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Abstract: Cellular automata (CA) is a spatially explicit modeling tool that has been shown to be
effective in simulating urban growth dynamics and in projecting future scenarios across scales. At
the core of urban CA models are transition rules that define land transformation from non-urban
to urban. Our objective is to compare the urban growth simulation and prediction abilities of
different metaheuristics included in the R package optimx. We applied five metaheuristics in optimx
to near-optimally parameterize CA transition rules and construct CA models for urban simulation.
One advantage of metaheuristics is their ability to optimize complexly constrained computational
problems, yielding objective parameterization with strong predictive power. From these five
models, we selected conjugate gradient-based CA (CG-CA) and spectral projected gradient-based
CA (SPG-CA) to simulate the 2005–2015 urban growth and to project future scenarios to 2035 with
four strategies for Su-Xi-Chang Agglomeration in China. The two CA models produced about
86% overall accuracy with standard Kappa coefficient above 69%, indicating their good ability to
capture urban growth dynamics. Four alternative scenarios out to the year 2035 were constructed
considering the overall effect of all candidate influencing factors and the enhanced effects of county
centers, road networks and population density. These scenarios can provide insight into future
urban patterns resulting from today’s urban planning and infrastructure, and can inform future
development strategies for sustainable cities. Our proposed metaheuristic CA models are also
applicable in modeling land-use and urban growth in other rapidly developing areas.

Keywords: urban growth simulation; multi-scenario projection; land transition rule; conjugate
gradients (CG); spectral projected gradient (SPG); Su-Xi-Chang

1. Introduction

Spatial explicit modeling (SEM) has been effective and increasingly applied in studies of land-use
change [1,2], particularly in rapidly urbanizing areas like China’s coastal zones. Among the SEM
methods, cellular automata (CA) has become the most widely used approach to first reproduce
past landscape and urban patterns and then predict future scenarios under specific development
strategies [3–6]. CA models have provided a basis for rational urban spatial expansion that could
reduce conflicts between land exploitation and conservation [7]. A gridded CA model divides space
into equally-sized and uniformly-distributed cells [8], and then defines non-urban to urban cell
conversion rules [9]. The transformation potential of each cell is usually reflected by the probability
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calculated based on urban growth drivers [10,11]. The transition rules can be parameterized using
approaches that range from conventional statistical techniques to state-of-the-art artificial intelligence
algorithms [12]. While many specific methods have been integrated with CA modeling, it is necessary
to compare models with a unified framework.

Attempts over the past two decades to build and optimize CA transition rules have led to
smaller departures between simulation results and reference patterns and more defensible future
scenarios [3,4,13,14]. Among the techniques that have been tested, logistic regression (LR) is the
most widely acknowledged and applied statistical method used to capture CA transition rules [3].
More recently, artificial intelligence and machine learning methods have increasingly been applied in
creating new CA models [4].

Metaheuristics are partial-search artificial intelligence algorithms that are capable of minimizing
residuals when defining near-optimal CA parameters [15,16], ultimately achieving more accurate
simulations. For CA model calibration, metaheuristics are superior because they incorporate complex
real-world constraints in the optimization procedure through mathematically expressed equalities
and/or inequalities [17], allowing metaheuristics to search for alternative CA parameters in future
scenario prediction.

Many (intelligent) metaheuristics have recently been used to calibrate hybrid CA models of
land-use change and urban growth [18], e.g., genetic algorithm (GA), particle swarm optimization
(PSO), simulated annealing (SA), generalized pattern search (GPS), ant colony optimization (ACO),
bat movement algorithm (BA), differential evolution (DE), artificial bee colony (ABC), and Cuckoo
search (CS) [19–23]. These algorithms originated in simulating natural phenomena corresponding
to complex optimization [20,24,25]. They guide the optimization using a fitness function, which is
typically built on the deviations (residuals) between the actual classifications and the simulation
results [17]. Each metaheuristic has a different internal scheme to guide optimization [26], and most
metaheuristics do not require differentiation of the fitness function. For urban CA modeling, the
fitness function that evaluates the residuals and/or the fitness of the transition rules is discrete and
non-derivable [20,23]. Therefore, the derivative-free metaheuristics are ideal for building the CA
transition rules.

CA transition rules have commonly been presented in three forms: (1) “if-then” and/or “what-if”
rules that denote cell state transformation from non-urban to urban if one of the transition rules is
met [23,27,28], (2) factor-weighted transition rules that calculate the probability of each non-urban
cell transforming to an urban cell [17,20], and (3) black-box transition rules that do not clearly show
the cell transformation procedure [24,29]. Artificial neural networks (ANNs) generate transition
rules using black-box methods; metaheuristics such as ACO and CS create the transition rules
through “if-then”/“what-if” rules; SA, GPS, PSO, GA, DE, BA, and ABC express transition rules
with mathematical formulae similar to those derived from LR. GA can define the transition rules using
both transition rule styles [20,30].

Previous work has demonstrated that these metaheuristics can be effective in exploring
optimized CA parameters that adequately address land-use and urban growth dynamics [19–21,25,29].
Metaheuristic codes and scripts are widely available in C++, Matlab, Python and R, facilitating their
application in urban CA modeling. Some open-source R packages contain different versions of most
metaheuristics that are readily applicable to the retrieval of CA transition rules. Among these R
packages, optimx unifies and streamlines optimization in solving many functions [31,32]. Compared
to other packages, optimx consolidates existing metaheuristics to facilitate the comparative study of
urban CA modeling.

