes, convexity and surface texture) as proposed by
Iwahashi and Pike [26]. The latter indicates the effect of topography on the location and the size of the
saturated source area of run-off generation, which is highly related to the hydrogeological conditions
that influence surface run-off and infiltration [25]. According to Beven and Kirkby [27], TWI can be
calculated using the following equation:

TWI = ln
(

As

tan β

)
(1)

where As is the specific catchment area (m2/m) and β is the local slope in degree.
Geomorphometric factors are not the only factors that may influence landslide occurrence. In fact,

other factors such as lithology, stratigraphy, land use, rainfall, soil types, soil texture, depth to bedrock,
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bulk density, and proximity factors (distance to faults, distance to hydrographic network, and distance
to road networks) are indirectly related to landslide occurrence. They induce (1) shear strength and
cohesion, (2) permeability, (3) weathering of slopes materials, (4) erosion of slopes footing, and (5) the
saturation of slopes.
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3. Methods

3.1. Random Forest

RF is an ensemble approach to decision trees such that each tree fits a data subset sampled
independently using bootstrapping [28]. RF is known to provide a robust error rate with respect to
the outliers in predictors, due to the random selection at each split node depending on the two data
objects, namely, Out-Of-Bag (OOB) and proximities. OOB data is used to get both variable importance
estimations and an internal unbiased OOB error (the classification error) as trees are added to the
forest while bagging is used to randomly select samples of variables as the training dataset for model
calibration. For each variable, the function determines the model prediction error if the values of that
variable are permuted across the OOB observations. Proximities, on the other hand, are used to replace
missing data, locating outliers, and producing illuminating low-dimensional views of the data and can
only be calculated after each tree is fitted on for each pair of cases, then normalizing it by dividing
over it the total number of fitted trees.
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3.2. Gradient Boosting Machine

Gradient Boosting Machine (GBM) or simply Gradient boosting is an ensemble of weak learners,
namely, regression trees that benefit from boosting by adding weak learners using a functional gradient
descent associated with the whole ensemble to minimize the loss function as much as possible [29].
The rationale behind GBM is that the learning process consecutively introduces weak learners using a
functional gradient descent in stage-wise additive approach sequentially allowing the algorithm to
enhance the overall accuracy simply by readjusting previous error terms when new weak learners
are added.

GBM involves three elements: (1) the loss function to be optimized based on the objective function
to be solved; (2) the weak learner to make predictions, specifically a decision tree that is constructed in
a greedy manner by choosing the best split points based on specific scores; and (3) an additive model
to add weak learners to minimize the loss function, therefore, a weighted combination of classifiers
that optimizes the cost using gradient descent in the function space [30].

3.3. Logistic Regression

Logistic regression (LR) is a particular case of the generalized linear model [31] configured to
provide a binary form of result. The ability to find the best fitting function to describe the nonlinear
relationship between the presence or absence of landslides and a set of conditioning factors combined
with practically zero hyperparameters to tune in makes LR so compelling to be a baseline model
in susceptibility analysis mapping. Basically, logistic regression relates the probability of landslide
occurrence to a link function (in this case “logit”) assumed to contain the conditioning factors on which
landslide occurrence may depend, where the relationship between the occurrence and its dependency
on conditioning factors can be expressed by the following (Equation (2)):

P̂ =
1

1 + e−z =
ez

1 + ez (2)

where P̂ is the probability of a landslide occurrence and has a range of [0, 1] on an S-shaped curve; z is
a linear fitting equation that involves the supplied set of landslide-related variables in the form of the
following equation (Equation (3)):

Z = b0 + b1X1 + b2X2 + . . . + bnXn (3)

where b0 is the intercept of the model; bn is the partial regression coefficients; and Xn is the
conditioning variable.

3.4. Artificial Neural Network

An artificial neural network or shortly neural network (NNET) is black-box model defined as a
“computational mechanism able to acquire, represent, and compute a mapping from one multivariate
space of information to another, given a set of data representing that mapping” [32].

Most NNET models are composed of simple and highly interrelated processing units (neurons)
that are in permanent connection with each other. Generally, neurons are located in different layers,
and NNET are characterized based on the number of layers and the training procedures. Connections
between processing units are physically represented by weights, and each neuron has a rule for
summing the input weights and a rule for calculating an output value. More than one layer of neurons
can be included in the perceptron in order to cope with non-linearly separable problems, and a
multilayer perceptron (MLP) can be obtained.

