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Abstract: Here we present “CO-RIP”, a novel spatial dataset delineating riparian corridors and
riparian vegetation along large streams and rivers in the United States (US) portion of the Colorado
River Basin. The consistent delineation of riparian areas across large areas using remote sensing
has been a historically complicated process partially due to differing definitions in the scientific and
management communities regarding what a “riparian corridor” or “riparian vegetation” represents.
We use valley-bottoms to define the riparian corridor and establish a riparian vegetation definition
interpretable from aerial imagery for efficient, consistent, and broad-scale mapping. Riparian
vegetation presence and absence data were collected using a systematic, flexible image interpretation
process applicable wherever high resolution imagery is available. We implemented a two-step
approach using existing valley bottom delineation methods and random forests classification models
that integrate Landsat spectral information to delineate riparian corridors and vegetation across
the 12 ecoregions of the Colorado River Basin. Riparian vegetation model accuracy was generally
strong (median kappa of 0.80), however it varied across ecoregions (kappa range of 0.42–0.90).
We offer suggestions for improvement in our current image interpretation and modelling frameworks,
particularly encouraging additional research in mapping riparian vegetation in moist coniferous
forest and deep canyon environments. The CO-RIP dataset created through this research is publicly
available and can be utilized in a wide range of ecological applications.

Keywords: riparian corridor; valley bottom; V-BET; Landsat; random forests; NAIP

1. Introduction

The Colorado River is one of the most important water resources for people, wildlife, and
agriculture in the southwestern United States (U.S). Its headwaters begin at 2743 m a.s.l. at La Poudre
Pass in Colorado and, under natural flow regimes, empties into the Gulf of California 2333 km
downstream. Ephemeral, seasonal, and persistent riparian habitats are found throughout the Colorado
River Basin, which hosts some of the most important vegetative communities for wildlife species in the
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predominantly arid landscape [1]. Riparian corridors are associated with numerous ecosystem services,
including water and sediment flow dynamics [2,3], water quality [3], habitat, forage and fiber for
wildlife, maintenance of biodiversity [3,4], and recreation and aesthetics [4]. Riparian areas have rich
floral and faunal diversity [2], with many terrestrial animal species reliant on riparian corridors [4] for
the provisioning of food, water, shelter, and corridors for species migration [4–7]. Still, riparian areas
represent a relatively small percentage of the total land cover of the western US [4], are intensively
disturbed [2,8], and are often considered to be at-risk ecosystems in semi-arid regions [4,9] due to
the effects of urbanization [10], agriculture [11], and modified water flow regimes [12]. The spatial
distribution of riparian areas is often inconsistently reported, as defining the extent of a riparian
corridor or determining what composes riparian versus non-riparian vegetation remains an ongoing
debate. Currently, there is no universal definition of “riparian vegetation” or a “riparian corridor.”
Riparian vegetation is only vaguely represented at the landscape scale in existing US land cover
datasets, such as the National Land Cover Database [13,14] and LANDFIRE existing vegetation
layers [15].

The need to create and improve upon existing riparian area datasets has been shown to be a
key scientific management priority with the creation of US based initiatives to improve mapping of
riparian vegetation types, such as that occurring in the Southwest ReGAP Program [16] in the United
States and in international initiatives, such as the Copernicus Program’s “Riparian Zones” [17] layer in
Europe. In the United States, a paucity of explicit information on the location and extent of riparian
corridors remains, partially because existing datasets do not include hydro-geomorphological data,
such as the extent of valley bottoms, to delineate riparian cover [4,15]. A detailed map of riparian
corridors is expressly needed in the Colorado River Basin, where the social-ecological significance and
the increasing vulnerability of riparian systems have led to several management and conservation
initiatives. Two examples include The Nature Conservancy’s Colorado River Program, which manages
15 restoration and conservation projects in the basin, and the Bureau of Reclamation’s Lower Colorado
River Multi-Species Conservation Program (LCR-MSCP), which manages riparian habitat for the
recovery of listed species including the endangered Southwestern willow flycatcher (Empidonax traillii
extimus) [18–20]. Comprehensive information concerning the location and extent of riparian vegetation
can support these and similar habitat conservation and management actions across the basin.