Our objective is to compare the urban growth simulation and prediction abilities of different
metaheuristics included in the R packages optimx. We selected five optimx metaheuristics to build
CA models that simulate the urban growth during 2005–2015 in the Su-Xi-Chang (Suzhou, Wuxi and
Changzhou) Agglomeration of China, and to predict alternative scenarios under different inequalities
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representing various urban development strategies. This research could enrich the urban CA modeling
techniques by applying new heuristic algorithms, and improve our understanding of urban dynamics.

2. Methods

2.1. A Prototype CA Model and the Fitness Function

Urban CA models focus on urban expansion simulation that can be realized by land transition
rules. In these models, the probability of non-urban to urban cell transformation is usually defined
by an overall probability [4,33] that considers the combined effects of the current state, neighborhood
influence, external constraints, and transition probability governed by selected urban growth drivers.
The overall probability is compared to a pre-defined threshold to determine if a non-urban cell can
transform its state. The decision rule is [17,33]:

Statei,t+1 =

{
Urban, P(Statei,t, NHi, Con, Psvi) ≥ Pthd

Nonurban, P(Statei,t, NHi, Con, Psvi) < Pthd
(1)

where

� Statei,t and Statei,t+1 indicate the cell’s state i at time steps t and t + 1, respectively. Three states
(Urban, Non-urban and Water) are allowed;

� P(Statei,t, NHi, Con, Psvi) is the predicted overall land transition probability, taking into account
all effects;

� Pthd is a pre-defined threshold determining if the cell i can transform its state or not;
� NHi denotes the effect of neighboring cells on the central cell in processing;
� Con denotes the spatially and non-spatially constrained conditions to cell conversion, e.g.,

protected land and broad water bodies [10]; and
� Psvi(a) denotes the predicted land transition probability through analyzing the relationships

between urban growth and its driving factors.

The latter probability can be calculated [5,33] by:

Psvi(a) = 1/
(

1 + e−(a0+∑k
i=1 aiVi)

)
(2)

where (V1, . . . , Vk) are driving factors and a = (a0, . . . , ak) are a constant and the estimated weights of
the driving factors.

This research estimated the weights using the optimx metaheuristics to calibrate CA models.
The metaheuristics were processed based on a fitness function representing the residuals in fitting the
relationships between urban growth and its drivers. The fitness function can be given by [17,34]:

Minimize Func(a) = SquareRoot
(

Sum
∑
i
(Psvi − Poi)

2/Sum
)

st1 : Box constraints: : Laj � aj � Uaj , j = 0, . . . , k
st2 : Equalities and inequalities f or f actor weights

(3)

where Func(a) denotes the fitness function, Psvi denotes the predicted land transition probability for
cell i, Sum denotes the number of samples, and Laj and Uaj are the lower and upper bounds for the CA
parameters, respectively. Metaheuristics automatically search for the near-optimal CA parameters for
model calibration while resolving the fitness function. These parameters were used in (1) to define the
decision rules.
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2.2. Metaheuristics in the R Package Optimx

The R-Gui package optimx is a general-purpose optimization wrapper that unifies
thirteen metaheuristic optimization algorithms to resolve constrained fitness functions [31].
These metaheuristics are derived from other packages such as “optim”, “ucminf”, “BB” and “Rcgmin”.
They are different from those included in packages such as PSO, GA, SA, ACO, and ABC. Compared
to these packages, optimx is an effective tool to discover (dis)advantages of metaheuristics [31].
We selected five metaheuristics to calibrate CA models for simulating urban growth dynamics after
a pre-test. These five algorithms include Nelder-Mead, Broyden-Fletcher-Goldfarb-Shanno (BFGS),
Nonlinear Minimization in Box Constraints (NLMINB), conjugate gradients (CG) and spectral projected
gradient (SPG), and all have been widely applied in urban growth modeling, deforestation simulation,
and image processing [35–39], showing their strong abilities to optimize spatial problems.

• Nelder-Mead, also known as downhill simplex, is a practical, derivative-free global search
approach to find the optimum of pre-defined fitness functions [40]. The metaheuristic relies
heavily on difference vectors between potential solutions with the positional bias inherent in
the simplex, which expands and shrinks to adapt to the present fitness value [40]. Nelder-Mead
determines the direction between the best and worst points to find nonstationary optimal points
that satisfy the convergence conditions. This optimizer is suitable to resolve non-differential
fitness functions that project the CA transition rules into the algorithms.

• BFGS is a quasi-Newton method for solving unconstrained nonlinear optimization problems [41]
such as the minimization of RMSE in CA transition rules. In contrast to the Nelder-Mead’s
downhill strategy, BFGS applies hill-climbing optimization technique to search for a stationary
point in the fitness function. One merit of BFGS is that it has self-correcting ability and superlinear
convergence in optimization problems [42]. BFGS does guarantee the convergence for twice
continuously differentiable functions [43], but it yields good performance for non-smooth
optimization of fitness functions.

• NLMINB is a box-constrained Newton method that uses port routines, similar to an adaptive
nonlinear least-squares algorithm [44], to solve the problems of minimizing nonlinear
functions [45]. The metaheuristic evaluates the gradient of the fitness function to return a possible
solution vector as the starting point. The NLMINB optimizer included in R has been demonstrated
as suitable to resolve the fitness function in CA transition rules [46].