In this study, we are considering an optimization technique that is regarded as one of the best
techniques for solving nonlinear optimization problems (in the absence of constraints) similar to,
but more sophisticated than standard backpropagation called the Broyden–Fletcher–Goldfarb–Shanno
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(BFGS) method after its creators. The BFGS is a “hill-climbing” procedure, which belongs to a class of
algorithms that are based on the “Newton” method, but does not require the Hessian matrix of second
derivatives of the objective function to be computed. Instead, it is updated by using gradient vectors.
These are called quasi-Newton (or secant) methods. Compared to the popular “Backpropagation” used
in most landslide susceptibility studies, BFGS performs better for weight adjustment, simply because
using a general algorithm from unconstrained optimization seems to be the most fruitful approach [33],
which leads to a faster convergence and provides better results with less complication and parameters
to tune in.

3.5. Support Vector Machine

Support vector machine (SVM) is one of the new mathematics tools, which is used as a universal
constructive learning procedure based on the statistical learning theory rather than loose analogies
with natural learning systems [34]. SVMs provide non-linear solutions to regression and classification
problems by transforming the input variables in a large-dimension space, whose inner product is
given by positive definite kernel functions, then trained using dual optimization techniques with
constraints [35]. Typically, SVMs are designed for two-class problems where both positive and negative
objects exist. For two-classes classification problems, SVMs seek to find a hyperplane in the feature
space that maximally separates the two target classes [36].

4. Used Methodology

This section focuses on presenting the proposed methodology used to conduct this research.
The research was performed using five machine learning models, GBM, LR, NNET, RF, and SVM.
Model hyperparameters were tuned and configured using Sequential Model-Based Optimization
(SMBO). The analysis was programmed from scratch by the authors in the R environment because
(1) of the high flexibility that R offers and (2) to reduce the errors and biases that can be introduced
either by evaluating models in different software or platforms that may respond differently, whereas
the source code for R is available at GitHub. The overall concept of the used methodology of this
research is outlined in Figure 5.

4.1. Construction of the Geospatial Database, the Training Dataset, and the Validation Dataset

As the first step, a geospatial database was constructed from 16 factors and a landslide inventory
map using various sources in the QGIS, Saga, and R software. Since the implemented models can
handle mixed space variables (numeric and categorical) efficiently, there was no need for dummying
the geospatial database (numeric decoding of categorical variables). Only the target class (landslides)
was set to the “Yes” label if the samples are landslide positive, otherwise, it was set to “No”.
While this database was mainly used as an input dataset to train the landslide susceptibility models,
an independent testing dataset needed to be used to properly assess and validate the trained models.
Moreover, landslide samples are scarce and hard to obtain, so, in this case, resampling the input dataset
into the training and testing sets would be a mandatory task to obtain reliable results [37]. For that
reason, the input dataset was randomly resampled using a 5-times-repeated 10-fold cross-validation
(CV) approach (Figure 5A).

Accordingly, the process of a 10-fold cross-validation was started by randomly splitting the input
dataset into 10 equal sized folds. Then, each of the nine subsets was used to train landslide models
whereas the other subset was used to validate the models, and this procedure was carried out 10 times,
respectively. The whole process was repeated 5 times, resulting in 50 training-testing pairs. As result,
the models were trained 50 times, and then, the performance measures were finally averaged.
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Figure 5. The overall concept of the used methodology for this research: (A) construct a spatial
database that will serve as an input dataset for the study from the landslide inventory map and
the landslide conditioning factors; (B) Analyzing and optimizing the landslide conditioning factor
based on the Pearson correlation and Variance Inflation Factors analysis (VIF) results; (C) Model
configuration and implementation using the desired hyperparameters optimization strategy; (D) Model
training, validation, and comparison using 5-times-repeated 10 k-folds cross-validations (CV) and the
selected performance indicator metrics; (E) susceptibility maps generation and evaluation based on the
appropriate assessment strategy.
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4.2. Analyzing and Optimizing Landslide Conditioning Factor

