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Abstract: Knowledge discovery about people and cities from emerging location data has been
an active research field but is still relatively unexplored. In recent years, a considerable amount
of work has been developed around the use of social media data, most of which focusses on
mining the content, with comparatively less attention given to the location information. Furthermore,
what aggregated scale spatial patterns show still needs extensive discussion. This paper proposes
a tweet-topic-function-structure framework to reveal spatial patterns from individual tweets at
aggregated spatial levels, combining an unsupervised learning algorithm with spatial measures.
Two-year geo-tweets collected in Greater London were analyzed as a demonstrator of the framework
and as a case study. The results indicate, at a disaggregated level, that the distribution of topics
possess a fair degree of spatial randomness related to tweeting behavior. When aggregating tweets
by zones, the areas with the same topics form spatial clusters but of entangled urban functions.
Furthermore, hierarchical clustering generates a clear spatial structure with orders of centers.
Our work demonstrates that although uncertainties exist, geo-tweets should still be a useful resource
for informing spatial planning, especially for the strategic planning of economic clusters.

Keywords: geo-tweets; spatial structure; urban functions; clustering; topic modelling

1. Introduction

Spatial planning and the allocation of urban resources (e.g., goods, infrastructure, services) need
to be supported by accurate and dynamic urban information. In recent years, emerging automatically
generated location data typified by smart card data, mobile phone data, and social media data has been
widely explored for applications such as, for instance, detecting events [1,2], extracting population
groups and their associated patterns [3,4], understanding human activity and mobility behaviors [5],
redrawing communities and boundaries [6-8], inferring activity types and land uses [9], evaluating
urban functionalities [10,11], and understanding the regularities of cities [12].

This research considers tweets, an emerging location data set for understanding urban functionality
and spatial structure. As a social media system, Twitter allows registered users to share short text
messages, which are called tweets. There are 330 million average Monthly Active Users (MAUs)
according to the most recent annual report by Twitter showing a continued growth in recent years [13].
Compared to other urban mobility datasets, Twitter data is open to the public (in particular by
using standard streaming API with “locations” parameter), and highly available in most cities.
The data contains rich textual information and the near real-time nature is not available in other
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populated datasets. Seeing the advantages, Twitter data has attracted considerable attention from
scientific communities. However, most of the previous work concerns the analysis of the tweets’
microblog content. The potential around location information needs more active exploration [14,15].
For applications in urban analytics specifically, on the one hand, massive progress has been made
using various types of emerging location data. On the other hand, a growing number of discussions
have pointed out the drawbacks and consequences rooted in the nature of automatic data—the lack
of demographic and contextual information [16,17], and the bias in sampling [18]. This leads to the
salient research question behind our work: with inferred information, at what aggregated level can
clear and meaningful spatial patterns be detected using geo-tweets in the context of urban analysis?

Therefore, we proposed a multilevel analytical framework named as tweet-topic-function-structure
(TTFS) to reveal spatial patterns from individual levels at aggregated spatial scales, integrating
an unsupervised learning algorithm with spatial measures. A composite score is proposed to select
the best topic model as a base for the follow-up analysis. We applied the framework to a case study
of two-year geo-tweets collected in the Greater London Area (GLA). The analytical results fulfil our
two-fold research goals. Firstly, the multilevel analysis allows us to test our hypothesis that although
the spatial distribution of individual tweets in topics demonstrates degrees of randomness; collective
effects at an aggregated level show spatial clusters that correlate with entangled urban functions,
which at the city-wide level, enable us to extract a hierarchical spatial structure. Secondly, this work
profiles the functionality and structure of the GLA using Twitter data as a proxy, which contributes to
a better understanding of the social dynamics in the GLA. In sum, our work explored the potential of
Twitter data in informing spatial planning.

Related Work—Mining Spatial Patterns from Geo-Tweets

Twitter users can opt in to geotag their tweets. From a random sampling of collected tweets
only 1% are geotagged. These statistics are in line with the other findings [19-21], even though,
previous work has proved the performance and functionality of geo-tweets in outlining dynamic
urban space. For instance, in [22], tweets in 39 countries were investigated. In particular, they found
a positive correlation between the number of tweets on the road and the Average Annual Daily Traffic
on highways in France and the UK. In developing countries, such as Kenya, as showcased in [23],
tweets have a good coverage across the entire country and could be used as an alternative source of
information for estimating flows of people. This paper positions tweets as a type of emerging big human
mobility data [24] and explores their potential in the field of urban analytics. A literature review is
therefore scoped accordingly. Apart from the works rooted in technical advances, e.g., data mining and
machine learning algorithms, previous related research around urban analytics may be summarized
into three categories.