At local and regional scales, riparian corridors are delineated in numerous ways, as their definition
is usually dependent on research approach or agency targets. Generally, they are the transition between
terrestrial and freshwater ecosystems [2,21,22] and include components of topography, vegetation,
and soils. Riparian corridors are dynamic regions with complex heterogenic landscapes formed
by frequent disturbances [23], and therefore, are challenging to delineate and map across large
spatial scales [4,24–26]. Even fixed buffers along streams have been broadly employed in delineating
riparian corridors. The total potential maximum extent of riparian corridors can be captured based
on geomorphology [27], and within this area, temporal fluctuations in riparian corridor vegetation
can be evaluated with spectral imagery [24,27]. In many areas, riparian vegetation is spectrally
inimitable because of its more persistent greenness when compared to upland areas and other landcover
classes [28]. Here, we use topography to define the boundaries of the riparian corridor and use spectral
remote sensing to differentiate non-riparian vegetation and landscape features from riparian vegetation
within these corridors.

The goal of this study was to create “CO-RIP”, a publicly available dataset of riparian vegetation
and riparian corridors along the US portion of the Colorado River and its major tributaries. To achieve
this goal, this study had the following objectives: (1) Delineate the maximum extent of the riparian
corridor as defined by topographic features, (2) use remote sensing to detect riparian vegetation, and
(3) integrate these products to create a cumulative riparian extent and vegetation dataset for the major
streams and rivers in the Colorado River Basin. In addition to producing the highest spatial resolution
riparian corridor and vegetation dataset available for the Colorado River Basin, this research provides
a new framework for defining riparian vegetation in the context of remote sensing and integrates two
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existing methodologies (valley bottom delineation and spectral remote sensing of vegetation) into a
single, process based framework that can be employed to delineate riparian corridors and vegetation
in regions across the globe.

2. Materials and Methods

2.1. Study Area

The study area encompassed the entirety of the US portion of the Colorado River Basin, an
extensive and ecologically diverse watershed that covers 637,000 km2 over seven states, including
Colorado, Wyoming, New Mexico, Arizona, Utah, Nevada, and California (Figure 1). The Colorado
River Basin stretches longitudinally over 2300 km and is characterized by its intense topographic
diversity, with elevations ranging from sea level at the Gulf of California to over 4000 m in the
highest areas of the Rocky Mountains of Colorado. The basin’s complex network of streams and
rivers drain into the Colorado River, one of the largest rivers by length and drainage area in the
United States [29]. The river and its basin are characterized by twelve different ecologically distinct
regions ([30], Appendix A) and dominated by four (Figure 1).

Figure 1. The study area extent, which encompasses the entire US portion of the Colorado River Basin,
classified by EPA Level 3 ecoregion.

Coniferous forests and alpine meadow environments characterize the River’s mountainous
headwaters, where the Colorado River is relatively small and primarily fed by seasonal snowpack.
Further southward, the Arizona and New Mexico Plateau and Mountains are characterized by
dense coniferous forests at high elevations, pinyon (Pinus spp.) and juniper (Juniperus spp.) forests
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at mid-elevations and sagebrush (Artemisia spp.) and chaparral in lower elevation areas where
precipitation is low, resulting in a dry, arid environment. The Colorado River flows through the
Grand Canyon in Arizona, into the dry, sparsely vegetated semi desert and desert environments
flanking much of the southern basin. In its final stretch, the river travels through the Sonoran Basin
and Range, encompassing a portion of northern Mexico, passing through arid, desert environments
where saguaro (Carnegiea gigantean) and cholla cactus (Cylindropuntia spp.) and creosote bush (Larrea
tridentate) dominate the landscape [30]. A detailed description of each ecoregion, modified from [30],
is provided in Appendix A.