It is common for input datasets used in a landslide susceptibility analysis to have a high correlation
among certain conditioning factors. This high correlation leads to a faulty modeling with an erroneous
system analysis [38]. A possible solution can be performed by a multicollinearity analysis to evaluate
the suitability of the underlying assumption used to select the conditioning factors based on the
non-independence among factors. To detect and quantify multicollinearity among the used 16 selected
variables, Pearson’s correlation coefficients [39] can be performed. Nevertheless, in most cases,
correlation coefficients are not usually enough, whereas Variance Inflation Factors (VIF) could be
implemented. Essentially, Pearson correlations focus on the covariance between each pair of factors
divided by the product of their standard deviations (Equation (4)). On the contrary, VIF focuses on the
standard error variations of landslide conditioning factors, which imply that the lower, the standard
errors, the lower the multicollinearity risk, and the safer the conditioning factor is to implement.

rx.y =
n

∑
i=1

xi − x√
∑n

k=1(xi − x)2
× yi − y√

∑n
k=1(yi − y)2

(4)

where n is the number of samples; xi, yi are conditioning factors indexed with i; x is the mean of xi;
and x = 1

n ∑n
i=1 xi (analogously, the same applies to y).

4.3. Model Configuration and Implementation

Exploring the model’s full potential requires correctly tuning a variety of incidental parameter
choices and settings [40]. In rare cases, hand-tuning models hyperparameters are enough but in general,
there exist methods to do such a task; i.e., Grid search, Random search, Gradient-Based Optimization.
However, those methods are widely used and still considered as the main option due to the simplicity
and ease of their implementation. Yet, they produce very poor results that lead to (1) costly
evaluations (especially when the computational budget is limited); and (2) incorrect assessments
about the implemented models, whether they are genuinely bad or simply badly tuned. To avoid
the aforementioned problems, we consider a state-of-art technique called Sequential Model-Based
Optimization (SMBO) (also known as Bayesian optimization). SMBO can efficiently optimize models
by working on a strictly reduced budget for function evaluations and hyperparameters optimization
of expensive black-box models. Generally, better results can be achieved using SMBO in fewer
experiments compared to traditional techniques (Grid search, Random search, Gradient-Based
Optimization) due to (1) the ability to reason about the quality of experiments before they are run [41],
and (2) benefiting from the “adaptive capping” to avoid long runs [42].

The main idea behind SMBO is the iterative approximation of the expensive black-box
function f using surrogate models (mostly regression models because they are much cheaper to
evaluate), which are continuously updated and refined until the evaluation budget is exhausted [43]
(usually when the total number of evaluation available is reached or a termination criterion is met).
An outline of the SMBO algorithm used in this paper is provided by the “mlr” and “mlrMBO”
packages [44] (Figures 5C and 6). The algorithm starts by exploring the parameter space using
an initial design D (often constructed in a space-filling fashion). Then, a sequential loop of two
alternating stages is evaluated. The first stage is fitting the response surface to the currently available
design data. The second stage is optimizing the so-called infill criterion to propose a new promising
point x∗ for the next expensive evaluation f (x∗) (called y∗). If the optimization budget is exhausted,
then the best points associated with the optimal score (in this case the maximum AUC) are returned as
a solution for the optimization problem, otherwise, the sequential loop is iteratively repeated.

The overall hyperparameters used for each model are summarized in Table 3 along with their
values, short descriptions, and the package used to implement the model.
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Table 3. The parameters set used by each model along with its respective values.

Model Package Parameter Definition Value

GBM

“Generalized
Boosted Regression
Models” Formerly:

“gbm” package,

distribution The loss function Bernoulli

Shrinkage Learning rate From 0 to 1

bag.fraction The fraction of the training set observations
randomly selected to propose the next tree 0.5 (default)

train.fraction Observations fraction that is used to fit
the GBM 1 (default)

n.trees Total number of trees From 25 to 210

interaction.depth Maximum depth of variable interactions From 1 to 8

n.minobsinnode Minimum number of observations in the
trees terminal nodes 20 (default)

LR “stats” package, link Model link function logit

NNET

“Feed-Forward
Neural Networks
and Multinomial

Log-Linear”
Formerly: “nnet”

package,

Maxit Maximum number of iterations 150 (default)

MaxNWts The maximum allowable number
of weights 10,000 (default)

Rang Initial random weights on [-rang, rang] 0.5 (default)

Hess Find the Hessian of the measure of fit at the
best set of weights TRUE (default)