The first category of research makes best use of the rich textual information. The microblog
system delivers messages in natural language that allows us to understand people’s response to
the environment and events. For instance, tweets regarding a new Bus Rapid Transit system were
extracted and analyzed as an alternative source of understanding user satisfaction [25]. Geo-tweet
adds a spatial-temporal dimension to the analysis of perception. It has frequently been applied to
model the spreading impacts of emergency situations such as that exemplified by [2,26,27]. For this
sort of analysis, the results are comparatively promising as Hashtags were used to filter tweets into
themes and contribute a better interpretation of the contents.

The second category gives more focus on the locational rather than contextual information,
mostly using spatiotemporal analysis. Steiger, Albuquerque and Zipf [15] did a systematic review
and found that although the number of publications around tweets increased dramatically, only 13%
of them focus on location information, and even fewer on specific applications. Visual analytics is
undoubtedly an important sub-category as shown by the spatiotemporal visualization framework used
in [28,29]. In addition, applications regarding human mobility and migration patterns have become
an important trend. For example, travel behavior was extracted from geo-tweets in Austria and Florida,
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but with a focus on terrestrial long-distance travel only (that which extends over 100 km) [5]. Similarly,
long-distance movements were explored in [23]. Furthermore, clustering methods incorporating
spatial, temporal, and textual information have been widely applied to infer activity types or travel
purpose and segment user groups at an aggregated scale [30,31]. Results were generally verified with
travel surveys or census data [9,32], and it was concluded that working and commercially related
tweets or topics gave a better estimate. For long-term and even larger spatial scale movement patterns,
analysis around migration was explored, such as that in [33,34]. Although significantly limited by the
sample size of valid tweets, long-term historical tweets data is still useful for exploratory analysis and
inferring trends.

The third category emphasizes urban morphology and system dynamics. It overlaps with the
two previous categories. Twitter data has been used to redraw the boundaries and landscapes in
social space, rather than physical geographical space [35]. In another work developed by Longley and
Adnan [36], demographic information was also inferred from tweets user profiles and combined with
land-use data to conduct a geo-demographic classification of the GLA. In [10], a quantitative measure
was proposed implementing Jane Jacobs’ concept of diversity and vitality and used Twitter as a proxy
for urban activities. Similarly, location-based check-in data have been used to infer place significance
and assess functional connectivity [11]. Our work aligns with this category but emphasizes spatial
structure on top of multilevel analysis.

There is, in fact, a fourth area of enquiry, relating to the above three, which looks beyond the use
of tweet data, at all emerging mobility data types, and this remains an area of longer-term interest for
our work. This category investigates the uncertainties in the detected phenomena, in the methods
adopted, and in the tweet data itself. For instance, [37] discussed the similarities of patterns across
temporal, geographical and semantic characteristics in tweets data. Jurdak, et al. [38] found similar
overall features exist in mobile data and geo-tweets. They also reported variability caused by regular
and irregular users and animalized movements. In fact, the same issues were observed in other types
of mobility data [12,39]. Discussions around regularity and variability were initiated a while ago
with open questions posted. For instance, is there a universal pattern in mobility regardless of urban
context [40,41]? Are there limits in predicting mobility [42,43]? A discussion of this topic, with materials
drawn from our analysis, is touched upon in the last section.

2. Materials and Methods

2.1. Data and the Study Area

The Twitter data for this study were sourced using a standard Twitter streaming API between
June 2015 and June 2017. The Twitter API provides a free and straightforward way to query a portion
of streaming tweets and returns results in a JavaScript Object Notation (JSON) format. The analysis
used geo-tweets only. Geo-tweets refer to those that have valid coordinates while excluding those
having a location tag only. Basic figures are given in Table 1.