2.2. Mapping Valley Bottoms a Proxy for the “Riparian Corridor Extent”

Riparian areas are shaped and bounded by the same topographic and hydrologic processes
that define the topography of valley bottoms. Valley bottoms are therefore representative of the
“maximum riparian corridor extent” [31–33], an area which separates the vegetative, topographic, and
environmental characteristics of riparian areas from those of the upland (hereafter, the “maximum
riparian corridor extent” will be referred to as “riparian corridor”). We used the Valley Bottom
Extraction Tool (V-BET) [33], a freely available ArcMap Toolbox [34], to map valley bottoms as a
proxy for the riparian corridor across the Colorado River Basin. The V-BET tool allows for efficient
delineation of valley bottoms across larger spatial extents and at higher resolutions than has typically
been possible with publicly available datasets in the past [33]. We applied the V-BET algorithm to all
streams and rivers present within the Colorado River Basin that were greater than or equal to Strahler
stream order “3” [35], thereby capturing the extent of riparian corridors along the majority of large
streams and rivers within the Colorado River Basin.

The V-BET tool’s derivative inputs can be obtained from two primary data sources: A high
resolution (10 m2 or less) digital elevation model (DEM) and hydrologic flowline data with high
cartographic precision. We obtained a 10 m2 digital elevation model from the National Elevation
Dataset [36] and a hydrologic flow line data from the National Hydrography Dataset (NHD) [37].
Flowlines representing ephemeral streams, storm water infrastructure, pipelines, canals, and aqueducts
were removed as well as the NHD dataset’s ‘artificial paths’ within lakes and waterbodies with an area
greater than 0.0005 km2. If there were sinks present within the DEM they were filled to remove local
depressions, and then slope, aspect, flow direction, flow accumulation and drainage area rasters were
created from the DEM as derivative inputs to V-BET. To maintain processing efficiency, we separated
the study area using hydrological unit codes (HUCs) at the HUC-6 level [38] and processed each HUC
independently within the V-BET toolbox in ArcMap v10.3 [34]. Resulting valley bottom extents, which
are output from the tool as polygon files, were qualitatively verified by trained interpreters and edited
manually in a geographic information system (GIS) to remove any superfluous channels or over/under
estimations of extent using the refinement and editing process detailed in reference [33]. Due to the
absence of field measurements, large size of the study area, and the lack of a standardized measure
of valley bottomness, an accuracy assessment of the resulting valley bottom extents was conducted
qualitatively using ancillary data sources [33], including high resolution (1 m2) National Agriculture
Imagery Program (NAIP) imagery, hill shade, and slope rasters in conjunction with ocular validation.

2.3. Mapping Riparian Vegetation

Our valley bottom analyses delineated the extent of the riparian corridor by land area, but a
secondary analysis was necessary to determine the extent and cover of riparian vegetation within
delineated valley bottoms. Due to the large spatial extent of the study area and the need to collect
historical training samples for classification models, digital image sampling was used to collect
environmental response data. Trained image interpreters used high resolution NAIP imagery for 2016
to ocularly interpret the presence and absence of riparian vegetation within the edited valley bottom
extents. NAIP imagery is collected either biannually or on a 3 year rotating cycle, with some states
in the Colorado River Basin collected in even years and others during odd years, so imagery was
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selected as close to the focal year of 2016 as possible (± 1 year). Where 4-band NAIP imagery was
available, interpreters also used false color band combinations that helped to highlight the presence
of vegetation.