Size Number of units in the hidden layer From 4 to 33

Decay Penalty term or weight decay From 0 to 1

RF

“A Fast
Implementation of

Random Forests
ranger” Formerly:
“ranger” package,

Replace Sample with replacement FALSE or TRUE

respect.unordered.factors Handling of unordered factor covariates TRUE (default)

sample.fraction The fraction of observations to sample From 0.632 to 1

num.trees Number of trees From 25 to 210

mtry Number of variables From 2 to 8

SVM

“Misc Functions of
the Department of

Statistics,
Probability Theory
Group, TU Wien”
Formerly: “E1071”

package,

kernel kernel function radial or
polynomial

Cost regularization cost From 2−15 to 215

(default)

gamma (if kernel =:
“radial”) kernel width From 2−15 to 215

(default)

degree (if kernel =:
“polynomial”) Polynomial degree From 1 to 16

(default)
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Only “mtry”, “interaction.depth”, “n.trees”, “num.trees” and “size” have the option to be set by the
user according to specific instructions and guidelines. Otherwise, the remaining parameters are exactly
bounded to the allowed (or default) values (or range of values) by each package. For the number of
variables is each tree (“interaction.depth” and “mtry”), various heuristics suggested by packages that
provide GBM and RF were used to set the optimum value (Table 4). These heuristics suggest that
ranges of 1 to 8 and 2 to 8 would be accurate for “interaction.depth” and “mtry”. The additive nature of
GBM allows for the one-way interaction variable in each tree (“interaction.depth” = 1), on the contrary,
RF does not allow one-way interactions, only two-way interactions or more (“mtry” ≥ 2). On the other
hand, the total number of trees to fit, “n.trees” for GBM and “num.trees” for RF, is set to an exponential
rate using a base of 2 (2i, i = 5, . . . , 11). By taking into account the instructions of the used packages
and some experimental researches e.g., [45]; the total number of trees was set to an optimal value
between 25 and 210.

Table 4. The heuristics proposed by the package instructions to set the optimum number of variables
for GBM and RF. (Ni: the total number of variables (i.e., 16 in this research)).

Package
Suggested Value

mtry interaction.depth

gbm N.A
√

Ni, but often the search space is set between 1 and
√

Ni
ranger

√
Ni = 4 N.A

xgboost 6 6
H2O 2 to 8 2 to 8

randomForest
√

Ni = 4 N.A

The number of nodes in the hidden layer (“size”) for NNET was set in a range of 4–33 according
to empirical suggestions proposed by different authors summarized in Table 5.

Table 5. The heuristics proposed to compute the optimum number of hidden layer nodes for NNET
(modified from and Kavzoĝlu [46]; Ni: number of input nodes (i.e., the total number of variables of 16
in this study); No: number of output nodes ;Np: Number of training samples; k: the noise factor (varies
between 4 and 10) is an index number representing the percentage of false measurements in the data or
degree of error).

Proposed by Heuristic Hidden Nodes

Hecht [47] 2Ni + 1 33
Ripley [48] (Ni + No)/2 8 or 9

Paola and Schowengerdt [32] 2+(Ni∗No)+
1
2 No(Ni

2+Ni)−3
Ni+No

9
Wang [49] 2 ∗ Ni/3 11

Aldrich, et al. [50] Np

k(Ni+No)
(k = 10) 7

Aldrich, Van Deventer and Reuter [50] Np

k(Ni+No)
(k = 7) 10

Kaastra and Boyd [51]
√

Ni ∗ No 4
2Ni 32

4.4. Model Training, Validation, and Comparison

Different performance metrics can be implemented for quantitative comparison; however,
landslide susceptibility problems are strictly classification problems where quality and confidence in
probabilities toward landslides are critical. Therefore, using a performance metric to assess prediction
robustness is necessary and for this reason, the area under the receiver operating characteristic (ROC)
curves (AUC) will be implemented as the only metric for the objective functions in hyperparameter
tuning and one of three overall performance indicators of the landslides predictive models. In general,
AUC can be interpreted as “the probability of a classifier is able to correctly anticipate the occurrence or
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non-occurrence of predefined events” [16]; which is rather convenient, because maximizing the AUC value
is the equivalent to maximizing the overall accuracy (Acc) of the classifier. AUC could be quantified [6]
as follows: excellent (0.9–1), very good (0.8–0.9), good (0.7–0.8), average (0.6–0.7), and poor (0.5–0.6).