Four steps of data cleaning were conducted. The first three steps follow a generic preliminary
data processing that remove outliers by conditions. The last step is to prepare the data for text mining
with commonly used packages, i.e., re and Gensim. First, only tweets with coordinates falling in the
GLA were kept. Second, tweet accounts that posted an anomalous number of tweets greater than
average by a standard deviation were removed, as these are likely to be fake users or commercial
accounts. Third, tweet accounts that kept on posting at repeating coordinates were deleted, as these
are usually official accounts such as weather broadcasting. After these three steps, the distribution of
tweets per user id shows an exponential-like decay distribution without a long tail. Manual checking
was conducted for sampled tweets by user ids to verify our data cleaning process. The last step is
text cleaning for topic modelling. Tweets with fewer than four words were removed because they are
too short and do not contribute any meaningful content but instead, may bias the results. It is worth
mentioning that a phrase detection process was applied to automatically detect common phrases as
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a step in the text clean-up. This combines words and forms phrases especially for location names,
for instance, “greater_london_area” is a combination of three words. We found that forming phrases
decreases the bias in analysis caused by frequent repeating words, such as “great” (which is the root
of greater).

Table 1. Tweets data from June 2015-June 2017.

Data Processing Number of Number of Users Ave. Tweefts Per
Tweets User_id
1. All geo-tweets collected in GLA 6,647,704 483,444 13
2. Remove repeating ids 4,166,542 481,007 9
3. Remove repeating coordinates 2,275,852 326,218 7
4. Remove tweets with fewer than 4 words 1,938,275 288,603 -

(after cleaning up text)

Our analysis aims at including a full spectrum of urban functions. Therefore, all valid tweets
are included in the analysis regardless of the time and frequency of tweeting. Geospatial data at
Middle Layer Super Output Area (MSOA) level were used for summarizing and mapping (as shown
in Figure 1 left). The average population of an MSOA in London in 2010 was 8346. We chose to use
MSOA level because it gives an adequate spatial resolution (938 zones for the GLA) while at the same
time avoiding null values. As shown in Figure 1 right, there were no single zones without geo-tweets.

Spatial distribution of population (census 2010) Spatial distribution of geo-tweets
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Figure 1. Spatial distribution of population (left) and geo-tweets in zones (right).
2.2. Methodology

We intentionally made the framework more generic by using well-established methods
(e.g., Latent Dirichlet Allocation (LDA), Multivariate Clustering) to ensure such a framework can be
easily adapted to other case studies across different fields. A comparative study is the next step to
verify if the insights gained in this work can contribute to other urban contexts. The two subsections
below present the most critical elements in our methodology: (1) the workflow; and (2) an additional
indicator for model selection for the research of urban spatial patterns.

2.2.1. Framework—Tweets-Theme-Function-Structure (TTFS)

We proposed a three-step framework that infers urban information from geo-tweets as that
shown in Figure 2 (step 1-3 is denoted from top to bottom). The first step is topic modelling of
tweets and interpreting meaning of topics in urban context. For implementation, we use the Mallet
Java topic modelling toolkit re-developed by Gensim with a python wrapper [44]. The way we
select the best number of topics is detailed in Section 3.2. The second step is a summary analysis
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along with a qualitative interpretation of each topic and its projected urban functions. Local spatial
autocorrelation measures by Pysal [45] were applied to extract and analyze spatial clusters. In particular,
local indicators of spatial association (LISA) were applied, which identify hot spots that reflect
heterogeneities and contribute to global patterns [46]. The third step is multivariate hierarchical
clustering using the distribution of topics in each zone as vectors of input data. For instance, if there
are T topics defined in step 1. The vectors used for spatial clustering in step 3 will be a vector of T
variables. A spatial structure is expected to be identified after classifying zones into different groups.
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Figure 2. TTFS Framework for profiling urban functionality and structure from geotagged tweets.