We separated our digital image sampling into 12 distinct ecoregions using the Environmental
Protection Agency (EPA) Level III ecoregion product [39] to reduce vegetative and environmental
variability within the training data. Using a scripted Google Earth Engine image visualization and
data collection interface [34], riparian vegetation presence and absence training points were collected
in each ecoregion in a purposive fashion [40]. We used purposive sampling to integrate the expert
opinion of the interpreter in the selection and distribution of our sampling locations. This helps to
ensure sampled locations represented the full range of environmental and spectral variability present
on the landscape. Riparian vegetation presence points had to meet multiple criteria (Figure 2) to be
classified as riparian vegetation: (1) The location sampled had vegetation present and (2) the vegetation
at that location was either visually assessed to be influenced by the corresponding water feature [41,42],
or the vegetation was noticeably unique from that of the upland with regard to species composition,
structure, or vegetative vigor. Riparian vegetation absence points were defined as locations within
the valley bottom where riparian vegetation is not present (i.e., bare ground, rock, structures) or
locations where vegetation is present at the location in the valley bottom but was not characteristic of
riparian vegetation (e.g., agricultural areas or vegetation located in the valley bottom that could not be
differentiated from those observed in upland areas). Sampling points were placed in areas where the
classification type dominated the immediate area, with care taken so that points were not placed on
the edge of multiple classification types (i.e., points were placed in the middle of a riparian vegetation
clump instead of on the edge of a vegetation-bare soil gradient). We collected hundreds of training
samples in each ecoregion so that a range of vegetative densities would be represented (Appendix B).

Figure 2. An overview of the process used to delineate riparian vegetation. First, a decision tree process
was used by trained image interpreters to evaluate whether a sampled location should be classified
as “riparian vegetation presence” or “riparian vegetation absence”. These training points were then
used to build classification models of riparian vegetation presence and riparian vegetation absence,
and applied as a prediction across each ecoregion. In post-processing, vegetation classified as riparian
vegetation that was outside of the valley bottom was then excluded using the valley bottom extraction
tool (V-BET) GIS output.
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Interpreters intentionally placed points to represent the diversity of riparian and non-riparian
vegetation, including in areas where agriculture had multiple spectral signals/gradients. Training data
locations were spaced sufficiently to prevent double sampling of a pixel in Landsat imagery, which
has a spatial resolution of 30 × 30 m. In total, we collected 6672 presence samples and 7839 absence
samples across the Colorado River Basin. These samples are further summarized by each ecoregion in
Appendix B.

To create spectral predictors of riparian vegetation, we composited Landsat 8 Operational Land
Imager (OLI) imagery for 2016 using the median pixel values of all available cloud-free image
collections from a two month period in the growing season (1 July–31 August). Median pixel
value images from the growing season were selected to represent leaf-on riparian vegetation in
a pre-senescent state. Additional spectral indices were then created using these composited image
products including the tasseled cap transformation [43] specifically created for Landsat 8 OLI [44],
normalized difference vegetation index [45], Soil Adjusted Vegetation Index (SAVI) [46] and Modified
Normalized Difference Water Index (mNDWI) [47]. In total, we selected eight Landsat bands corrected
to top of atmosphere reflectance, four spectral indices, and two topographic surface rasters derived
from the DEM as potential predictor variables (Table 1). We extracted predictor variable values from all
rasters that corresponded with each of the recorded riparian presence/absence locations in preparation
for our classification analyses.

Table 1. The environmental predictors that were employed in each random forests classification model.
Predictors were subsequently pared down through variable selection.

Environmental Predictors Application

Landsat Spectral Reflectance and Thermal
Measurements *

Used to capture spectral variability available from
Landsat TM/OLI sensors

Normalized Difference Vegetation Index (NDVI) Indicator of live green vegetation

Soil Adjusted Vegetation Index (SAVI) An adjusted live vegetation index that accounts for
soil brightness

Modified Normalized Difference Water
Index (mNDWI)

An indicator of water presence that reduces the
influence of spectral mixing caused by vegetation

and urban environments

Tasseled Cap Transformation (Brightness,
Greenness, Wetness)

Linear combinations of original reflectance bands
that results in interpretable ecological

characteristics

Topography (Slope, Elevation) Used to capture potential topographic patterns of
riparian vegetation

* The following bands from Landsat 8 OLI/TIRS were applied: Red, green, blue, near infrared, shortwave infrared
and thermal bands. The panchromatic, cirrus, and coastal/aerosol bands were excluded from all random forests
classification models.