• CG is an iterative gradient algorithm that solves optimization problems and partial differential
optimization equations with a symmetric, positive-definite matrix [47]. It directly searches for an
exact solution with specific iterations smaller than the matrix size. CG does not require matrix
storage and therefore converges quickly [48]. We applied this metaheuristic to search the CA
parameters by minimizing the RMSE of the transition rules.

• SPG is an efficient gradient method for solving constrained problems using gradient vectors as a
search direction in large-scale optimization. This metaheuristic selects a step length related to the
spectrum of the underlying local Hessian in the fitness function [49]. By projecting an arbitrary
vector onto the feasible solution set, SPG efficiently optimizes the fitness function. Using gradient
vectors is usually more effective as a search direction for large-scale optimization. Modelers need
not understand complex linear codes and extra linear algebra when using the SPG algorithm [49].

2.3. Model Assessment Methods

Model assessment (validation) is crucial to urban growth modeling because it reports how well the
proposed CA models perform and how well the simulations match the actual urban patterns. The land
transition probability maps are commonly assessed using fitting statistics, the relative operating
characteristic, and the total operating characteristic [50,51]. The simulation results are usually assessed
based on a confusion matrix that is derived from cell-by-cell comparison between observed and
simulated urban patterns. We applied six indices: overall accuracy and standard Kappa derived from
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the confusion matrix, correct rejection, hit, miss, and false alarm calculated from an overlaying map
of reference and simulated urban growth patterns [52,53]. Overall accuracy represents the match
between the reference and simulated maps in proportion to the total cells [54], indicating the overall
performance of the CA models in this research. Kappa is a statistic that measures the inter-rater
agreement between the reference and simulated maps, with attention given to the possibility of chance
agreement [55]. Correct rejection represents the areas that are persistent non-urban cells in both the
reference and simulated maps; hit represents the areas that are urban growth cells in both the reference
and simulated maps; miss represents the areas that are urban growth cells in the reference map but
persistent non-urban cells in the simulated map; and false alarm represents areas that are persistently
non-urban in the reference map but urban growth cells in the simulated map. The sum of miss and
false alarm is the total error of the simulation.

We evaluated the spatial structure of alternative scenarios using fifteen landscape metrics related
to the area and edge, shape, and aggregation categories [56]. The area and edge metrics represent
fundamental properties of urban patches. The specific metrics we selected were percentage of
landscape (PLAND), largest patch index (LPI) and total edge (TE). Shape metrics denote the shape and
size of the urban patches that reflect the spatial conformity of the future scenarios [57]. We selected the
perimeter-area fractal dimension (PAFRAC) from the shape category. Aggregation metrics indicate
whether the observed spatial distribution of urban scenarios are clumped or dispersed, showing
the level of aggregation and subdivision of urban patches. In the aggregation category, we selected
number of patches (NP), patch density (PD), landscape shape index (LSI), clumpiness index (CLUMPY),
percentage of like adjacencies (PLADJ), patch cohesion index (COHESION), interspersion and
juxtaposition index (IJI), aggregation index (AI), landscape division index (DIVISION), effective mesh
size (MESH), and splitting index (SPLIT).

3. Model Application

3.1. Study Area and Datasets

3.1.1. Study Area

The Su-Xi-Chang Agglomeration is a highly urbanized area in southern Jiangsu Province
(Figure 1a,b). It consists of three prefecture-level cities (Figure 1c): Suzhou (Su), Wuxi (Xi) and
Changzhou (Chang). As the major part of the Taihu Lake Basin, Su-Xi-Chang is a flat area lying below
50 m [58]. The area has a subtropical monsoon climate with warm-humid summer and cold-dry winter.
The average annual temperature is about 14–18 ◦C and the average annual precipitation is about
1000–1400 mm [59]. Su-Xi-Chang is an economically developed area as a consequence of its superior
location, convenient transport infrastructure and huge foreign investment. Among all megacities in
China, Suzhou, Wuxi and Changzhou ranked the 7th, 13th and 28th in 2015 by GDP. Rapid economic
growth and urban development here has been called South-Jiangsu Mode since the 1980s. This growth
was accompanied by an urban population explosion and dramatic land-use change in Su-Xi-Chang.
Rapid urban growth is a characteristic of China, and Su-Xi-Chang is a representative region that has
drawn attention from modelers, planners and decision makers. We chose Su-Xi-Chang as our study
area to test the usability, effectiveness and performance of our new CA models.