2.2.2. Indicators for Select the Number of Topics

To extract information from our textual data, we applied one of the most prevalent topic modelling
approaches—Latent Dirichlet Allocation [47]. LDA assumes each document in a corpus contains
numerous latent topics and each word is drawn from one of those topics. During calculation, each word
is considered to be a vector, and each topic is a unique word probability distribution, and similar
semantic information will be grouped by underlying mathematical techniques. A generally agreed
challenge of topic modelling is the interpretation of topics, which matters to the selection of the most
optimal topic model. In this study, it is crucial because the detected topics define base urban functions
for follow-up analysis. A commonly adopted way to select the best topic model is by coherence value,
which measures the quality of individual topics [48]. In general, the higher the coherence value,
the better the quality of the topics. We implemented a grid search of best topic models and ended up
with the same conclusion as that in [49]. Increasing the number of topics (T) leads to higher coherence
values. However, the higher value does not always mean the most meaningful value. Bringing too
many topics for an in-depth review of topics is not the focus of this research and gives no help to the
distinguishing between urban functions and the associated spatial patterns. As a trade-off, on top of
coherence value, we added a global spatial autocorrelation measure, which involves the study of the
distribution over the entire area and sees if the distribution displays clustering or not. We chose the
topic models that generate good spatial clusters, as it is generally known that urban agglomeration
happens as a natural process. For that spatial autocorrelation calculation, Moran’s I [50] is applied with
the distribution of tweets in topics used as input vectors. To be more specific, if nine topics (t = 9) were
used, nine autocorrelations will be calculated, and we take the average value. To avoid any bias caused
by the uneven distribution of tweets (as shown in Figure 1 right, a significant number of tweets were
concentrated in inner London area), the distribution of tweets in topics are normalized by each zone.
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3. Results

The presentation of results is structured in line with the workflow presented in Section 3.1 along
with technical details. They are, moreover, aligned with the three subsections discussing the results
generated in this work and related to the discussion of urban mobility related literature. The focus
is multifold. First, it introduces a measure to quantify the general challenge of topic modelling,
topic number t. Second, we demonstrate a spatial autocorrelation analysis to infer hot spots and
structure with the topics which we labelled. Last, we construct a framework which reveals the spatial
structure based on topics and functions, as well as the underlying correlations with other urban
theories or models.

3.1. Inferring Activity Types and Entangled Urban Functions

The optimal topic model was selected with nine topics identified using coherence values and
an average spatial autocorrelation measure. In general, the coherence values increased along with the
number of topics as aforementioned. The result is in line with that in the data mining literature [49].
Conversely, the mean value of spatial autocorrelation decreased. This indicates the spatial distribution
is exhibiting higher levels of randomness, which makes the classification and interpretation of topics
more complicated when considering its associated spatial patterns. Therefore, topic model with
nine topics was selected as shown in Figure 3 (vertical line) as a trade-off between coherence and
autocorrelation values.

Table 2 lists the clustered nine topics, the representative words in each topic, and the mapping
from words to topics and to their associated urban functions. The mapping is merely a qualitative
analysis process. As one way of verification, the detected keywords are closely related to those
identified in previous work [35,37]. Therefore, when defining the topics as activities, we referred to the
labels defined in related work. The classification of urban functions is related to the National Land Use
Classification in the UK [51], in which, 13 main land uses are defined along with a decomposition into
several sub-types. When mapping these activities to urban functions, we found it is not possible to
make a 1-to-1 mapping, because the labelled activities (column 2, topic) could happen in more than
one urban functional area. This revealed the shortcomings and the research potential for classifying
land use in functionally complicated urban area. One exception is topic 6—food and drink—which is
a straightforward case and is closely associated with the function of retail. The other topics all exhibits
a 1-to-N relationship. For instance, topic 5 routine activities are a high-level classification composed
of work, education, residential, etc., as we can identify from the keywords. The corresponding
urban functions could be residential, office, education, as well as people tweeting on their way
to their destinations; City hub is equivalent to multifunctional zones that attract large volumes of
flow population. The places identified in the keyword include critical transport hubs and popular
tourist sites.

It is also worth noticing that the even distribution of topics given in the last column of the
table—the ratio of tweets in the topic—is quite unlike the statistical distribution of trip purpose gained
through official travel demand surveys or inferred activities from other mobility datasets, such as
smart card data [52]. In these, commuting trips have much higher occurrences in urban travel than
indicated in our Twitter data. This indicates the limits of using tweets for travel demand prediction.
The underlying reason for this could be the motivation for tweeting which will be further discussed
and the intermittent absence of mobile signal, such as that experienced in the London Underground,
resulting in data uncertainty.
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Combined scores of topic models
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Figure 3. Selection of the best number of topics for unveiling spatial patterns.