We fit a unique random forests classification model [48] for each of the twelve ecoregions using the
riparian vegetation training samples as the response and extracted predictor values. Random forests
is a decision tree based classification algorithm that is beneficial for use in remote sensing analyses,
as it is non-parametric, simple to evaluate and difficult to overfit [49]. A detailed description of the
operation and evaluation of random forests is presented in reference [48] and a detailed description of
the application of the algorithm for classification of landcover is offered in reference [50]. In an effort
to balance computational power and efficiency, each random forests model was built with 1000 trees,
with all other algorithmic tuning parameters left at the R Package Random forest’s default settings.
Riparian vegetation was modelled at the EPA ecoregion level [39]. While there remains environmental
heterogeneity within EPA ecoregions, this delineation was carried out to ensure models performed
suitably across all riparian environments in the Colorado River Basin, which may have substantially
varied spectral signatures from region to region.
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We selected final combinations of model predictors using rfUtilities [51], a model selection
package available in Program R v3.3 [52] that was created specifically for random forests. rfUtilities’
“rf.modelSel” function implements a model selection approach created in reference [53], which
identifies the most parsimonious model by selecting the smallest combination of predictors with
the highest pseudo-R2 and lowest mean squared error [53,54]. A covariate correlation plot was
generated to remove correlated predictors and rfUtilities was used to generate variable importance.
These two procedures were used together to determine the final set of predictors. We removed
variables with less than 5% importance in the initial model selection. In the remaining set of covariates,
if two variables were correlated above 0.8, only the variable with greater relative importance was kept.
Removing correlated predictor variables enables clearer interpretation of variable importance values
and can improve model performance [55]. We subsequently evaluated each model individually using
out-of-bag metrics [48] and a 10-fold cross validation approach [56] to calculate error rates and kappa
values. We additionally reported the percent contribution of each predictor in each final model and
out of bag and cross-validated error, confusion matrices, class errors, as well as user’s and producer’s
accuracies for each individual model (Appendix C). Given the size of our study area, on-the-ground
field validation of our results was not possible, but we believe these standardly employed model
evaluation approaches offer an accurate representation of model performance. Our final models were
applied using our predictive raster surfaces to generate spatial predictions of the presence and absence
of riparian vegetation across the Colorado River Basin, which was clipped to the V-BET extent.

3. Results

3.1. Valley Bottom/Maximum Riparian Corridor Extent Delineation

Our final valley bottom extent results produced using V-BET are available as polygons (Figure 3).
The final results from the V-BET algorithm serve as our definition of the riparian corridor, but are not
limited to this application and are distributed independently of our riparian vegetation layer for use in
related analyses.

Figure 3. Example subsets of valley bottom extent results across three different environments. Green
lines represent the external boundaries of the valley bottom, which we define as the riparian corridor.
Vegetation outside of valley bottoms is considered to be outside of the riparian corridor. Within the
valley bottom, riparian vegetation was separated from non-riparian vegetation such as agriculture
(example in middle image) using riparian vegetation classification.

Substantial visual validation and manual editing was carried out by trained interpreters to correct
any VBET extent errors that were observed in the results. Manual editing and validation was extensive,
and took multiple interpreters a total of 320 h to complete. The majority of the errors occurred within
two main environments: (1) Flatter floodplain areas and (2) high-elevation or high relief headwater
regions. The flatter floodplain errors were most evident in the southern portion of the study area,
primarily the Sonoran Basin and Mojave Basin. In contrast, the model errors which were observed in
northern ecoregions, such as the southern Rockies, primarily occurred in locations displaying steep
slopes. Valley bottom delineation errors likely occurred as a result of the 10 m2 digital elevation model
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used to delineate valley bottoms. While a 10 m2 digital elevation model is considered to be high
resolution in many research settings, limitations remain in areas with steep slopes or narrow channels
where an even higher spatial resolution DEM would be required to improve delineation accuracy.
Depending on the width of the valley bottom and slope of surrounding features, valley bottoms could
be both over or underestimated. Our errors are consistent with the observations seen in reference [33],
which describes the reasoning for errors in V-BET outputs and provides detailed examples.