3.1.2. Factors and Data Sources

Our proposed CA models were calibrated using 2005–2015 urban growth as the dependent
variable (Figure 2) and six independent variables (Figure 3). The six independent variables are
Distance to city centers (CITY), Distance to county centers (COUNTY), Distances to arterial roads
(ROAD), Distances to railway (RAIL), Digital elevation model (DEM), and Population density (POP)
(Figure 3), that reflect biophysical and demographic impacts on urban growth. We applied the
maximum likelihood classifier in ENVI 5.2 to produce the urban patterns in 2005 and 2015 (Figure 2),
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using the Landsat images acquired on 7 March 2005 and 13 August 2015, respectively. The overall
accuracies of classification were 97.1% for 2005 and 95.9% for 2015, based on comparison between
the classified land-use and the identified land-use in the pre-defined regions of interest. Each urban
pattern map incorporates three land classes: urban, non-urban, and excluded (broad water bodies
and wetlands). The 2005 urban pattern is the start map for modeling while the 2015 urban pattern is
the base (reference) for the 2015 simulation. A spatial overlay of these two urban pattern maps was
then performed to generate the urban growth map. As inferred by Figure 2, the urban built-up areas
increased from 2030 km2 in 1995 to 4779 km2 in 2015, with an annual growth rate of 1.1%.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  6 of 19 
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It should be noted that multicollinearity among factors substantially affects the transition rules
and the subsequent urban modeling [60]. We selected the six factors not only because they are the
determinants of urban growth in Su-Xi-Chang, but also because they include only the minimum
multicollinearity among all candidate factors. Using the ArcGIS 10.1 Euclidean Distance tool, we
extracted CITY and COUNTY from the administrative boundary map, and ROAD and RAIL were
extracted from the road/rail networks map. Both maps were provided by the National Earth System
Science Data Sharing Infrastructure [61], where the road/rail networks map was modified using
Google Earth to make it more accurate. These four factors have been shown to be influential and
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widely applied in urban CA modeling because they reflect the influence of administration and urban
facilities [27]. For example, newly built-up areas predominantly occur in urban fringes and along
main roads. DEM evaluates land development suitability and was derived from the Geospatial
Data Cloud [62]. POP reflects population density and was provided by WorldPop [63], suggesting
drivers on urban growth due to the demands of human living space. The spatial resolution of CITY,
COUNTY, ROAD, RAIL and DEM was 30 m. POP, with an original resolution of 90 m, was resampled
to 30 m using the ArcGIS Bilinear Resampling tool, while keeping the total population as necessary.
The bilinear method generated a smooth POP map matching the resolution of other factors. All factors
were normalized in the range of [0, 1] to reduce the negative impact of dimensions on retrieval of land
transition probability. All maps contain 4724 rows and 6940 columns.
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Figure 3. Driving factors for metaheuristic CA models. (a) Distance to city centers (CITY), (b) Distance
to county centers (COUNTY), (c) Distances to arterial roads (ROAD), (d) Distances to railway (RAIL),
(e) Digital elevation model (DEM) data, and (f) Population density (POP).

3.2. Results

3.2.1. Land Transition Probability Map

Table 1 shows the lower and upper bounds for CA parameters, and the CA parameters retrieved
using the five metaheuristics. The CA parameters were the same for Nelder-Mead, BFGS and CG, and
are slightly different from those retrieved using NLMINB and SPG. POP is positively correlated with
urban growth such that negative POP indicates an impediment to urban growth, possibly because
existing built-up areas are densely populated while areas experiencing urban growth are relatively
sparsely populated. Except for POP, a greater absolute value of a negative parameter indicates a
stronger influence on urban growth, while a greater absolute value of a positive parameter indicates a
weaker impact.
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Table 1. Upper and lower box constraints and CA parameters for each metaheuristic. Abbreviations:
Nonlinear Minimization in Box Constraints (NLMINB); Broyden-Fletcher-Goldfarb-Shanno (BFGS);
conjugate gradients (CG); spectral projected gradient (SPG).

Variable
Bound Parameter

Lower Upper Nelder-Mead BFGS NLMINB CG SPG

Constant (a0) 0.0 2.5 2.3501 2.3501 2.3571 2.3501 1.2259
CITY (a1) −1.5 0.0 −1.2328 −1.2328 −1.235 −1.2328 −1.1847

COUNTY (a2) −2.5 0.0 −2.3400 −2.3400 −2.3378 −2.3400 −2.3602
ROAD (a6) −5.5 0.0 −5.0887 −5.0887 −5.1342 −5.0887 −5.2511
RAIL (a5) 0.0 1.0 0.4987 0.4987 0.5005 0.4987 0.4815
DEM (a3) −25.0 0.0 −24.4068 −24.4068 −24.4449 −24.4068 −14.9771
POP (a4) −2.5 0.0 −2.0799 −2.0799 −2.0898 −2.0799 −2.1664

These five metaheuristics generated three transition probability maps with similar spatial patterns
(Figure 4). Among them, Nelder-Mead and BFGS share the same transition probability map with
CG (Figure 4a), because they have the same CA parameters (Table 1). Visual inspection suggests no
difference in the probability maps among NLMINB, CG and SPG (Figure 4b,c). However, CG and
NLMINB are different—CG yields smaller probability along roads but higher probability in other
areas (Figure 4d). The differences between CG and NLMINB are small (−0.0025, 0.0049), suggesting
that the two metaheuristics yield quite similar results. In contrast, the difference between CG and SPG
and between NLMINB and SPG average about −0.0755, and have a much wider range from −0.28 to
0.24. This suggests that SPG has a higher average value than CG and NLMINB (Figure 4e,f), where the
latter are alike.
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Figure 4. Land transition probability maps and their differences. (a) Land transition probability
from Nelder-Mead, BFGS and CG, (b) Land transition probability from NLMINB, (c) Land transition
probability from SPG, (d) Probability differences (a minus b), (e) Probability differences (a minus c),
and (f) Probability differences (b minus c).

For scenario prediction, we selected CG from the Nelder-Mead, BFGS and CG metaheuristics
that generated similar land transition probability maps. We also selected SPG, which generated a
quite different transition probability map. It has been acknowledged that in urban growth modeling a
shorter period in calibration can well support a much longer period (e.g., 50 years) of prediction [64,65].
We therefore used the ten-year calibrated CA models to predict four alternative urban scenarios of the
next 20 years out to 2035, examining the responses of future scenarios to the pre-defined conditions.
These scenarios were (1) a business as usual (BAU) scenario that uses the CA parameters in calibrating
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CG and SPG (Table 1), (2) a COUNTY-dominated scenario that emphasizes the effects of the county
centers (Table 2), (3) a ROAD-dominated scenario that underlines the impacts of the road networks
(Table 2), and (4) a POP-dominated scenario that focuses on the influences of population density
(Table 2).