3.2. Unwveiling Collective Patterns from Randomness through a Spatial Clustering of Functional Zones

From the entangled urban functions embedded in tweets, we conclude that, rather than taking
modelled topics of the tweet as a defined functionality of space, it is more reasonable to take it as
a layer of probability from which we may infer spatial distributions and hotspots.

In the second step, spatial correlation analysis was applied. A spatial weight matrix was
constructed using a K nearest neighborhood (KNN) method with K set to be 10. Our experiment
showed that choices of alternative K would only smooth the spatial distribution to a certain degree,
but it made no dramatic change to the observed overall trend. Noting that the index of the matrix
in Figure 4 corresponds to the identification of topics in Table 2 we see that the non-diagonal cells
are bivariate spatial correlation of two different topics. A higher value means the distribution of the
two topics is likely to change accordingly in space. Overall, low bivariate correlations were observed,
which is indicative of a spatially stable classification of topics.

Spatial correlation matrix of topic distribution LISA clusters (topic 3) LISA clusters (topic 5)
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Figure 4. Local spatial autocorrelation matrix (left) and maps hotspot of selected topics (right).
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Table 2. An interpretation of words in topics and responding urban functions.

8 of 14

c Topic Words in the Topic Urban Functions Moran’s I Ratio _tw (%)
Beautiful, make, studio, check, shoot, summer, light, photo, shop, art, gorgeous,

1 Fashion and arts top, hair, style, colour, beauty, wear, design, hand, eye, blue, set, exhibition, piece, Recreation and leisure/retail 0.051 11.94
store, black, project, perfect, collection
Time, tonight, show, year, todayj start, ready, friday, tomorrow, party, open, Recreation and

2 Events Christmas, week, book, event, Saturday, weekend, free, visit, end, part, join, . . . 0.077 10.31

- : Lo . leisure /community services

finally, wait, leave, month, bring, ill, launch, excited
London, greater_london, city, hotel, covent_garden, station, england,
london_underground_station, bridge, victoria, good_morn, central, royal, tower, Recreation and

3 City hub canary_wharf, westminster, kings_cross, tube_station, mayfair, hyde_park, soho, leisure /Retails/ Transport 0.46 15.34
kensington, leicester_square, wembley, hospital, united_kingdom, notting_hill, p
camden_town, platform
Posted_photo, house, bar, place, park, street, view, road, garden, pub, cafe, pic,

4 Sight and view soho, market, theatre, centre, spot, town, shoreditch, east, camden, south, room, Recreation and leisure/Retail 0.078 12.14
local, pretty, chelsea, queen, dog, church, west
Today, day, work, back, morning, home, run, nice, feel, week, session, walk, bit, . .

. L . . " . Residential/Industry and
5 Routine activities post, sunday, long, class, train, office, sun, hour, finish, gym, Monday, training, . 0.16 10.03
business/ transport

start, break, hard, early, follow
Drink, lunch, food, coffee, restaurant, breakfast, dinner, beer, eat, special, cocktail,

6 Food and drink delicious, brunch, drinking, green, cake, red, tea, wine, treat, hot, burger, fresh, Retail 0.24 11.17
taste, perfect, meal, chocolate, sweet, chicken, serve

Business People, life, thing, make, give, talk, bad, world, call, find, change, support, service,
. . . . ! . Industry and
7 information, read, woman, job, share, learn, high, lose, business, point, story, word, stop, . . 0.12 10.03
. X business/transport/educational
networking student, plan, group, idea

Big, watch, live, play, man, club, boy, game, music, miss, face, school, film, turn, . . .

8 Watch head, baby, moment, kid, video, dream, world, heart, picture, win, star, dance, Readentlaie/il;elizeatlon and 0.16 9.55
listen, fuck, king, rock
Good, great, love, day, night, amazing, lovely, last_night, happy, evening, team, Recreation and