As in most cases, assessing the overall performance and the predictive capabilities of the tuned
models based on the predictions robustness is not enough, the accuracy and the reliability of the
trained models also need to be assessed. The overall accuracy (Acc), which describes the amount of
correctly classified events of both landslide and non-landslide in a float (decimal) range of 1 (correctly
classifying all events) to 0 (failing to classify any events), will be used to assess model accuracy. On the
other hand, the Cohen kappa index (kappa) will be used to measure the landslide model reliability
and can calculate the proportion of the observed agreement beyond that which is expected by chance.
According to Landis and Koch [52], the strength of the agreement is given by the Kappa magnitude as
0.8–1.0 for almost perfect, 0.6–0.8 for substantial, 0.4–0.6 for moderate, 0.2–0.4 for fair, 0–0.2 for slight,
and ≤0 for poor.

Model performance results were evaluated using non-parametric statistical procedures for
statistical significance to evaluate and compare the landslide susceptibility models against each
other, similarly as in [6]. The Wilcoxon signed-rank test at the 5% significance level was used for
each pair of models in order to detect individual differences in model performances. Basically,
the Wilcoxon signed-rank test relies on a null hypothesis that there is no difference between the
performances of the landslide models. Then, p-value and z-values are calculated and used to determine
the probability of rejecting or accepting the null hypothesis [6]. If both the p-value is lower than the
significance threshold (p-value < 0.05) and the z-value exceeds its critical values (z-value < (−1.96)
or z-value > (+1.96)), then it is safe to assume that the null hypothesis is not valid (can be rejected).
Therefore, a significant difference between the two compared models exists, otherwise, if that is,
p-value ≥ 0.05 and −1.96 ≤ z-value ≤ +1.96, it is safe to assume the opposite.

4.5. Landslide Susceptibility Map Generation and Assessment

Apart from performance metrics, a sufficiency analysis should be performed to assess the
sufficiency and accuracy of the predictive models that produce landslide susceptibility maps.
This analysis is based on the assumption that: “a model is sufficient and accurate when there is an
increase in the landslide density ratio when moving from low to high susceptible classes and high susceptibility
classes cover small areas extent” [16]. The sufficiency analysis can be performed by reclassifying the
probability grids generated by each model for the study area using Table 6. Then, by overlying the
landslide inventory, it is possible to generate summary statistics (i.e., the landslide density distribution
and area extent distribution) for each class.

Table 6. The probability intervals for the landslide susceptibility classes.

Susceptibility Class Very Low Low Moderate High Very High

Probability Range From 0 to 0.05 From 0.05 to 0.30 From 0.30 to 0.60 From 0.60 to 0.75 From 0.75 to 1

5. Results

5.1. Analyzing and Optimizing Landslide Conditioning Factor

In a comparative study, constructing the necessary conditioning factors does not necessarily imply
that it is suitable for use as an input dataset for models. In fact, it is crucial to check the integrity of
the input dataset by performing some sort of analysis (i.e., correlation analysis, and multicollinearity
detection) before conducting the modeling, mainly to ensure that (1) the non-independence among
conditioning factors and (2) to figure out the suitability of the underlying assumption behind choosing
the factors. In this research, 16 conditioning factors were considered by taking into account the
aforementioned criterions, and both correlation and VIF analyses were performed.
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The Pearson’s correlogram values (Figure 7) are lower than the critical threshold of 0.7,
which indicates high collinearity [39]. The highest Pearson’s correlation was between TWI and
the Slopes at 0.54. In fact, a high correlation is expected between the generated variables and the
source variables (i.e., TWI, Slopes, and Altitude that were derived from the DEM). On the other hand,
the VIF results (Figure 8), show that all factors should be used since the highest value is less than the
theoretical critical value of 10 [53].
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5.2. Model Training

During the training process, the optimal hyperparameters are carefully picked up according to
Table 3 using the following procedures:

1. Set a single objective function for each learner using “smoof” [54] with AUC to maximize it as a
single performance criterion.