Table 2. Upper and lower box constraints and CA parameters for each metaheuristic.

Variable
CG SPG

COUNTY-Scenario ROAD-Scenario POP-Scenario COUNTY-Scenario ROAD-Scenario POP-Scenario

Constant (a0) −0.1281 −0.6451 0.1698 −0.6384 0.6875 −0.2087
CITY (a1) −0.4885 −1.1616 −0.9569 −0.4898 −1.4611 −0.9365

COUNTY (a2) −11.3422 −1.9124 −4.6545 −3.8768 −2.3049 −3.8563

ROAD (a6) −0.1621 −8.6481 −0.6391 −0.5234 −20.1010 −0.5387
RAIL (a5) 1.2114 0.6510 −1.1729 0.0175 0.7939 −0.4839
DEM (a3) −0.4486 0.1688 −1.0863 −1.2922 −6.7003 −1.6566
POP (a4) 0.5701 0.9831 −18.5703 −0.1517 −3.0661 −4.9698

Except for the BAU-scenario, all CA parameters of the other three alternative scenarios were
retrained using CG and SPG to satisfy prediction requirements. Specifically, the retaining was realized
by applying “st2” equalities in Equation (3), where each equality requires that the absolute weight of
the dominated factor is larger than those of the other factors. The equalities were defined based on the
fact that in the CA transition rules a larger absolute parameter indicates a stronger impact on urban
growth. Table 2 shows that the factor emphasized in each scenario yields the most significant impact on
urban growth, where there are distinct differences in CA parameters between the two metaheuristics.
For the COUNTY-scenario, the COUNTY parameter acquired by CG yields a much higher absolute
value (11.3422) compared to that derived by SPG (3.8768), showing the stronger effect of COUNTY in
the former metaheuristic. In the ROAD-scenario, the ROAD parameter calculated in CG has a much
smaller absolute value (8.6481) as compared with that calculated by SPG (20.101), suggesting weaker
impact of ROAD in the former metaheuristic. The absolute POP parameter in the POP-scenario is
larger (18.5703) for CG but smaller (4.9698) for SPG, implying higher influence of POP in the former
metaheuristic. Because we used the same samples and spatial constraints for model training, it is clear
that the differences in factor impact were related to algorithms rather than data.

Using these CA parameters, we produced transition probability maps (Figure 5) for scenario
prediction. The maps show differing spatial patterns across factors but similar patterns across
metaheuristics. For the COUNTY-scenario, high probability occurred around each satellite city center,
with CG yielding high values in smaller areas and SPG yielding high values in larger areas. The spatial
patterns generated by POP are somewhat similar to those by COUNTY because the population density
in city centers is much higher than that in other areas. For the ROAD-scenario, high probability occurs
along the major roads for both CG and SPG, and moderate differences are noticeable between the two
metaheuristics. The probability maps clearly reflect the definition of CA parameters and their changes
across factors and metaheuristics.
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Figure 5. Land transition probability maps for scenario prediction based on CG and SPG. (a) Land
transition probability by CG for COUNTY-scenario, (b) Land transition probability by CG for
ROAD-scenario, (c) Land transition probability by CG for POP-scenario, (d) Land transition probability
by SPG for COUNTY-scenario, (e) Land transition probability by SPG for ROAD-scenario, and (f) Land
transition probability by SPG for POP-scenario.

3.2.2. Simulated Urban Patterns for 2015

The transition threshold is critical in determining if a cell’s state can be converted from non-urban
to urban state. When the transition probability is larger than the threshold, a non-urban cell will be
converted to an urban cell. The optimal threshold was defined using two constraints: (1) the total
number of urban cells in 2015, and (2) the maximum running iterations. In this work, there are 5,310,543
urban cells (at 30 m resolution) and the maximum iterations are 10, with each iteration representing
one year. CA models are implemented based on a pre-defined probability threshold, and we tested
potential thresholds ranging from 0.4 to 0.9 with a 0.1-interval. As the urban cells can only be counted
at the end of each iteration of the model implementation, there is always quantitative disagreement
between the simulated urban cells and the classified urban cells. Our preliminary experiments show
that this disagreement can be possibly controlled to within 1%. As a result, a threshold is appropriate
if it results in less than 1% discrepancy in total urban cells at the 10th iteration. In this research, the
optimal thresholds we found were 0.56 for CG and 0.70 for SPG.

In comparing the observed urban patterns (see Figure 2), the 2015 simulated urban patterns at
Su-Xi-Chang are presented in Figure 6. These were generated using CG-CA and SPG-CA models
using the defined thresholds. The maps display similar spatial patterns for urban growth, but they are
noticeably different from the observed pattern. Figure 2 shows that the observed newly built-up areas
lie in the inner suburbs and the suburban outskirts, while those in the outskirts are dispersed, with
many urban patches inserted into the farmland. In contrast, Figure 6 shows that the newly built-up
areas are located near the city centers; there are fewer in the outer suburbs, suggesting more compact
urban patterns when compared to the observations.
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Figure 6. The simulated 2015 urban patterns with two enlarged regions showing local differences.
(a) 2015 simulated result by CG, and (b) 2015 simulated result by SPG.