9 Socializing yesterday, friend, girl, fun, meet, guy, birthday, catch, awesome, enjoy, wonderful, 0.16 9.48

weekend, lot, celebrate, happy_birthday, afternoon, family, lady, hope

leisure/community services
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The diagonal of the matrix is the spatial autocorrelation of each topic distribution. In general,
values above 0 indicate trends of spatial clustering, with 1 indicating strong clustering, and below
0 meaning degrees of randomness. The autocorrelation values, though all above 0, do not exhibit
a strong clustering effect, overall. It is not a surprising result since the distribution of dominant
topics in zones does not give any clear spatial partition in GLA. In other words, any topic could be
tweeted anywhere in the city, suggesting that spatial dimension is not the most important factor in
tweeting behavior. Nevertheless, comparatively higher autocorrelations of some topics were obtained
as expected. For instance, City hub (Topic 3) shows the most significant hotspots of big hubs in GLA
that loosely connected from the west end to the north-west (Wembley), expanding to canary wharf and
the city airport, and areas near Heathrow airport. Most popular catering (topic 6) areas are concentrated
near to the central area. There is a partition of east/south London (Bromley and Havering borough)
to the rest of the area in the spatial distribution of topic 9, which can be explained as social activities
with family and friends mostly happening locally and in residential areas. These two boroughs are
likely to function as relatively more self-sufficient communities. Not all spatial clusters are so easily
interpreted in relation to topics. For instance, topic 5, does not generate either a big hotspot in inner
London representing working places, or widely distributed small hotspots representing residential
areas. Overall, we conclude that dominant topics characterize urban space only at an aggregated
spatial level. Some patterns that could not be well interpreted (e.g., topic 5) suggesting that tweets
reflect what people are talking about, rather than where the messages are sent. The mismatch between
functionality in talking and in space is somewhat anticipated, as that shown in Figure 1, even by visual
comparison, the distribution of residential population and tweets have little correlation.

3.3. Constructing a Spatial Structure of Economic Clusters from a Higher-Level Clustering

Building on the foregoing analysis, the final step explores whether we can construct a clear spatial
structure from the topics and functions. Considering the entangled urban functions, we adopted
the distribution of topics instead of one dominance topic as a descriptor of zones. Agglomerative
clustering is applied to generate a hierarchical structure using distributions as input features. In theory,
the higher-level branches indicate higher-level partitions of space. The zones with similar feature will
be clustered. Moreover, no spatial constraints were added to the clustering process, as we would
like to know, whether the generated clusters embed spatial patterns in their nature, and whether the
geographical mapping of clusters would demonstrate any underlying correlations with known urban
theories or models (e.g., central place theory).

A dendrogram representation of the clustered result is shown in Figure 5 (left); the geographical
representation of the clustering reflects the spatial structure of the city shown in the middle, and the
composition of functions in terms of topics in each cluster is demonstrated in the bar chart on the right.
Theoretically, by cutting the dendrogram at different levels, urban space will be partitioned from big
clusters to decomposed small sub-clusters. To demonstrate the mechanism, we chose three thresholds
to cut the dendrogram as denoted by the dashed lines. Giving N denotes the number of clusters,
when setting N = 2, the map in the middle reveals a clear spatial clustering with the most significantly
connected area located in central London in red color. The composition chart on the right side shows
that this cluster has a significant portion of topic 3 which means a strong association with retail
functions. We then progressively set the N to 6 and 12 respectively to generate more clusters. The areas
partitioned in scenario N = 2 have been further decomposed into smaller groups, denoted in gradually
varied colors. As we generate clusters in lower levels, areas with even stronger characteristics were
extracted, such as that marked in red dashed lines, indicating the first order urban centers and second
order centers. Overall, the Twitter geography reveals a polycentric spatial structure, with a big center in
inner London and small centers distributed across outer London. As aforementioned, tweet topics do
not give an adequate representation of working and residential functions quantitatively. The detected
centers are economic clusters rather than multifunctional ones. Therefore, the order and locations
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of centers are likely to reflect a central place theory [53], which explains the primary purpose of the
central place as the provision of goods and services for its surrounding area.

Hierarchical clustering of urban functions Levels of spatial structure Composition of functions
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Figure 5. A hierarchical clustering (a), the associated multilevel spatial structure (b), and the corresponding
composition of functions (c).

4. Discussion

Previous work has comprehensively discussed the bias, limitation and uncertainties of social
media data from various angles, for instance, by comparing data from different platforms [17],
by a critical analysis on methodology [18], and by pushing forward a new concept of geoscience [14].
The results generated in our multilevel analysis, including unexplained patterns, can also be aligned
with the insights given in these works since we position our research in the field of urban analytics using
emerging mobility data. This section summarizes and discusses the data limitations by comparison
with alternative data sources.