2. Use “lhs” package [55] to set an initial design grid that covers the supplied search space of
each model parameter by drawing a Latin Hypercube Sample Design (LHS) using a Column
wise Pairwise (CP) algorithm to generate an optimal design with respect to the S optimality
criterion [56].
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3. During every single iteration, a new point is being proposed through LCB infill optimization of
the estimated standard error. This error is usually obtained by a surrogate model that is either
kriging-based for a purely numeric space or random forest for a mixed search space.

4. Select and return the optimum values of the desired hyperparameters based on the highest AUC
(Table 7).

Table 7. The optimum parameters obtained by the tuning process.

Model Hyperparameter Optimal Value

GBM
Shrinkage 0.020

n.trees 570
interaction.depth 8

NNET
Size 29

Decay 0.809

RF

Replace FALSE
sample.fraction 0.953

num.trees 1012
mtry 5

SVM

kernel radial
cost 28.382

gamma 2−8.398

degree N/A

5.3. Model Evaluation and Comparison

First, the models are trained using the input dataset and the hyperparameter sets
(see Tables 4 and 7), then we evaluate the predictive performance capabilities and the quality of the
resulting models using performance indicator metrics like AUC, Acc, and the Kappa index.

The Overall performance results show that all the models have “a substantial agreement” between
the observed and the predicted landslides expressed in term of a kappa index ranging between 0.5605
and 0.6405 (Figure 9 and Table 8). The AUC and Acc values range from 0.8575 to 0.8967, and 0.7803 to
0.8203, respectively, indicate that all the models have “very good” predictive capabilities. In particular,
the ensembles models that benefit from a divide-and-conquer approach such as RF and GBM yielded
significantly better results than traditional methods like NNET, SVM, and LR. In fact, GBM was the
highest-ranked model in terms of the performance of the AUC, Acc, and Kappa index with values
of 0.8967, 0.8203, and 0.6405, respectively (Table 8). RF held the second highest ranked model with
performances similar to GBM with values of 0.8957, 0.8178, and 0.6356 for AUC, Acc, and kappa,
respectively. NNET, on the other hand, was able to achieve the highest performance after the ensemble
tree models, followed up by SVM. In contrast, the LR performance was consistently lower than
the rest of the models in every metric, with values of 0.8575, 0.7803, and 0.5605 for AUC, Acc, and
kappa, respectively.

Table 8. The overall performances of the trained landslide models.

Metrics
Model

GBM LR NNET RF SVM

Acc 0.820 0.780 0.809 0.817 0.802
Kappa Index 0.640 0.560 0.619 0.635 0.605
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Finally, in order to determine if there are statistically significant differences between the five
landslides susceptibility models, a systematic pairwise comparison using the Wilcoxon signed-rank
test at the 5% significance level was conducted (Table 9). The results show that there is a systematic
difference in the performance results between each pair of models except for the GBM and RF pair,
where the difference in performance was found to be statistically insignificant (that is, p-value ≥ 0.05
and −1.96 ≤ z-value ≤ +1.96, so, the null hypothesis was accepted). Overall, it could be concluded
that the RF model and the GBM model are the best for the data at hand in this study.

Table 9. The pairwise comparison of the five landslide susceptibility models using the Wilcoxon
signed-rank test.

No. Pairwise Comparison z Value p Value Significance

1 GBM vs. RF −0.579 0.562 No
2 GBM vs. LR 6.111 0.000 Yes
3 GBM vs. NNET 3.606 0.001 Yes
4 GBM vs. SVM 5.266 0.000 Yes
5 RF vs. LR 6.149 0.000 Yes
6 RF vs. NNET 2.905 0.004 Yes
7 RF vs. SVM 4.025 0.000 Yes
8 SVM vs.LR 5.589 0.000 Yes
9 SVM vs. NNET −3.223 0.001 Yes
10 NNET vs. LR 5.995 0.000 Yes

5.4. Generating Landslide Susceptibility Map

Once the final models were evaluated and validated, the tuned models were used to successfully
predict and generate landslide occurrence in the study area in the form of probability grids, then they
were reclassified into five susceptibility classes (Table 6). The implemented models successfully
generated susceptibility maps with a fine and smooth prediction surface (Figure 10).
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and (E) LR.