Visual inspection does not show substantial differences between the two simulated maps, so we
enlarged two sub-regions in the southeastern and northern urban fringe areas to infer local differences.
Region-1 (the middle column) is located in the inner suburbs of Suzhou, where the reference map
shows less urban growth while the simulated maps show more urban growth. Substantial differences
are apparent between these two enlarged simulated maps. Region-2 (the right column) is located in
the outskirts of Wuxi where the reference map shows more urban growth while the simulated maps
show less urban growth, with noticeable minor differences between the two enlarged simulation maps.
Another significant difference between the reference and simulated maps is that the reference maps
are characterized by urban patches with serrated edges, whereas the simulations have urban patches
with smooth edges (the middle and right columns).

3.2.3. Accuracy and Error

Overlaying the actual and simulated urban growth maps visually demonstrates the simulation
successes and errors (Figure 7), demonstrating the ability of the CA models to accurately allocate
new urban cells. The overlay maps feature six categories: urban at 2005, persistent non-urban, hit,
miss, false alarm and excluded. While the full maps are quite similar in simulation success and error,
differences are still noticeable in the enlarged maps (the middle and right columns). In Region-1,
CG-CA hit fewer cells, missed more cells and triggered fewer false alarms, while SPG-CA hit more
cells, missed fewer cells and triggered more false alarms. In Region-2, no observable differences are
apparent between the two models, and their simulation errors are significantly attributed to the missed
new urban cells, indicating that these models hit fewer new urban cells and produced fewer false
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alarms in the outskirts. This suggests that both models successfully simulate the inner suburbs, but are
less successful in the outer suburbs.
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spectral projected gradient-based CA (SPG-CA) models. (a) Simulation successes and errors of CG,
and (b) Simulation successes and errors of SPG.

The six indices that represent simulation successes and errors significantly vary with the number
of model iterations (Figure 8), where SPG-CA is slightly superior to CG-CA. Although the final
performance of the two models is similar, there are significant differences in the simulation process.
Correct rejections and false alarms are quite similar in the two models, but the other indices show
distinct differences. SPG-CA yields an overall accuracy of 85.9% with a Kappa of 69.7%, while CG-CA
yields an overall accuracy of 85.8% with a Kappa of 69.4%. These metrics increase, then decrease as
the number of model iteration increases (Figure 8a,b). Overall accuracy peaks at the 2nd iteration for
SPG-CA and at the 3rd iteration for CG-CA, while Kappa peaks at the 3rd iteration for SPG-CA and
at the 4th iteration for CG-CA. With the model running, correct rejection (i.e., simulated non-urban
persistence) declines while correctly simulated urban growth (hit) increases (Figure 8c,d). Figure 8d
clearly shows that the hit differences between SPG-CA and CG-CA are larger when the model starts,
but become smaller as the simulation progresses. Misses decrease, while false alarms increase with the
model running, where the differences in misses are larger at the start than at the end.
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3.2.4. Future Scenario Projection

To examine the predictive power of our CA models and to explore the possibility of the
urban development in Su-Xi-Chang Agglomeration, we ran four alternative 2035 simulation
scenarios including BAU-scenario, COUNTY-scenario, ROAD-scenario and POP-scenario (Figure 9a–h).
Our results show that there are more differences among the scenarios based on different factors than
from different models. As the BAU-scenario considers all the candidate factors, the agglomeration will
expand its urban extent based on the development inertia observed during 2005–2015 (Figure 9a,b).
The overlay map of the two BAU-scenarios shows noticeable differences between CG-CA and SPG-CA
(Figure 9i). Compared to the BAU-scenario, the COUNTY-scenario attracts more urban growth in the
urban fringe of the satellite cities, but fewer in the urban fringe of Suzhou, Wuxi and Changzhou as
well as along the roads that connect the central cities and satellite cities (Figure 9c,d). By comparison,
CG-CA predicts more urban growth in the peri-urban areas of Zhangjiagang, Changshu and Taicang
of Suzhou, and Jintan of Changzhou, whereas SPG-CA predicts more growth in the peri-urban areas
of Suzhou, Wuxi, Changzhou, and Yixing of Wuxi (Figure 9j).

In the ROAD-scenario, most of the newly built-up areas occur along present road networks
(Figure 9e,f), showing the incomparable effects of these networks on future urban development.
By comparison, CG-CA predicts more urban growth along the arterial roads, while SPG-CA predicts
more along secondary roads (Figure 9k).

The POP-scenario shows that, in the next 20 years, increased population density will lead to
drastic land-use change and substantial urban growth in Liyang of Changzhou and Yixing of Wuxi,
southwest of the study area (Figure 9g,h). By comparison, CG-CA predicts more urban growth in
the outskirts while SPG-CA predicts more in the peri-urban areas (Figure 9l). The similarity of the
COUNTY and POP factors is expected, because most residents live in the cities.
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The PLAND metric shows that only minor (<1%) differences exist among the scenarios, showing 
the ability of the CA models to control the total urban cells. The two ROAD-scenarios yield the largest 
urban patches, implying that the ROAD-scenarios have smaller NP and PD values (Table 3). LSI 
shows that, among the scenarios projected by CG-CA, the POP-scenario yields the most irregular 

Figure 9. Urban scenarios for 2035 predicted using both the CG-CA and SPG-CA models.
(a) BUA-scenario by CG-CA, (b) BUA-scenario by SPG-CA, (c) COUNTY-scenario by CG-CA,
(d) COUNTY-scenario by SPG-CA, (e) ROAD-scenario by CG-CA, (f) ROAD-scenario by SPG-CA,
(g) POP-scenario by CG-CA, (h) POP-scenario by SPG-CA, (i) comparison of BAU-scenarios between
CG and SPG, (j) comparison of COUNTY-scenarios between CG and SPG, (k) comparison of
ROAD-scenarios between CG and SPG, and (l) comparison of POP-scenarios between CG and SPG.