3.2. Riparian Vegetation

Each of the vegetation classification models were evaluated independently, separated by EPA
Level III ecoregion. Overall, models performed reasonably well in the classification of riparian
vegetation, with models in some ecoregions outperforming other ecoregions. Each final model was
built using a slightly different combination of environmental predictors, which was expected based on
the high degree of environmental heterogeneity between EPA ecoregions (Figure 4). Near-infrared
reflectance and thermal values (band 5 and band 11 of Landsat 8), and indices including NDVI, SAVI,
mNDWI, tasseled cap brightness and wetness, and topography (slope and elevation) were retained
most often in our final models across ecoregions.

Figure 4. Final predictors included in each random forests classification model. Each row represents
a separate model for the specified ecoregion. The numbers in each row are the relative percent
contribution of each predictor in each individual model. White boxes with numbers represent the
lowest relative contribution, light blue a medium relative contribution, and darker blue a high relative
contribution. White boxes with no numbers correspond to predictors that were not retained in the final
models, and therefore did not contribute to the final model. From Landsat 8; B2: Blue band; B3: Green
band; B4: Red band; B5: Near infrared band; B6: Shortwave infrared 1 band; B7: Shortwave infrared
2 band; B10: Thermal infrared 1 band; B11: Thermal infrared 2 band; NDVI: Normalized Difference
Vegetation Index; SAVI: Soil Adjusted Vegetation Index; mNDWI: Modified Normalized Difference
Water Index; TCAP B, G, W: Tasseled cap brightness, greenness, and wetness.

The random forests classification models had a median out of bag (OOB) error of 10.2% (range
4.2–28.8%), median Kappa of 0.80 (range 0.42–0.90) and class errors ranging from 5–30% (median
10%) (Figure 5). Appendix C shows out of bag and cross-validated error, confusion matrices, class
errors, as well as user’s and producer’s accuracies for each individual model. Representative examples
of riparian vegetation model predictions across four major ecotones are provided in Figure 6. Most
models performed well. However, models located primarily in coniferous forest environments (e.g.,
Wasatch Uinta ecoregions) performed poorly in comparison to those carried out in arid riparian
systems (e.g., Sonoran Basin; Figure 5).
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Figure 5. Radar charts displaying cross-validated error rates (A) (0–100%) and Kappa (B) (0–1) for each
of the final random forests classification models. Model performance is best when error rates (A) are
closer to the center and when kappa values (B) are closer to the perimeter of the chart.

Figure 6. Representative examples of our final results in four different ecoregions. (A) Displays the
differentiation of agriculture from riparian vegetation and the delineation of the riparian corridor;
(B) displays delineation of riparian vegetation in narrow, sinuous canyon environments, which can be
challenging using remotely sensed datasets; (C) displays an underprediction of riparian vegetation that
is characteristic of results seen in moist coniferous forest environments; (D) displays the delineation
of riparian vegetation in arid environments, where models performed extremely well in delineating
riparian vegetation from non-riparian vegetation and landscape characteristics.