Smart card data and mobile phone data are used as comparators because they have been widely
used for the same type of analysis presented in this work namely, inferring urban activities, identifying
urban functionalities and detecting spatial structure (summarized in Table 3) [54,55]. Uncertainties exist
in all three types of dataset, some of which are rooted in the way the data is generated. For instance,
Twitter data does not cover the entire population like the other data sets, so the representation is
questionable [21,56]. Its location information does not come as a well-structured trajectory data and
has a weaker association with travel demand when compared to smart card data. Spambots and
commercial tweets hiding in the massive volume of “user-generated” data confuse the interpretation of
data. In other words, the characteristics of the data in some aspect determine its usage and limitations
in urban analytics.

In this light our general conclusions based upon our findings, are set out below and these will
condition the directions of our future research.

e Tweets data has the potential to be used for understanding activity patterns especially for
recreation and retail related activities. Its use, however, for predicting travel demand is limited
because the quantity of commuting trips is not adequately represented.

e  The detected spatial patterns reflect where and what some people are talking about rather than the
nature of the activities associated with particular locations. This is caused by the bias embedded
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in the data generation as tweets only capture the population who use social media, and people
use social media mainly for sharing information.

e Although bias exists at a disaggregate level, at an aggregate level, a multilevel spatial structure
can still be extracted that can be used for spatial planning of urban resources, especially, for the

strategic planning of economic clusters.

Table 3. Comparison of emerging big urban mobility data. (* individual-level records).

Data Type
(Openness *)

Coverage of
Population

Granularity

Features

Smart card data
(confidential)

Public transport user

Well-structured with origin
and destination points;
Covers long period;

All urban activity type
and good proxy to travel
demand survey.
Structural changes could

be inferred.

All urban activity types
can be inferred. Better
performance for

Data points that possible to
be converted to trajectories,

Social media users - o
/ origin and destination needs

Geo-tweets (Open

data through API)  and 1% geotag to be inferred; Covers long recreation and retail
Lo purposes that structure
period; .
of economic clusters.
Call Detail Record (CDR)
. generates origin and ..
Mobile phone Mobile users but destinations; location data All urban activity type

covering nearly all
population

and good proxy to travel

(Passive data) demand survey.

depends on the density of
the mobile tower. Covers

long period;

5. Conclusions

In summary, this work conducted a multilevel analysis of geo-tweets in the GLA. We proposed (1)
a generic framework that can be easily applied to the other case studies; (2) an additional indicator
to identify the best topic model for urban spatial analysis; (3) an approach of using tweets to
proxy the hierarchal structure of urban space. The mechanism of this multilevel clustering work
shares similarities with the type of artificial neural network (ANN) methods that mapping high
dimensional data (millions of tweets) to lower dimensional space (less than 10 urban functions).
However, by decomposing the analysis to multi-step tasks—namely from tweets to topic, from topics
to functions, and from function to structure—we can have a deeper look into the meaning of patterns
at different levels of aggregation. By applying the proposed methodology to Greater London, although
detected topics and urban functions are largely entangled, collectively, better-defined spatial patterns,
e.g., spatial structure, were detected at an aggregate level.

The discussion in Section 4 on the potential and limitations of the data is still far from
comprehensive. The conclusions we made are mostly about facts drawn from data characteristics and
statistical values. The underlying reason is rooted in the way data was created. For instance, who is
using the service [17]? And who contributes data assets, rather than noise [56]? Future research will
be developed in the direction of examining the regularity and variability of urban activity patterns.
We would like to have a more in-depth and quantitative analysis of the uncertainties within the
data and the uncertainties inherent in the analytical methods and the urban context of the analysis.
For instance, we would wish to know more about the sample size of the data and its relation to
the stability of the analytical results. Moreover, this tentative work only investigated urban stock,
i.e., activities in areas; further work will investigate flows and the connection between spaces over time.
Finally, this paper contributes only one case study and one type of mobility data set, which cannot,
of itself, lead to a comprehensive conclusion. However, it is possible to gather more evidence by
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adapting the generic framework and more sophisticated techniques to Twitter data in other cities,
for which this work could serve as a useful basis.
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