Landscape metrics should show more specific differences in area, edge, shape and aggregation
spatial patterns. We used Fragstats 4.2 [56] to compute fifteen landscape metrics to describe the spatial
patterns of the predicted urban patches (Table 3), where the differences between the BAU-scenario and
other three scenarios are larger than those among the latter three scenarios.

The PLAND metric shows that only minor (<1%) differences exist among the scenarios, showing
the ability of the CA models to control the total urban cells. The two ROAD-scenarios yield the largest
urban patches, implying that the ROAD-scenarios have smaller NP and PD values (Table 3). LSI shows
that, among the scenarios projected by CG-CA, the POP-scenario yields the most irregular urban
shapes. Among those projected by SPG-CA, the ROAD-scenario has the most irregular urban shapes.
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All scenarios have the same level of patch complexity as inferred by PAFRAC. Among all scenarios,
the ROAD-scenario from CG-CA has the shortest edge (18.62) while that from the SPG-CA model has
the longest edge (22.03). This may be attributable to the isolated urban cells from the SPG-CA model.

The aggregation metrics indicate the tendency of urban patches to be contiguous and spatially
aggregated, a general property of contagion-like phenomena. This was caused by the infilling urban
development that was determined by the relatively high transition probability of a non-urban cell
surrounded by other urban cells. Metrics CLUMPY, PLADJ, COHESION, DIVISION and AI show that
all scenarios have uniform values across different influencing factors and CA models, and that the
predicted urban patches are spatially connected and aggregated. Compared to the above five metrics,
IJI shows greater difference among scenarios where the BAU-scenarios have smaller values (~69%)
while the other scenarios have larger values, specially the ROAD-scenario from CG-CA. This suggests
that urban land use in the BAU-scenarios is less interspersed and juxtaposed to non-urban and water
while the ROAD-scenario from CG-CA is most interspersed and juxtaposed to the other land-use types.
MESH is negatively related to SPLIT and thus they imply the same results. For both CA models, the
ROAD-scenarios produce the largest MESH and smallest SPLIT, suggesting that these scenarios yield
the largest urban patches when compared to other scenarios. This may be related to the prediction
that, in the ROAD-scenarios, new urban areas along the arterial roads more completely connect the
three central cities with the satellite cities.

Table 3. Landscape metrics of the urban class of the four alternative urban scenarios. Abbreviations:
percentage of landscape (PLAND); largest patch index (LPI); total edge (TE); perimeter-area
fractal dimension (PAFRAC); number of patches (NP); patch density (PD); landscape shape index
(LSI); clumpiness index (CLUMPY); percentage of like adjacencies (PLADJ); patch cohesion index
(COHESION); landscape division index (DIVISION); aggregation index (AI); interspersion and
juxtaposition index (IJI); effective mesh size (MESH); and splitting index (SPLIT).

Category Metric

CG SPG

BAU-
Scenario

COUNTY-
Scenario

ROAD-
Scenario

POP-
Scenario

BAU-
Scenario

COUNTY-
Scenario

ROAD-
Scenario

POP-
Scenario

Area and Edge
PLAND (%) 38.35 37.97 38.66 38.62 38.25 38.79 38.42 38.65

LPI (%) 7.68 8.49 13.68 8.59 7.72 8.89 16.11 8.80
TE (1000 km) 20.87 21.00 18.62 21.54 21.30 21.11 22.03 21.15

Shape PAFRAC 1.25 1.24 1.24 1.25 1.26 1.26 1.28 1.25

Aggregation

NP (num) 5493 5821 5357 5528 5588 5555 5598 5540
PD (num/km2) 0.32 0.34 0.31 0.32 0.32 0.32 0.32 0.32

LSI (%) 64.63 65.42 57.38 66.46 66.03 65.01 68.15 65.22
CLUMPY (%) 0.96 0.96 0.97 0.96 0.96 0.96 0.96 0.96

PLADJ (%) 97.62 97.58 97.89 97.56 97.56 97.62 97.49 97.61
COHESION (%) 99.72 99.68 99.83 99.75 99.72 99.72 99.86 99.76
DIVISION (%) 0.99 0.99 0.97 0.98 0.99 0.99 0.96 0.98

AI (%) 97.66 97.61 97.93 97.60 97.60 97.65 97.53 97.64
IJI (%) 69.25 72.09 77.04 71.32 69.78 73.34 69.74 71.86

MESH (ha) 2.53 2.18 5.42 3.20 2.56 2.51 6.84 3.39
SPLIT 68.25 79.29 31.92 54.10 67.55 68.85 25.29 50.95

4. Discussion

We applied five metaheuristics (Nelder-Mead, BFGS, NLMINB, CG and SPG) from the optimx
package to retrieve land transition rules for the Su-Xi-Chang Agglomeration. We selected CG and
SPG from these to build CA models for simulation and prediction of urban growth. We ignored
Nelder-Mead, BFGS, NLMINB because they produced only minor differences as compared with CG.
Both the selected metaheuristics applied box constraints in calculating the CA parameters. The 2015
simulated results yielded high overall accuracy (~86%) and Kappa exceeding 69%, suggesting that the
two CA models perform well. Accuracy of the models peaked at the 3rd or 4th iterations, where they
did not complete the allocation of all cells available for development. The decrease in accuracy with
iteration number may be attributed to the false alarms induced during modeling. We simulated
four alternative 2035 urban scenarios: business as usual and magnified effects of county centers,
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road networks and population density, respectively. The magnified effects adequately reflect the CA
parameters from the selected metaheuristics under different box constraints.