3.3. Dataset Availability

Our final valley bottom extent polygons and riparian vegetation maps analysis are available freely
online through the Dryad Digital Repository at https://doi.org/10.5061/dryad.3g55sv8. The riparian
vegetation dataset is distributed in a raster format, with a value of “0” corresponding to riparian
vegetation absence and a value of “100” corresponding to riparian vegetation presence for a particular
pixel (Figure 6). Valley bottom extents, which we have defined as a proxy for the spatial extent of the
riparian corridor, are distributed as polygons in shapefile format. Data files can be obtained for the
entire Colorado River Basin or for each individual ecoregion based upon the user’s preference.

https://doi.org/10.5061/dryad.3g55sv8
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4. Discussion

We created CO-RIP, a basin-wide riparian corridor extent and riparian vegetation distribution
dataset that has broad applications in riparian area management, wildlife surveys and conservation,
invasive species management and ecohydrological research. The spatial distribution and resolution of
this dataset will allow for researchers to conduct landscape scale analyses that would not have been
possible for the Colorado River Basin in the past. Our methods integrating topographic delineation of
valley bottoms combined with vegetation classification modelling allowed for a consistent definition
of riparian corridors and vegetation across an extremely ecologically diverse study area. This process
also emphasized the challenges associated with creating a dataset of this scale in a setting where no
conclusive definition of “riparian corridors” or “riparian vegetation” exists.

The dataset produced through these analyses was created to match our definition of “riparian
corridors” and “riparian vegetation”, and as such, should not be construed to fully represent any of
the definitions of riparian corridors put forth in past research or in governmental reports. Instead,
we integrated specific concepts from past research and governmental guidance to craft a definition
(Figure 2) and corresponding dataset that was possible to accurately produce using only guided image
interpretation, and topographic, GIS, and remote sensing based analyses. While our definition fit well
within a remote sensing based modelling framework, modelling riparian vegetation within specific
habitats presented some challenges.

We found our definition and associated analyses fit and performed well in arid regions of
the Colorado River Basin where riparian vegetation was spectrally discernable from non-riparian
vegetation. In these areas, the availability of water provided by riparian corridors creates a strikingly
different composition of plant species and vibrancy of vegetation that is clearly interpretable and
discernable using high resolution imagery to conduct sampling, coupled with Landsat spectral
information (Figure 6). However, in high elevation areas with dense coniferous vegetation, particularly
in the Wasatch Uinta Mountains and Southern Rockies ecoregions, the consistent presence of moist
coniferous forests made it difficult to interpret differences between riparian and upland vegetation,
as the vegetative gradient was largely consistent from the upland to the water feature’s bank. While
we only sampled riparian vegetation presence locations where vegetation was clearly unique from
the upland, models in these areas are likely underestimating riparian vegetation within the valley
bottom (Figure 6). This confusion also resulted in poorer model statistics in these ecoregions. Users
must employ caution, especially in these ecoregions, by ensuring that their particular application of
this dataset fits the definition set forth by the authors (Figure 2), which requires riparian vegetation to
be different in either observed species composition or vegetative vigor from that of the upland to be
classified as such. A definition that is more inclusive in the classification of coniferous vegetation as
riparian vegetation, even if it is not easily distinguishable from that of upland vegetation, may be more
appropriate in these particular areas, but was outside the scope of this research. We also conducted
image based sampling for riparian vegetation throughout many canyons (Figure 6). Issues presented
by shadows, pixel size, canyon depth, and occlusion complicate vegetation mapping with remotely
sensed imagery. While these limitations are certainly important considerations in the application of
our dataset in subsequent analyses, these issues manifest in a relatively small portion of the study area
overall, and we are confident the dataset is broadly applicable to a wide variety of research.

This dataset can support novel research on the potential effects of riparian habitat fragmentation,
and inform future land-use and riparian network connectivity planning in the basin [57]. The
riparian vegetation map could be immediately applied to prioritize potential areas for restoration
and conservation activities in the Colorado River Basin [58]. For example, in the western US, there
are more than 70 avian species considered to be riparian habitat obligate or dependent [59,60]. While
many studies describe the importance and use of riparian habitat by such species, few have quantified
habitat use or population densities at landscape scales [20,61,62] in part because of a previous lack of a
spatially explicit riparian dataset. Thus, there are many potential applications of the dataset, and these
ideas represent only a subset of the research made possible through the CO-RIP.
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Recent advancements in access to remote sensing data and the computational power provided
by cloud computing enabled this project to be successfully carried out in a relatively short period of
time (~1 yr). The ability to access, process, and mosaic high resolution imagery for interpretation, as
well as to process, mosaic, and composite Landsat images across a growing season in seconds would
have been impossible for a standard user just years ago. We suggest that users interested in utilizing
these types of geo-information across large spatial extents or implementing our riparian vegetation
modelling framework to highly consider the use of cloud computing platforms [34] to expedite data
processing, modelling, and image interpretation.