In the case of a landslide susceptibility assessment, the model evaluation based on the performance
metrics is not enough. Models with close or even similar performance results (for example, GBM and
RF have no statistical significance in the performance difference in this case study) and they do not
necessarily generate similar predictive output surface. The spatial predictive output surface is critical
for assessing the quality of landslide susceptibility models. Overall, by performing a sufficiency
analysis on the predictive output surface in the form of summary statistics (that is, landslide density
distribution and the area extent covered by each susceptibility class), it is possible to gain an insight
into the model’s quality by (1) the spatial predictive output surface details and (2) the results of the
landslide distribution analysis.

Essentially, by overlapping the landslide inventory and the reclassified susceptibility maps
(Figure 10), a sufficiency analysis summary statistic was obtained in the form of a landslide density
distribution (Figure 11A) and the total area extent covered by each susceptibility class (Figure 11B).
The results are satisfying because they fulfill two spatial conditions: (1) the landslide pixels should
be located at the very high and high susceptible classes and (2) the extent of the areas covered by the
very high and high susceptible classes should be as small as possible. All models show an increase in
the landslide density ratio when moving from low to high susceptible classes, with GBM scoring the
best results of approximately 75.61% and 14.52% for landslide density occurrences and the area extent
covered by the highest susceptibility class (that is, “very high”). RF scored 74.39% and 6.99% followed
by NNET with 68.34% and 14.28%, SVM with 68.17% and 9.90%, and LR with 56.23% and 9.29%.
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A positive indicator of the classification capability of the generated models is that they do not
show any landslide events in the “Very Low” susceptibility class (that is, if the landslide density is
null, then the class is absent) or they only show a very small percentage (<0.70% of the total landslide
events) (Figure 11A). In general, the “Very Low” and “Low” susceptibility classes are grouped pixels
with the low probabilities toward landslides, which mean that those pixels have higher confidence
probability toward stability. Therefore, having a lower percentage (or even better, an absence) of
the lower susceptibility classes indicates a higher confidence in the misclassification error (equal to
1− Acc) achieved by those models. Further, they indicate that the misclassification error achieved was
near the classification threshold (for binary equal-proportions, the classifications threshold is 0.5) and
not at the extremes.

6. Discussions

The most effective way to reduce casualties and economic losses resulting from landslides are
landslide risk planning and management; therefore, high-quality landslide susceptibility maps are an
important tool [57]. However, it is still a challenge to produce high accuracy landslide susceptibility
maps at a regional scale due to the complex nature of landslides and it is widely recognized that
the prediction quality of landslides is dependent on the algorithm used. Thus, although various
methodologies for producing landslide susceptibility maps have been developed, the prediction
accuracy of these methods is still debated [49]. Therefore, in the present study, five classifications
algorithms (GBM, LR, NNET, RF, and SVM) were investigated and compared for landslide
susceptibility mapping at Mila Basin.

The results obtained in this study (see Table 8 and Figure 9) show that all the implemented models
achieved high performance (AUC > 0.88, Acc > 80% and kappa > 0.60). However, two ensemble
trees models (GBM and RF) yielded the highest prediction results compared to the others. This better
performance is confirmed to be statistically significant with the used Wilcoxon signed-rank test.
This finding is in agreement with the results from recent studies i.e., in ([58–61]) that reported
that the ensemble models outperform single machine learning models. In contrast to GBM and
RF, LR consistently yields the lowest results compared to the other implemented models. This finding
is in line with the literature where LR achieves the worst, if not the poorest, performance of all
models [6,9,11,16,62].
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The better-fit and higher performance of GBM and RF compared to LR, NNET, and SVM in this
research is due to the divide-and-conquer approach that the assembling technique implements in both
models (i.e., benefiting from aggregating weak learners to solve the issue). In fact, the main causes
of error in the landslide modeling at the basin scale in this study is due to noise and the uncertainty
that existed in the landslide conditioning factor maps (which were collected from various sources
and scales). It is still difficult to eliminate the noise and uncertainty, though several fuzzy modeling
approaches have been proposed. However, ensemble learning, RF, and GBM, which use the random
sampling with replacement strategy, could minimize these due to their diversity and stability [63],
which are two key issues of ensemble learning. Thus, both RF and GBM are capable models that work
well over noise and uncertainty environments [64] such as landslide modeling; therefore, they are
robust and better than the other models in this study.