The optimization ability of metaheuristics GA and DE may be substantially affected by the initial
solution, box constraints, and controlling parameters [19,34]. All five metaheuristics might generate
the same CA parameters if they employed infinite box constraints. Here, an initial solution and
box constraints were based on parameters derived from LR. A recent publication [20] shows that
box constraints can also be defined using extensive tests that produce similar results. Compared to
metaheuristics that do not employ box constraints, box-constrained metaheuristics are more efficient
in optimization [66], and they produce repeatable CA parameters. Our pre-examination also shows
that CG and SPG are less sensitive to the change in their controlling parameters, suggesting robustness
in establishing urban CA models.

Similarity in land transition probability maps suggests similarity in spatial patterns of the
simulations. Our CG-CA and SPG-CA models successfully capture urban growth in three major
cities (the Suzhou, Wuxi and Changzhou city centers), whereas they are less able to model small
patches of urban growth in the outskirts and satellite cities. Moreover, the simulated urban patches lost
some spatial details and are smoother than the actual patches, an inherent issue in CA modeling [67].
CA is essentially a moving-window method of spatial analysis. As such, the state of each cell is
affected by its surrounding cells; effectively this is a smoothing filter. We therefore suggest that adding
landscape heterogeneity into CA modeling could eliminate this smoothing effect.

In addition to minimizing the residuals and automatically searching for CA parameters, another
advantage of metaheuristics is that complex conditions (i.e., equality and inequality constraints for
the fitness function and box-constraints for the CA parameters) can be taken into account during
optimization [68]. As such, metaheuristics generate different CA parameters that express the physical
constraints required to predict urban future scenarios. This means it is possible to quickly solve
minimization problems with complex constraints using metaheuristics such as PSO, SA, DE, CG,
SPG and Nelder-Mead. Metaheuristics feature objective parameterization of transition rules for
scenario prediction [19], as compared with the LR method. These scenarios should inform modelers
and policy-makers about how the Su-Xi-Chang Agglomeration might evolve over the next 20 years
when considering only one factor at a time. Our CA-based scenario prediction is of practical significance
for assessing the consequences of macroeconomic policy and urban planning regulations as well as
tuning their future directions. For example, planners can use our models to identify possible future
illegal (unplanned) development and estimate urban-encroachment on agricultural and ecologically
valuable land, hence evaluating the negative effect of urban growth on ecosystems, environments, and
regional climate.

Overall, our major contribution is the development of a set of comparable urban CA models using
the R package optimx. These models are featured by the prediction ability in modeling urban future
scenarios in response to different development strategies and policies. This model feature is based on
objective parameterization that has not been adequately addressed in previous studies. Our models can
also be used to simulate multiple land-use change. The use of R package optimx facilitates other model
developers to easily follow our methods for their specific applications elsewhere. Limitations exist in
our models because they can be affected by their own controlling parameters, in which appropriate
parameterization needs experience of mastering intelligent algorithms or extensive tests. In addition,
the principal limitation of these models is that they generate urban patches that are smoother than the
actual urban patterns.

5. Conclusions

The R package optimx provides a unified framework (with many alternatives) that is suitable
for solving optimization problems. We developed five CA models for simulating urban growth using
the metaheuristics included in optimx, which automatically search for the near-optimal parameters
in defining land transition rules. We selected CG and SPG to simulate 2005–2015 urban growth and
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projected 2035 scenarios for the Su-Xi-Chang Agglomeration of Jiangsu Province. The CG-CA and
SPG-CA models we constructed yielded high overall accuracies of about 86% and Kappa coefficients
exceeding 69%, indicating their strong ability of urban growth simulation. Compared to other methods
based on statistical techniques and fuzzy sets, the competitive advantage of metaheuristics is its
strong ability to solve complex constrained problems, resulting in objective parameterization with
strong predictive power. We simulated four alternative 2035 urban scenarios by considering the
effects of all land use change drivers as well as the magnified effects of county centers, road networks
and population density. These scenarios provide insights into future urban patterns resulting from
current urban planning and infrastructure, and can inform advisable development strategies for
sustainable cities.

Our metaheuristic CA models are readily applicable to modeling land use and urban growth
in rapidly developing areas. The principal limitation of these models is that they generate urban
patches that are smoother than the actual urban patterns. We suggest that incorporating landscape
heterogeneity into the CA models may reduce this smoothing effect. Future studies should focus
on [1] spatial visualization of landscape heterogeneity, [2] a method to integrate heterogeneity into CA
models, and [3] the performance of heterogeneous CA models. This could eliminate the contagion-like
phenomena that are common in CA-based urban modeling. In addition, climate change and more
socioeconomic factors should be considered in CA modeling to address the complex impacts of the
natural and human effects on the regional and global urban growth. These should promote the
progress of CA research in both modeling methods and application.
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