The Valley Bottom Extraction Tool [33] was a valuable and approachable tool for delineating
valley bottoms across vast river networks. It was time-efficient and, in a qualitative sense, an accurate
representation of valley bottoms and riparian corridors, especially considering the extensive region of
interest. The flexibility of visually validating and manual editing of valley bottom results allows for an
enhanced product that characterizes the diverse nature of valley bottoms. We do, however, recommend
manual editing be conducted by scientists with an expert understanding of hydrological and ecological
characteristics of the study region; erroneous manual editing could significantly degrade the V-BET
algorithm results.

While the use of EPA ecoregions to subset a study area for modelling is a standard practice [63,64],
we believe parsing the study site by ecoregion likely improved model performance, as these boundaries
helped create a more spectrally consistent definition of riparian vegetation within specific regions
of our expansive study region. While these ecoregion boundaries are not perfect delineations of
separate habitat types, in broad scale analyses like those employed in this study, they can serve as
a useful tool to collect largely spectrally consistent training samples. While we used composited
Landsat imagery to ensure the availability of cloud free imagery in our study area, with additional
time and resources a multi-temporal approach could be employed to refine these models. Including
imagery that represented spring, summer, and fall seasons in each of these models (a “multi-temporal
modelling framework”) [65,66] could help capture vegetation with short leaf on periods and improve
classification discrimination between riparian vegetation and irrigated agriculture.

Finally, we took care to collect a sufficient number of training samples in each ecoregion to
effectively capture the full range of cover that could be present within the boundaries of a Landsat
pixel. However, this method could likely be improved by estimating the area of a pixel vegetated
by riparian vegetation, instead of simply the presence and absence of vegetation, and then working
in a regression based modelling framework instead of a presence/absence classification. This could
likely improve area estimates and would make samples more representative of what is present within
the boundaries of a specific pixel. While this could complicate sampling and modelling, and require
additional time and resources, we believe it should be considered in future digital sampling designs
created for mapping of riparian vegetation.

5. Conclusions

The research and analyses conducted to produce the “CO-RIP” datasets provides a valuable
contribution to methodology to delineate riparian area and corridor extent networks at the landscape
scale, and could be further applied in new areas or across larger spatial extents. Satellite image
acquisition, image interpretation and modelling using newly available interfaces, advancements and
availability of higher resolution topographic models, and the availability of peer-reviewed, open source
valley bottom network models allow for regional scale analyses that would have been prohibitively
time consuming and costly just years ago. The “riparian corridor” and “riparian vegetation” definitions
adopted in this study provide a standardized, remote sensing and GIS-friendly framework for mapping
of riparian areas in the future. Still, moist coniferous forest environments represent a challenging
ecotype to separate riparian vegetation from upland vegetation because of the spectral consistency
across these ecotones. Further research is warranted on the differentiation of upland coniferous
vegetation from that present in the riparian corridor, and may require on the ground sampling to
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improve future landscape-scale models. Finally, this research resulted in a novel dataset for the
Colorado River Basin, titled “CO-RIP” that provides ecologists, conservationists, and land managers
with the highest spatial resolution delineation of riparian areas and valley bottom networks available
for the ecologically diverse and topographically complex basin environment.
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Appendix A

Description of the twelve Level III ecoregions within the extent of the study area (Modified
from [30])
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Appendix B

Number of riparian vegetation presence and absence points collected within each ecoregion.
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Appendix C

Detailed evaluation statistics from all riparian vegetation model runs.
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