Generally, GBM models offer similar or even better performance results than RF, but the large
number of sensitive parameters and the tendency to easily over-fit makes it difficult to implement it
right out the box compared to RF, which is easier to implement and less prone to both over-fitting and
outliers. Additionally, some studies [65] have found that GBM performs exceptionally well when the
dimensionality is low (≈4000 predictors). Above that, RF has the best overall performance. Notably,
the results obtained by SVM for typical binary landslide susceptibility problems are very satisfying.
Even if it is lower than GBM, RF, and NNET, it is still relevant compared to the results produced
by similar studies [1,6,8–10]. NNET, on the other hand, unsurprisingly outperforms SVM and LR,
but fails to capture the underlying model of the input data like RF and GBM, simply because neural
networks need a large number of observations. However, in the case of landslides, the observation
events are scarce and very hard to obtain. On top of samples being scarce, the most recent landslide
susceptibility studies [7,9,16] do not benefit from the full potential of NNET by implementing NNET
models with vanilla “Backpropagation” or one of its variances for the weight adjustments. In fact,
Back-propagation based NNET are extremely slow to converge, which leads to a long execution time
and a heavy computational load, not to mention both a large number of parameters to tune in and
the special input data preparation required. Unlike Back-propagation NNETs, the implemented feed
forward BFGS NNET are faster to converge with fewer hyperparameters to tune in and provided
arguably better results than similar studies that implemented NNET [7,9,16].

In the end, it is widely accepted that no single or particular model can be depicted as the most
suitable for all case scenarios. For example, the LR model is simple, fast, easy to implement, and is only
able to capture the linear relationship between the conditioning factors and the landslide susceptibility.
The merit of LR is that it does not compulsorily require a normal distribution data. Additionally,
both continuous and discrete data types can be used as an input for the LR model. However, landslides
are complex phenomena with non-linear mechanisms. SVMs are useful non-linear classifiers whose
goal is not only to correctly classify landslide instances, but also to keep the distance between instances
and keep the separation of the hyperplane at a maximum. This makes SVM models appealing for
susceptibility evaluation considering the number of hyperparameters to tune in. However, if those
hyperparameters are inappropriately set, SVM will often lead to unsatisfactory results. NNET models
are very effective for simulating non-linear complex phenomena with multiple conditioning factors
(preferably continuous input dataset). However, being a black box model and the large number of
samples required to obtain a reliable model are the only downsides to this kind of model. Ensemble
tree models (GBM and RF) offer excellent performance with decent interpretability and a moderate
number of hyperparameters to tune in but require a considerable time budget (they require a lot of
time to converge, especially if used on large-scale analyses). Though some studies (such as in [66])
highly recommend RF and GBM due to the outstanding performance, they suggest that a rather fast
and simple model, such as LR would be much better than advanced machine learning models.

All scripts used in this experiment are available in a reproducible repository on Github
(https://github.com/aminevsaziz/lsm_in_Mila_basin).

https://github.com/aminevsaziz/lsm_in_Mila_basin
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7. Conclusions

This research paper provided a framework for comparing and assessing five machine-learning
methods (GBM, LR, NNET, RF, and SVM) for the landslide susceptibility assessment in the Mila
Basin. The achieved results demonstrate that there is a significant difference between the implemented
models. Even if the obtained results are underlined with a clear objective of comparing and assessing
those models, finding the most suitable model for the case study was very challenging as it does not
depend solely on the performance results, but also on the high level of uncertainty behind landslide
modeling and the limitation and caveats that come with each model.

The two ensemble tree models (RF and GBM) were proven the most suitable models for this case
study when comparing them to the remaining models (NNET, SVM, and LR), as they significantly
outperformed the rest of the models based on the excellent performance results achieved. Despite that,
the remaining three models are considered viable options, as they are adequately capable of satisfactory
performance compared to similar studies. Summing up, the obtained landslide susceptibility maps
by the implemented models can be used as a preliminary planning framework for planners in the
study area or as a technical framework for countermeasures and regulatory policies by decision
makers to minimize the damages introduced by either existing or future landslides by the Mila and
Constantine municipalities.

Overall, the results of this study have demonstrated the effectiveness of all Five ML technique
classifiers, especially ensemble tree models such as the GBM and RF algorithms for the assessment of
landslide susceptibility. In terms of future work, we will consider the following issues: (1) exploring
other machine learning algorithms; (2) including more landslide observation cases if possible;
(3) introduce more richness to the input data pool, such as deformation formations based on InSAR
space born imagery.
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